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1 Introduction

The mathematical hairpin notion introduced in [5] is a word in which some
suffix is the $mi_{IT}$ored complement of a middle factor of the word. This operation were
introduced which are very similar in nature to it. Mirrored complementary sequences
occur frequently in DNA and are often found at functionally interesting locations such
as replication origins or operator sites. The most basic question about hairpin
completion is “given a word, can we decide whether the iterated hairpin completion of
the word is regular?”’ The situation is very complicated. In the special case when the

word is non-crossing, some results were given ([1],[3]). In section 3, we add some
results in the case when the word is crossing.

2 Preliminaries

We assume the reader to be familiar with basic concepts as alphabet, word,

language and regular expression (for more details see [2]).

Words together with the operation of concatenation form a free monoid, which

is usually denoted by $\Sigma^{*}$ for an alphabet $\Sigma$ . Repeated concatenation of a word $w$ with

itself is denoted by $w^{i}$ for nonnegative integer $i$ . The length of a finite word $w$ is the

number of not necessarily distinct symbols it consists of and is written by $|w|.$

Let $\theta$ be an antimorphic involution, i.e. $\theta$ : $\Sigma^{*}arrow\Sigma^{*}$ is a function, such that for
$\theta(\theta(a))=a$ for all $a\in\Sigma$ , and $\theta(uv)=\theta(v)\theta(u)$ for all $u,$

$v\in\Sigma^{+}$ . Then, $w$ is a
$(\theta-)$pseudopalindrome if $w=\theta(w)$ . To make notation cleaner, we write $\overline{u}$ for $\theta(u)$ ,

when $\theta$ is understood.
Throughout this paper, let $k$ be a fixed integer. For a word $w=$ )$\alpha\sqrt{\alpha}$ for some

$\alpha\in\Sigma^{k}$ and $\gamma,$
$\beta\in\Sigma^{*}$ , we define right (k)hairpin completion $\mu\sqrt{}\overline{\alpha\gamma}$ of $w=\mu\beta\overline{\alpha}$

(with respect to $\alpha$ ). By the notation $warrow_{r}u$ $(or w_{k}arrow_{r}u)$ , we mean that $u$ is right

$(k-)$hairpin completion of $w$ . The left hairpin completion is defined analogously. By
the notation $warrow_{l}u$ , we mean that $u$ is left (k)hairpin completion of $w$ . The relation

of hairpin completion $arrow$ is defined $asarrow_{r}orarrow_{l}.$
$Byarrow^{*},$ $arrow_{r}*andarrow_{l}^{*}$ , we denote

the reflexive transitive closure $ofarrow,$ $arrow_{r}$ and $arrow l$ , respectively.
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For a language $L\subseteq\Sigma^{+}$ , we define the right $(k-)$hairpin completion of $L$ by
$RH_{k}(L)=\{\gamma\alpha\beta\overline{\alpha\gamma}$ I $\mu\beta\overline{\alpha}\in L,$ $\gamma\in\Sigma^{+},\beta\in\Sigma^{*}$ and 1 $\alpha I=k\}$ and the lefl $(k-)$hairpin

completion of $L$ by $LH_{k}(L)=\{\mu\sqrt{\alpha\gamma}I)\alpha\sqrt{\alpha}\in L, \gamma\in\Sigma^{+},\beta\in\Sigma^{*}|\alpha I=k\}$ . The
$(k-)$hairpin completion of $L$ is $H_{k}(L)=RH_{k}(L)\cup LH_{k}(L)$ . And we define the iterated

(right or left) (k)hairpin completion $H_{k}^{*}(L)$ $(or RH_{k}^{*}(L) or LH_{k}^{*}(L))$ of $L$, inductively

as follows:
$H_{k}^{0}(L)=H_{k}(L)$ , $H_{k}^{n+1}(L)=H_{k}(H_{k}^{n}(L))$ and $H_{k}^{*}(L)= \bigcup_{n\geq 0}H_{k}^{n}(L)$ ,

$RH_{k}^{0}(L)=RH_{k}(L)$ , $RH_{k}^{n+1}(L)=RH_{k}(RH_{k}^{n}(L))$ and $RH_{k}^{*}(L)= \bigcup_{n\geq 0}RH_{k}^{n}(L)$ ,

$LH_{k}^{0}(L)=LH_{k}(L)$ , $LH_{k}^{n+1}(L)=LH_{k}(LH_{k}^{n}(L))$ and $LH_{k}^{*}(L)= \bigcup_{n\geq 0}LH_{k}^{n}(L)$ ,

3 Iterated hairpin completion of crossing words

A word $w\in\Sigma^{+}$ is an $(m, n)-\alpha$ -word $(or$ simply $(m, n)$-word) if the numbers of
occurrence of $\alpha$ and $\overline{\alpha}$ in $w$, are $m$ and $n$ respectively. We say that an $(m, n)-\alpha$ -word
$w$ is non-a -crossing if the rightmost occurrence of $\alpha$ precedes the leftmost
occurrence of $\alpha$ on $w$ . Otherwise, the word is $\alpha$ -crossing.

Let $w\in oe^{*}\cap\Sigma^{*}\beta$ and 1 $\alpha$ $\beta I=k$ . By one-step hairpin completion with

respect to $\alpha$ and $\beta$ , we get two words $w’\in f\overline{fl}^{*}\cap\Sigma^{*}\beta$ and $w”\in\alpha\Sigma^{*}\cap\Sigma^{*}\overline{\alpha}.$

Regularity of the iterative hairpin completion of $w$ is depend on those of $H_{k}^{*}(w’)$ and

$H_{k}^{*}(w")$ . Our problem in this paper is for a given word $w$ , whether the iterated

hairpin completion of $w$ is regular?”’ In the rest of this paper, we may assume that the

word $w$ is in $X^{*}\cap\Sigma^{*}\overline{\alpha}.$

Let $w$ be a crossing $(m, n)-\alpha$ -word. Then we have $m,n\geq 2.$

The following example shows that the iterated hairpin completion of $a(3,2)-\alpha$

crossing word is not always regular ([4]).

Example 1. (Kopecki) We consider a crossing word $w=$ abaaaca. Let $u=\overline{b}\overline{\alpha},$

$v=\alpha\overline{\alpha}b\overline{\alpha}$ and $R=wu^{+}v\overline{u}^{+}\overline{w}\overline{u}^{+}\overline{w}$ . Then, $R\cap H_{i}^{*}(\{w\})=\{wu^{r}v\overline{u}^{r}\overline{wu}^{r}\overline{w} Ir\geq 1\}$ . Therefore,
the iterated hairpin completion of a word is not always regular.

We have some results for the iterated hairpin completion of $a(2,2)-\alpha$ crossing
word.

Proposition 1. Let $w\in oe^{*}\cap\Sigma^{*}\overline{\alpha}$ be $(2, 2)-\alpha$ -crossing-word such that $w=xvy$

where $x$ and $y$ are $(1,1)-\alpha$ -words in $\alpha\Sigma^{*}\overline{\alpha}$ and $v\in\Sigma^{*}$ If $x$ and $y$ are pseudo-
palindromes, then $H_{k}^{*}(w)$ is regular.
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Proof) Let $R=\{x(vx)^{*}(vy(\overline{v}x)^{+}(vx)^{*})^{*}vy(\overline{v}x)^{+}\}$ and $L=\{(y\overline{v})^{+}xv((yv)^{*}(y\overline{v})^{+}xv)^{*}(yv)^{*}y\}.$

Since these languages are regular and $H_{k}^{*}(w)=H_{k}^{*}(xvy\overline{v}x)\cup H_{k}^{*}(y\overline{v}xvy)\cup\{w\}$ , we show
that $H_{k}^{*}(w)=R\cup L\cup\{w\}$ . First, we prove that $H_{k}^{*}$ (xvyvx) $=R.$

We show that $H_{k}^{*}(xvy\overline{v}x)\supset R$ . Let $R_{n}=x(vx)^{*}(vy(\overline{v}x)^{+}(vx)^{*})^{n}(vy)(\overline{v}x)^{+}$ for every
nonnegative integer $n$ . Then it is obvious that $R= \bigcup_{n\geq 0}R_{n}$ . We show that

$R_{n}\subset H_{k}^{*}$ (xvyvx) by induction on $n\geq 0$ . It is clear that $R_{0}=x(vx)^{*}vy(\overline{v}x)^{+}\subset H_{k}^{*}(xvy\overline{v}x)by$

the following:
$xvy\overline{v}xarrow^{i},x(vx)^{i}vy(\overline{v}x)arrow_{r}^{j}x(vx)^{i}vy(\overline{v}x)^{j+1}$

Suppose that $R_{n}=x(vx)^{*}(vy(\overline{v}x)^{+}(vx)^{*})^{n}(vy)(\overline{v}x)^{+}$ is contained in $H_{k}^{*}$ (xvyvx) for some
nonnegative integer $n$ . Every word $w$ in $R_{n+1}$ is written by the form
$x(vx)^{r}vy(vx)^{m_{1}}(vx)^{t_{1}}\cdots vy(\overline{v}x)^{m_{\iota+1}\prime}(vx)^{t_{n+1}}vy(\overline{v}x)^{s}$ where $m_{1},\cdots,m_{n+1}>0,$ $t_{1},\cdots,t_{n+1}\geq 0$ , and
$r,s\geq 0$ . We show that the word $w_{1}=x\nu y(vx)^{m_{1}}(vx)^{t_{1}}\cdots vy(\overline{v}x)^{m_{n+1}}(vx)^{t_{n+1}}vy(\overline{v}x)$ is in
$H_{k}^{*}(xvy\overline{v}x)$ .
(1) When $m_{1}>t_{n+1}$ , let $w’=xvy(\overline{v}x)^{m_{1}}(vx)^{t_{1}}\cdots vy(\overline{v}x)^{m_{n}}(vx)^{t_{n}}vy(\overline{v}x)$ . We have

$w’=xvy(\overline{v}x)^{m_{1}}(vx)^{t_{l}}\cdots vy(\overline{v}x)^{m_{n}}(vx)^{t,\prime}vy(\overline{v}x)arrow_{r}^{m_{n+J}-1}xvy(\overline{v}x)^{m_{J}}(vx)^{t_{1}}\cdots Vy(\overline{v}x)^{m_{n}}(vx)^{t_{n}}vy(\overline{v}x)^{m_{n+1}}$

$=xvy\overline{v}(x\overline{v})^{t_{n+1}}\cdot x(\overline{v}x)^{m_{1}-t_{n+1}-1}(vx)^{t_{1}}\cdots vy(\overline{v}x)^{m_{n}}(vx)^{t_{n}}vy(\overline{v}x)^{m_{n+1}}$

$arrow_{r}xvy\overline{v}(x\overline{v})^{t_{n+1}}\cdot x(\overline{v}x)^{m_{1}-t_{n+1}-1}(vx)^{t_{1}}\cdots vy(\overline{v}x)^{m_{n}}(vx)^{t_{n}}vy(\overline{v}x)^{m_{n+1}}\cdot(vx)^{t_{n+1}}vy\overline{v}x=w_{1}$

Since $w^{ノ}$ is in R., it is contained in $H_{k}^{*}(xvy\overline{v}x)$ . Then the word $w_{1}$ is also in $H_{k}^{*}(xvy\overline{v}x)$ .
(2) When $m_{1}\leq t_{n+1}$ , let $w”=x\nu y(\overline{v}x)^{m_{2}}(vx)^{t_{2}}\cdots vy(\overline{v}x)^{m_{n+1}}(vx)^{t_{n+1}}vy(\overline{v}x)$ .
We have

$w”=xvy(\overline{v}x)^{m_{2}}(vx)^{t_{2}}\cdots vy(\overline{v}x)^{m_{n+1}}(vx)^{t_{n+1}}vy(\overline{v}x)$

$arrow_{r}^{t_{1}}x(vx)^{t_{1}}vy(\overline{v}x)^{m_{2}}(vx)^{t_{2}}\cdots vy(\overline{v}x)^{\prime n_{n+1}}(vx)^{t_{n+1}}vy(\overline{v}x)$

$=x(vx)^{l_{1}}vy(\overline{v}x)^{m_{2}}(vx)^{l_{2}}\cdots vy(\overline{v}x)^{m_{n+1}}(vx)^{t_{n+1}-m_{1}+1}\cdot(vx)^{m_{1}-1}vy(\overline{v}x)$

$arrow_{r}xvy\overline{v}(x\overline{v})^{m_{1}-1}\cdot x(vx)^{t_{1}}\cdot vy(\overline{v}x)^{m_{2}}(vx)^{t_{2}}\cdots vy(\overline{v}x)^{m_{n+1}}(vx)^{t_{n+1}-m_{1}+1}\cdot(vx)^{m_{1}-1}vy(\overline{v}x)=w_{1}$

Since $w”$ is in $R_{n}$ , it is contained in $H_{k}^{*}(xvy\overline{v}x)$ . Then the word $w_{1}$ is also in $H_{k}^{*}(xvy\overline{v}x)$ .
It is clear that $w\in H_{k}^{*}(w_{1})\subset H_{k}^{*}$ ( $H_{k}^{*}$ (xvyvx)) $=H_{k}^{*}(xvy\overline{v}x)$ . We proved that

$H_{k}^{*}(xvy\overline{v}x)\supset R.$

To prove that $H_{k}^{*}(xvy\overline{v}x)\subset R$ is easy. For a nonnegative integer $n$ , suppose that
$H_{k}^{n}(xvy\overline{v}x)\subset R$ . Then we have $H_{k}^{n+1}(xvy\overline{v}x)=H_{k}^{1}(H_{k}^{n}(xvy\overline{v}x))\subset H_{k}^{1}(R)\subset R.$

As the proof of $H_{k}^{*}(y\overline{v}xvy)=L$ is similar, we omit it. $\square$

The following example is that the iterated hairpin completion of $a(2,2)-\alpha$

crossing word $w$ which is not satisfies the condition of Proposition 1, that is $w=xvy$

such that $y\neq\overline{y}$ , is not always regular.
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Example 2 We consider $a(2,2)-\alpha$ -crossing word $w=$ abacada where $a,b,c,d\in\Sigma,$

$a\neq\overline{a},b=\overline{b},c\neq\overline{c},d\neq\overline{d}$ and $\alpha=aa$ . For integers $i,j>0$ , suppose a word
$w_{i.j}=xcy(\overline{c}\overline{x})^{j}(cx)^{j}c\overline{y}\overline{c}x$ where $x=abaandy=\alpha d\overline{\alpha}$ is in $H_{k}^{*}(w)$ . Since $w=xcy$

appears only one time as a factor of $w_{i,j}$ , we have $w_{i,j}\in RH_{k}^{*}(w)$ .

We have $w=$ abacada $=xcyarrow_{r}^{m}\alpha b\overline{\alpha}c\alpha d\overline{\alpha}\cdot(\overline{c}\alpha\overline{b}\overline{\alpha})^{m}=xcy\cdot(\overline{c}x)^{m}arrow_{r}^{1}xcy\cdot(\overline{c}x)^{m+1}$ or
$xcy(\overline{c}x)^{m}\cdot(cx)^{s}c\overline{y}\overline{c}x$ where $m>0andm\geq s>0$ . Let $S=xcy(\overline{c}x)^{*}(cx)^{*}c\overline{y}\overline{c}x$ . It is

easy to see that $H_{k}^{*}(w)\cap S=RH_{k}^{*}(w)\cap S=\{xcy(\overline{c}x)^{i}(cx)^{j}c\overline{y}\overline{c}x|i\geq j\geq 0\}$ . Since $S$

is regular and $H_{k}^{*}(w)\cap S$ is not regular, $H_{k}^{*}(w)$ is not regular.

We have the following corollaries by the proof of Proposition 1.

Corollary 1. Let $w\in\alpha\Sigma^{*}\cap\Sigma^{*}\overline{\alpha}$ be $(3, 3)-\alpha$ -crossing-word such that $w=xvyV\overline{x}$

where $x$ and $y$ are $(1,1)-\alpha$ -words in $oe^{*}a$ and $v\in\Sigma^{*}$ If $x$ and $y$ are pseudo-
palindromes, then the iterated hairpin completion $H_{k}^{*}(w)$ of $w$ is regular and $H_{k}^{*}(w)=$

$x(vx)^{*}(vy(\overline{v}x)^{+}(vx)^{*})^{*}vy(\overline{v}x)^{+}$

Corollary 2. Let $w\in\alpha\Sigma^{*}\cap\Sigma^{*}\overline{\alpha}$ be $(2, 2)-\alpha$ -crossing-word such that $w=xvy$ where

$x$ and $y$ are $(1,1)-\alpha$ -words in $\alpha\Sigma^{*}a$ and $v\in\Sigma^{*}$ If $x,y$ and $v$ are pseudo-palindromes,

then the iterative hairpin completion $H_{k}^{*}(w)$ is regular and $H_{k}^{*}(w)=\{w\}\cup$

$x(vx)^{*}(vy(vx)^{+})^{*}vy(vx)^{+}\cup(yv)^{+}xv((yv)^{+}xv)^{*}(yv).y.$

The following theorem is proved by the similar way of Proposition 1.

Theorem 1. Let $w$ be $(2, 2)-\alpha$ -crossing-word such that $w=x\Sigma^{+}\cap\Sigma^{+}y$ where $x$ and $y$

are $(1,1)-\alpha$ -words in $X^{*}\cap\Sigma^{*}\overline{\alpha}$ . If $x$ and $y$ are pseudo-palindromes, then $H_{k}^{l}(w)$ is

regular.

Proof) If $|w|\geq|\sqrt{}+$ , then we already proved in Proposition 1. If $|\iota\sqrt{}\leq|x|+|M-2|\alpha|,$

then $w$ is non-crossing. We may assume that $|x|+|M-2|\alpha|<|w|<|x|+|M$ . Since $\overline{\alpha}$

overlaps with $\alpha$ , there exist factors $u,v\in\Sigma^{+}$ of $\alpha$ such that $\alpha=vu,$ $\overline{\alpha}\alpha=\overline{u}vu=\overline{u}\overline{v}u$

and $w=vx_{0}vy_{0}v$ where $x=vx_{0^{\mathcal{V}}},$ $y=vy_{0}v,$
$x_{0},y_{0}\in\Sigma^{*}$

Let $R=(vx_{0})^{+}(vy_{0}(vx_{0})^{+})^{*}vy_{0}(vx_{0})^{+}v$ and $L=v(y_{0}v)^{+}x_{0}v((y_{0}v)^{+}x_{0}v)^{*}(y_{0}v)^{+}$ . Since
$H_{k}(w)=H_{k}^{*}(vx_{0}vy_{0}vx_{0}v)\cup H_{k}^{*}(vy_{0}vx_{0}vy_{0}v)\cup\{w\}$ , to prove the theorem we show that
$R=H_{k}^{*}(vx_{\mathfrak{o}}vy_{0}vx_{0}\nu)$ and $L=H_{k}^{*}(vy_{0}vx_{0}\nu y_{0}v)$ .
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First, we prove that $R=H_{k}^{*}(vx_{0}vy_{0}vx_{0})$ . Let $R_{n}=(vx_{0})^{+}(vy_{0}(vx_{0})^{+})^{n}vy_{0}(vx_{0})^{+}v$ for

every nonnegative integer $n$ . Then it is obvious that $R= \bigcup_{n\geq 0}R_{n}.$

We show that $R.$ $\subset H_{k}^{*}(vx_{0}vy_{0}vx_{0}v)$ by induction on $n\geq 0$ . It is clear that
$R_{0}=(vx_{0})^{+}vy_{0}(vx_{0})^{+}v\subset H_{k}^{*}(vx_{0}vy_{0}vx_{0}v)$ . Suppose that $R_{n}=(vx_{0})^{+}(vy_{0}(vx_{0})^{+})^{n}vy_{0}(vx_{0})^{+}v$ is
contained in $R_{n}\subset H_{k}^{*}(vx_{0}vy_{0}vx_{0}v)$ for some nonnegative integer $n$ . Every word $w$ in
$R_{n+1}$ is written by the form $(vx_{0})^{r}vy_{0}(vx_{0})^{m_{1}}\cdots vy_{0}(vx_{0})^{m_{n+1}}vy_{0}(vx_{0})^{s}v$ where $m_{1},\cdots,m_{n+1}>0$

and $r,s>0$ . We show that the word $w_{1}=vx_{0}vy_{0}(vx_{0})^{m_{1}}\cdots vy_{0}(vx_{0})^{m_{n+1}}vy_{0}(vx_{0})v$ is in
$H_{k}^{*}(vx_{0}vy_{0}vx_{0}v)$ .

Let $w’=vx_{0}vy_{0}(vx_{0})^{m_{1}}\cdots vy_{0}(vx_{0})^{\prime n_{n}}vy_{0}(vx_{0})v$ . We have
$w’=vx_{0}vy_{0}(vx_{0})^{m_{1}}\cdots vy_{0}(vx_{0})^{m_{n}}vy_{0}(vx_{0})vkarrow^{m_{n+1}-1}rvx_{0}vy_{0}(vx_{0})^{m_{1}}\cdots vy_{0}(vx_{0})^{m_{n}}vy_{0}(vx_{0})^{m_{n+1}}v$

$=vx_{0}vy_{0}\cdot(vx_{0})(vx_{0})^{m_{1}-m_{n+1}}\cdots vy_{0}(vx_{0})^{m_{n}}vy_{0}(vx_{0})^{m_{n+1}}v$

$arrow_{r}vx_{0}vy_{0}\cdot(vx_{0})^{m} tvy_{0}(vx_{0})^{m_{n}}vy_{0}(vx_{0})^{m_{n+1}}vy_{0}vx_{0}v=w_{1}$

Since $w’$ is in $R_{n}$ , it is contained in $H_{k}^{*}(vx_{0}\nu y_{0}vx_{0}v)$ . Then the word $w_{1}$ is also in
$H_{k}^{*}(vx_{0}vy_{0}vx_{0}v)$ and then $R\subset H_{k}^{*}(vx_{0}vy_{0}vx_{0}v)$ .

On the other hand, for a nonnegative integer $n$ , suppose that $H_{k}^{n}(vx_{0}vy_{0}vx_{0}v)$

$\subset R$ , then we have $H_{k}^{1}(H_{k}^{n}(vx_{0}vy_{0}vx_{0}v))=H_{k}^{1}(H_{k}^{n}(vx_{0}vy_{0}vx_{0}v))\subset H_{k}^{1}(R)\subset R.$

As the proof of $H_{k}^{*}(vy_{0}vx_{0}vy_{0}v)=L$ is similar, we omit it. $\square$
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