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1 Introduction

In a dot matrix method, as a pattem or a figure are obtained by dots on lattices of fixed size,

several dot pattems for each pattem should be prepared depending on the screen size. In
recent years, as a method which is independent from screen size, several methods to draw
some pattems on a screen which consists of two dimensional cellular automata have been
proposed[4][6][9][10]. Komatsu has proposed methods to draw a square and a rectangle of
maximum size in the center of the screen. Watanabe and Okawa have proposed another
method to draw a square and a diamond[6], and a method to draw a circle of radius $r$ at the
center of the screen[9][10].

In this paper, we review the definitions of pattern and pattern generation, and we inves-
tigate an algorithm to draw a regular triangle of maximum size at the center of the screen.
First, we define two dimensional patterns as equivalence classes which are obtained by the
similarity relation defined by movings and scaling on two dimensional plane. For an $m\cross n$

screen, we define a pattern generation to display with appropriate size (and position) in the
screen, and we define a pattem generation on the discretized screen. Next, we study a cor-
respondence between the discretized screen and cellular automata, and we study the pattern
generation on the cellular automata. Furthermore, we review a basic signal propagation and a
method to obtain a mid point of one dimentional cellular array, and we investigate a method
to draw a line segment between any two points and a line through a given point and paral-
lel to a given line as fundamental techniques for geometorical drawings. In the last part, we
show an algorithm to draw a regular triangle of maximum size at the center of the screen.

2 Pattem Generation

Let $\mathbb{R}$ be a set of real numbers, and a two dimensional plane is denoted by $\mathbb{R}\cross \mathbb{R}$ . A set
$F\subseteq \mathbb{R}\cross \mathbb{R}$ is called a two dimensional figure, a set of all two dimensional figures is denoted
by $\mathcal{F}$, that is $\mathcal{F}=\{F|F\subseteq \mathbb{R}\cross \mathbb{R}\}$ . A figure which is obtained with moving $P$ by $d\in \mathbb{R}\cross \mathbb{R}$

is denoted by $F+d=\{p+d|p\in F\}$ , and a figure which is obtained with extending $F$ by
$a(a>0)$ times is denoted by $a\cdot F=\{a\cdot p|p\in F\}$ . We define mappings $S_{d}$ and $Z_{a}$ as follows
respectively,

$S_{d}(F)=F+d, Z_{a}(F)=a\cdot F.$

We define a similarity relation $\sim on\mathcal{F}$ using $S_{d}$ and $Z_{a}$ as follows.

For $F_{1},$ $F_{2}\in \mathcal{F},$

$F_{1}\sim F_{2}\Leftrightarrow F_{2}=S_{d}Z_{a}(F_{1})(=aF_{1}+d)$ .
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The relation $\sim$ is an equivalence relation on two dimensional figures. We define a pattem
as a equivalence class using this relation as follows.

Definition 1
For a figure $F$, a pattern $[F]$ containing $F$ is defined by

$[F]=\{F’|F’\sim F\},$

and a set of pattern $\mathcal{P}$ is defined by

$\mathcal{P}=\mathcal{F}/\sim=\{P|P=[F], F\in \mathcal{F}\}.$

For any $m,n>0,$ $[0, m]\cross[0, n]\subseteq \mathbb{R}\cross \mathbb{R}$ is called a screen of size $m\cross n$ , and it denoted by
$C_{mxn}$ , where $[a, b]$ is an interval $\{x|a\leq x\leq b\}.$

Definition 2
For a pattern $P\in \mathcal{P}$ assuming $P=[F]$ , generation of $P$ on $C_{m\cross n}$ is to obtain a set $D\subseteq C_{m\cross n}$

which satisfies following conditions.

1. $\exists a,d$ $D=S_{d}Z_{a}(F)$ ,
2. $\forall e,e’>0$ $S_{d+e}Z_{a+e’}(F)\not\subset C_{m\cross n}.$

Following discussion, we assume that $m$ and $n$ are integers for simplicity. When we dis-
play a figure on a screen, the screen has to be discretized, so we discretize $C_{mxn}$ by dividing
the width by $m-1$ and dividing the length by $n-1$ . In this process, for each lattice point $p,$

a copy of small screen is set on it. The small screen at the leftmost and the bottom position
of the discretized screen is $c_{0,0}$ , and a screen which is positioned in the ith position from the
left side of the array and jth position from the bottom of the array is described by $c_{i,j}$ , that is
$c_{i,j}=C_{[i-0.5,i+0.5]\cross\triangleright-0.5,j+0.5]}.$

We define the screen $C_{m,n}$ which is obtained by discretizing $C_{m\cross n}$ as follows,

$C_{m,n}=\{c_{i,j}|0\leq i\leq m,0\leq j\leq n, i,j\in N\}.$

We define a pattern generation on the discretized screen as follows.

Definition 3
For a pattern $P=[F]\in \mathcal{P}$, generation of $P$ on $C_{m,n}$ is to obtain the following set $D’\subseteq C_{m,n},$

$D’=\{c_{i,j}|c_{i,j}\cap D\neq\phi\}.$

3 Implementation with Cellular Automata

Two dimensional cellular automata consist of copies of a finite automaton (cell) which are
positioned such as lattices. Each cell changes its own state to the state which is determined
according to its own state and the adjacent cells’ states. We call the own and adjacent cells
neighbors, the function to determine the next state according to neighbors’ states is called a
local mapping. Each cell is expressed by $a_{i},i$ ’ which means ith row and the jth column from the
leftmost lowest cell. The interval of updating state is called a step. Formally, a two dimensional
cellular automaton $\mathcal{M}$ is defined as follows,

$\mathcal{M}=(M, Q,\sigma, N)$ ,

where $M\subset Z\cross Z$ for an integer set $Z$ : a connected coordinate set to express positions of cells,
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$Q$ : a set of states, $\sigma$ : alocal mapping from $Q\cross Q^{|N|-1}$ to $Q,$ $N$ : a set of neighbors. In this pa-
per, we investigate the automata which are placed $m$ cells widthways and $n$ cells lengthways,
we call them $m\cross n$ cellular automata, and we assume $N$ as Neumann neighborhood, namely
consisting of the own, upper, lower, right and left cells. In an initial configuration of $\mathcal{M},$

$a_{0,0}$

is active, and the all other cells are in quiescent.
By regarding each cell $a_{i,j}$ as $c_{i,j}$ in the discretized screen $C_{m,n}$ , the set $M$ can be regarded as

the discretized screen $C_{m,n}$ , and then, an $m\cross n$ cellular automaton can be denoted as follows,

$\mathcal{M}=(C_{m,n\prime}Q,\sigma,N)$ .

Therefore, for pattern $P$, we regard a problem to generate $P$ on $C_{m,n}$ as a problem to generate
$P$ on a cellular automaton $\mathcal{M}$ , that is, a problem to construct $\mathcal{M}$ which generates $P.$

To construct such $\mathcal{M}$ is to provide $\sigma$ which specifies $D’\subseteq C_{m,n}$ at a certain time starting
from the initial configuration. Here, $D’$ is specified by letting $a_{i,j}$ be in a special state $s$ if
$a_{i,j}\in D’.$

$M$

Figure 1: Generation of A Line Segment

4 Fundamental Techniques for Geometorical Drawings

We explain some techniques for geometorical drawings which are used in a generation of a
regular triangle in two dimensional cellular automata.

4.1 Basic Signal Propagation

When a next cell of a cell in state $s$ changes its own state to $s$ at $k$ steps, we call the signal
specified by $s$ propagates at speed $1/k$. A cell can send signals upper, lower, right, and left
directions.

We can obtain a cell at the mid point of one dimentional cellular array by using defferent
speed of signals. A cell $A$ which is an end point of the array sends a signal $s$ with speed 1/1

and a signal $t$ with speed 1/3 to the right direction simultaneously. A cell $B$ which is another
end point of the array receives the signal $s$ , and then the cell $B$ sends a signal $\overline{s}$ with speed 1/1

to the left direction. The signal $\overline{s}$ and the signal $t$ meet at a cell $M$, the mid point of the array.

4.2 Generation of A Line Segment

For any cells $P$ and $Q$, we explain how to draw a line segment between them in Figure 1 as
follows. $P$ sends a signal right direction and $Q$ sends lower direction respectively, and then
the two signals hit each other in a cell $H$. The cell $H$ sends signals left and upper direction to
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obtain the mid points $M$ and $N$ of $PH$ and $QH$ respectively The cell $M$ sends a signal upper
direction, and the cell $N$ sends a signal left direction, and then the two signals hit each other in
cell $R$ which is the mid point of the line segment $PQ$ . Repeating the above method recursively,
we obtain the line segment $PQ.$

4.3 Genaration of A Parallel Line

For any cell $P$ and a line $l$ , we explain how to draw a line through $P$ and parallel to $l$ as shown
in Figure 2. The cell $P$ sends a signal $s$ upper direction and sends a signal $t$ right direction.
The signal $s$ hits a cell $P’$ on the line $l$, and then $P’$ sends a signal $s’$ right direction. The signal
$s’$ hits a certain cell $Q$ which is put beforehand, and then $Q$ sends a signal $u$ upper direction,
and a signal $v$ lower direction simultaineously.

$P_{\bullet\frac{S\mathcal{V}\downarrow^{Q}}{tV}}s|$

’

Figure 2: Generation of A Parallel Line

$P_{\bullet\frac{.\cdot\cdot\cdot 1_{v’}}{tV}}$

Figure 3: Generation of A Parallel Line

The signal $u$ hits a cell $U$ on the line $l$ and the cell $U$ returns a signal $u’$ lower directon. The
signal $v$ hits a cell $V$ on the trace of signal $t$, and the cell $V$ returns a signal $v’$ upper directon.
The signal $u’$ and the signal $v’$ meet at a cell $R$ each other as shown in Figure 3. Drawing a
line between the cells $P$ and $R$ by the method explained in Sec.4.2, we obtain a prallel line $l’.$

5 Regular Triangle Generation on Cellular automata

We investigate a method to generate a regular triangle of maximum size at the center of a
given $m\cross n$ cellular automaton. In the following example, we assume that for $m>n$ , the
maximum square $A,$ $B,$ $C$ and $D$ at the center of the screen, the arc, $BD$, quarter of a circle
with radius $AB$ and center $A$ are obtained beforehand [6] as shown in Figure 4.

145



Figure 4: setting the square and an arc on the screen

5.1 A Method to Generate a Regular Triangl

We explain the generation of a regular triangle at the center of the screen step by step.

(1) Top Vertices of The Regular Triangles

The cell $A$ sends signals to right direction and we obtain cell $M$ which is a mid point of
$AB$ . The mid point cell $M$ of $AB$ can be obtained by the method explained in Sec.4.1. Then,

a signal which is sent upward from $M$ passes the cell $T$ on arc $BD$ and reaches cell $T’$ on line
$CD$ . Here, $T$ is a top vertex of a regular triangle $ABT$ and $T’$ is the top vertex of the regular
triangle we will draw.

Figure 5: Top Vertex of The Regular Triangle

(2) Sides of The Regular Triangle

For $A,$ $B$ , and $T$, line segments $AT$ and $BT$ canbe obtained by the method explained Sec.4.2
and a regular triangle $ABT$ is obtained.

$\langle$3) Expansion of The Regular Triangle
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Figure 6: Sides of The Regular Triangle

Figure 7: Expansion of The Regular Triangle

To obtain the regular triangle of maximum size, we should expand the triangle $ABT$ to a
triangle with a top vertex $T’$ . By the method explained in Sec.4.3, Parallel lines to $TA$ and $TB$

which start at $T’$ can be obtained (Figure 7). And we obtain the regular triangle $A’B’T’$ at the
center of the screen.

6 Conclusion

In this paper, we review the definition of a pattem and a pattern generation, and a pattem
generation on the discretized screen. Next, we studied a correspondence between the dis-
cretized screen and cellular automata, and we studied the pattern generation on the cellular
automata. Furthermore, we investigate a method to draw a line segment and a parallel line to
a certain line as techniques for geometorical drawings. In the last part, we show an algorithm
to draw a regular triangle of maximum size at the center of the screen.

Drawing a circle or an arc on two dimensional cellular automata is equal to drawing a
circle or an arc on a paper by using a compass. Similarly, drawing a line segment on two
dimensional cellular automata is equal to drawing a line segment on a paper by using a ruler.
Therefore, we consider that a geometrical figure which can be drawn on a paper by using a
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compass and a ruler can be drawn also on two dimensional cellualr automata.
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