
Uniform Semi-Unification $*$

Takahito Aoto
RIEC, Tohoku University

Munehiro Iwami
Interdisciplinary Faculty of Science and Engineering, Shimane University

Abstract

The notion of uniform semi-unification is extended by unification. We revisited symbolic
semi-unification whose solvability coincides with that of uniform semi unification (Aoto &
Iwami, 2013). In this paper, we give the some proofs omitted in our previous work [1] due
to the space limitation.

1 Introduction

The notion of semi-unification is extended by unification. If a semi-unifier exists, there exists
a most general semi-unifier [3, 5, 9]. However, semi-unification is undecidable in general [5].
Hence, many decidable classes of semi-unification have been studied. For example, uniform
semi-unification is decidable [2, 4, 8, 9, 10, 11]. We revisited symbolic semi-unification whose
solvability coincides with that of uniform semi-unification [1].

In this paper, we give the some proofs omitted in [1] due to the space limitation. First, we
consider symbolic semi-unification in section 2. In section 3, we introduce a rule-based symbolic
semi-unification and show its partial correctness. In section 4, we discuss termination of symbolic
semi-unification procedure on some derivation strategy. We refer to [1] omitted definitions in
this paper.

2 Symbolic Semi-Unification

In this section, we consider a notion of symbolic semi-unification. We defined $\nabla$-term, $\nabla-$

equation and $\nabla$-substitution in [1]. We refer to [1] omitted definitions.

Definition 2.1 ([1]) For a set $E$ of $\nabla$ -equations, $a$ semi-unifier of $E$ is a $\nabla$ -substitution $\sigma$

such that $s\sigma^{*}=t\sigma^{*}$ for all $s\approx t\in E$; if $E$ has a semi-unifier, $E$ is said to be semi-unifiable.
$A$ symbolic semi-unification problem asks whether there exists a semi-unifier for a given set of
$\nabla$ -equations.

Lemma 2.2 ([1]) Let $\sigma$ be a $\nabla$ -substitution and $s,$
$t$ be $\nabla$ -terms. If $s\sigma^{*}=t\sigma^{*}$ then $\nabla(s)\sigma^{*}=$

$\nabla(t)\sigma^{*}.$

Definition 2.3 ([1]) For a set $E$ of $\nabla$ -equations, the $\nabla$-equality generated by $E$ , denoted by
$\approx E$ , is the smallest equivalence relation such that (i) $s\approx Et$ for any $s\approx t\in E$ , (ii) $s\approx Et$

implies $\nabla(s)\approx E\nabla(t)$ , and (iii) for any $f\in \mathcal{F},$ $f(s_{1}, \ldots, s_{n})\approx Ef(t_{1}, \ldots, t_{n})$ iff, for any
$i=1$ , . .. , $n,$ $s_{iE}\approx t_{i}$ holds.

*This paper is revised version of [1].
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Definition 2.4 ([1]) A set $E$ of $\nabla$ -equations is inconsistent if either (i) $x^{i}\approx Es$ with $x^{i}\underline{\triangleleft}$

$s\not\in \mathcal{V}^{*}$ , or (ii) $f(s_{1}, \ldots, s_{m})\approx Eg(t_{1}, \ldots, t_{n})$ with $f\neq g$ for some $f,$ $g\in \mathcal{F}$ . Furthermore, $E$ is
consistent if it is not inconsistent.

Since we gave only the proof sketch of the next lemma [1], we give the proof of it in detail.

Lemma 2.5 ([1]) Let $E$ be a set of $\nabla$ -equations. Suppose $E$ is semi-unifiable and let $\sigma$ be a

semi-unifier of E. Then for any $\nabla$ -terms $u,$ $v,$ $u\approx Ev$ implies $u\sigma^{*}=v\sigma^{*}.$

Proof. The proof proceeds by induction on the derivation of $u\approx Ev$ . If $u\approx v\in E$ then the
claim follows by assumption. If $u\approx Ev$ follows from $u’\approx Ev’$ where $u=\nabla(u’)$ and $v=\nabla(v’)$ ,
then by induction hypothesis $u’\sigma^{*}=v’\sigma^{*}$ , and hence by Lemma 2.2, $\nabla(u’)\sigma^{*}=\nabla(v’)\sigma^{*}$ . Other
cases follow easily. $\square$

Theorem 2.6 ([1]) For any terms $s,$ $t\in T(\mathcal{F}, \mathcal{V})$ , the following are equivalent: (i) $\{\nabla(s)\approx t\}$

is semi-unifiable, (ii) $\{s\leq t\}$ is semi-unifiable, and (iii) $\{\nabla(s)\approx t\}$ is consistent.

3 Partial Correctness of Symbolic Semi-Unification

In this section, we discuss a rule-based symbolic semi-unification procedure and prove its partial

correctness. We refer to [1] omitted definitions.

Decompose
$\frac{\{f(s_{1},\ldots,s_{n}).\approx f(t_{1},\ldots,t_{n})\}UE}{\{s_{1}\approx t_{1},..,s_{n}\approx t_{n}\}\cup E}f\in \mathcal{F}$

Reduce $\frac{\{x^{i}\approx t,C[x^{i}]\approx u\}\oplus E}{\{x^{i}\approx t,C[t]\approx u\}\cup E}x^{i}\gg t$

Delete $\frac{\{x^{i}\approx x^{i}\}0E}{E}$

Clash $\frac{\{f(s_{1},\ldots,s_{m})\approx g(t_{1},\ldots,t_{n})\}\cup E}{\perp}f\neq g,$ $f,g\in \mathcal{F}$

Check $\frac{\{x^{i}\approx t\}\cup E}{\perp}t\not\in v*,$
$x^{i}\underline{\triangleleft}t$

Figure 1: Inference rules for symbolic semi-unification ([1])

Definition 3.1 ([1]) One step derivation using any of inference rules listed in Figure 1 is
denoted $by\sim$ . Here, the inference rules act on a finite set of $\nabla$ -equations and $\Theta$ denotes the
disjoint union. For an input of a finite set $E_{0}of\nabla$ -equations and the relation $\gg$ , a symbolic semi-

unification procedure non-deterministically constructs a derivation $E_{0}\sim E_{1}\sim$’ . . . (possibly
following some fixed derivation strategy). The derivation may be finite or infinite, and it is
maximal if it does not end with $E_{k}$ for which $a$ further application of an inference rule is possible.
A symbolic semi-unification procedure (following a fixed derivation strategy) terminates if any
derivation (following that derivation strategy) is finite.
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Remark 3.2 ([1]) We adopt a variant of Reduce using substitution (instead of the replace-
ment):

$Reduce” \frac{\{x^{i}\approx t\}\cup E}{\{x^{i}\approx t\}\cup\{x^{i}:=t\}(E)}x^{i}\gg t$

Rule-based semi-unification calculi in [4, 8] use the replacement, and those in [6, 7, 11] use
the substitution. We note that any substitution can be simulated by repeated applications of
replacement.

Since we omitted the proof of the next lemma [1], we give the proof of it here.

Lemma 3.3 ([1]) Suppose $E\sim*E’$ with $E’\neq\perp.$ $Then\approx E=\approx E’.$

Proof. We show that $E\sim\succ E’$ with $E’\neq\perp$ implies $\approx E=\approx E’$ . Then the claim follows by
induction on the length of $E\sim k*E’$ . We distinguish the cases by the inference rule applied
to $E\sim E’$ . By our assumption that $E’\neq\perp$ , inference rules Clash and Check are not used.
Suppose that Delete is used. Let $E’\cup\{x^{i}\approx x^{i}\}=E$ . Then, since $s\approx E’s$ for any $s$ , the
claim follows from the assumption immediately. Suppose Decompose is used. Let $E=F\cup$

$\{f(s_{1}, \ldots, s_{n})\approx f(t_{1}, \ldots, t_{n})\}$ and $E’=F\cup\{s_{1}\approx t_{1}, . . . , s_{n}\approx t_{n}\}.$ $(\approx E\supseteq\approx E’)$ Since
$f(s_{1}, \ldots, s_{n})\approx f(t_{1}, \ldots, t_{n})\in E,$ $f(s_{1}, \ldots, s_{n})\approx Ef(t_{1}, \ldots, t_{n})$ . Hence by the definition $of\approx E$

((iii) of Definition 2.3), $s_{i}\approx Et_{i}$ for all $i=1$ , . . . , $n.$ $(\approx E\subseteq\approx E’)$ Since $s_{i}\approx t_{i}\in E’,$ $s_{i}\approx E’t_{i}$

for all $i=1$ , . . . , $n$ . Hence by the definition $of\approx E’$ ((iii) of Definition 2.3), $f(s_{1}, \ldots, s_{n})\approx E’$

$f(t_{1}, \ldots,t_{n})$ . Suppose Reduce is used. Let $E=F\cup\{x^{i}\approx t, C[x^{i}]\approx u\}$ and $E’=F\cup\{x^{i}\approx$

$t,$ $C[t]\approx u\}.$ $(\approx E\subseteq\approx E’)$ Since $x^{i}\approx t\in E’$ and $C[t]\approx u\in E’,$ $x^{i}\approx E’t$ and $C[t]\approx E’u.$

Then by the definition $of\approx E’$ ((ii) and (iii) of Definition 2.3) $C[x^{i}]\approx E’C[t]$ and hence by

transitivity $of\approx E’,$ $C[x^{i}]\approx E’u.$ $(\approx E\supseteq\approx E’)$ Since $x^{i}\approx t\in E$ and $C[x^{i}]\approx u\in E,$ $x^{i}\approx Et$ and
$C[x^{i}]\approx Eu$ . Then by the definition $of\approx E$ ((ii) and (iii) of Definition 2.3) $C[x^{i}]\approx EC[t]$ and
hence by symmetricity and transitivity $of\approx E,$ $C[t]\approx Eu.$ $\square$

Since we omitted the proof of the next corollary [1], we give the proof of it here.

Corollary 3.4 If $E\sim*E’\neq\perp$ , then $E$ is semi-unifiable iff $E’$ is semi-unifiable.

Proof. $(\Rightarrow$ $)$ Suppose $E$ is semi-unifiable and $E\sim\rangle*E’\neq\perp$ . Let $\sigma$ be a $\nabla$-substitution such
that $s\sigma^{*}=t\sigma^{*}$ for all $s\approx t\in E.$ For any $s\approx t\in E’,$ $s\approx E’t$ by the definition $of\approx E’$ , and
hence by Lemma 3.3, $s\approx Et$ . Hence, by Lemma 2.5, $s\sigma^{*}=t\sigma^{*}$ for any $s\approx t\in E’$ . Thus $E’$ is
semi-unifiable. $(\Leftarrow$ $)$ Suppose $E’$ is semi-unifiable and $E\sim*E’\neq\perp$ . Let a be a $\nabla$-substitution
such that $s\sigma^{*}=t\sigma^{*}$ for all $s\approx t\in E’$ . For any $s\approx t\in E,$ $s\approx Et$ by the definition $of\approx E$ and
hence by Lemma 3.3, $s\approx E’t$ . Hence, by Lemma 2.5, $s\sigma^{*}=t\sigma^{*}$ for any $s\approx t\in E$ . Thus $E$ is
semi-unifiable. $\square$

Since we omitted the proof of the next theorem [1], we give the proof of it here.

Theorem 3.5 ([1]) Let $E$ be a finite set of $\nabla$ -equations. (1) If $E\sim\rangle*\perp then$ $E$ is not semi-

unifiable. (2) If $E\sim*E’\neq\perp and$ no inference rules are applicable to $E’$ , then $E$ is semi-

unifiable.

Proof (1) By our assumption, $E\sim*E’\sim\perp$ for some $E’$ . Then either $f(s_{1}, \ldots, s_{m})\approx$

$g(t_{1}, \ldots, t_{n})\in E’$ with $f\neq g$ or $x^{i}\approx t\in E’$ with $t\not\in \mathcal{V}^{*}$ and $x^{i}\underline{\triangleleft}t$ . In the former case,
$f(s_{1}, \ldots, s_{m})\approx Eg(t_{1}, \ldots, t_{n})$ and in the latter case, $x^{i}\approx Ef(\ldots,$ $C[x^{i}],$ . . by Lemma 3.3.
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Suppose $E$ is semi-unifiable. Then, by Lemma 2.5, we have $f(\mathcal{S}_{1,\ldots,n}s_{7})\sigma^{*}=g(t_{1}, \ldots, t_{n})\sigma^{*}$

or $x^{i}\sigma^{*}=f(\ldots, C[x^{i}], \ldots)\sigma^{*}$ , for a semi-unifier $\sigma$ of $E$ . But this is impossible. (2) By our
assumption that no inference rules are applicable to $E’$ , we have the following observations
on $E’$ : (a) One side of the equation is of the form $x^{i}$ . (Otherwise Decompose rule should be
applicable.) (b) If $x^{i}\approx t\in E’$ with $x^{i}\gg t$ then $x^{i}$ does not occur in $t$ or in other equations in $E’$ ;
this is because by (a) and the assumption that Check and Reduce can not be applied. Hence
$\sigma=\{s:=t|s\approx t\in E’, s\gg t\}$ is a $\nabla$-substitution, and for any $s\approx t\in E’,$ $s\sigma^{*}=(s\sigma)\sigma^{*}=t\sigma^{*}.$

Thus $E’$ is semi-unifiable. Hence by Corollary 3.4, $E$ is semi-unifiable. $\square$

4 Termination of Symbolic Semi-Unification Procedure

In this section, we consider termination of symbolic semi-unification procedure on our derivation
strategy [1]. We refer to [1] omitted definitions.

Theorem 4.1 ([1]) Every derivation starting from a consistent finite set of $\nabla$ -equations is

finite.

Definition 4.2 ([1]) A derivation strategy is said to be refutationally complete if any maximal
derivation starting from an inconsistent set of $\nabla$ -equations and following that strategy is finite
and ends $with\perp.$

Lemma 4.3 ([1]) A derivation strategy subject to using Reducd’ in place ofReduce and applying

Check whenever possible is refutationally complete.

Since we omitted the proof of the next theorem [1], we give the proof of it in detail.

Theorem 4.4 ([1]) The symbolic semi-unification procedure terminates if it follows a refu-
tationally complete derivation strategy,$\cdot$ either the input $E$ is semi-unifiable and any maximal
derivation ends with a set of $\nabla$ -equations or $E$ is not semi-unifiable and any maximal derivation
ends $with\perp.$

Proof. If $E$ is an inconsistent set of $\nabla$-equations, then by the refutational completeness of the
derivation strategy then any derivation ends with $\perp$ . Otherwise, $E$ is a consistent set of $\nabla-$

equations, and hence by Theorem 4.1, it stops. If the derivation ends with $\perp$ , by Theorem 3.5,
$E$ is not semi-unifiable. Otherwise the derivation ends with a set of $\nabla$-equations and hence by
Theorem 3.5, $E$ is semi-unifiable. $\square$

Since we gave only the proof sketch of the next corollary [1], we give the proof of it in detail.

Corollary 4.5 ([1]) Let $E$ be a finite set of $\nabla$ -equations. Then $E$ is consistent iff $E$ is semi-

unifiable.

Proof. $(\Rightarrow$ $)$ Suppose $E$ is not semi-unifiable. Take a refutationally complete strategy for the

derivation. Then by Theorem 4.4, the derivation ends with $\perp$ . Then $E\prime*.E’\prime c\perp$ for some
$E’$ , and thus either $f(s_{1}, \ldots, s_{m})\approx g(t_{1}, \ldots, t_{n})\in E’$ with $f\neq 9$ or $x^{i}\approx f(\ldots, C[x^{i}], \ldots)\in E’.$

Hence either $f(s_{1}, \ldots, s_{m})\approx Eg(t_{1}, \ldots, t_{n})$ or $x^{i}\approx Ef(\ldots, C[x^{i}], \ldots)$ by Lemma 3.3. Thus
$E$ is an inconsistent set of $\nabla$-equations. $(\Leftarrow$ $)$ Let $\sigma$ be a semi-unifier of $E$ and suppose $E$ is
inconsistent. Then $f(s_{1}, \ldots, s_{m})\approx Eg(t_{1}, \ldots, t_{n})$ with $f\neq g$ or $x^{i}\approx Ef(\ldots, C[x^{i}], \ldots)$ by
Definition 2.4. Then $f(s_{1}, \ldots, s_{m})\sigma^{*}=g(t_{1}, \ldots, t_{n})\sigma^{*}$ or $x^{i}\sigma^{*}=f(\ldots, C[x^{i}], \ldots)\sigma^{*}$ by Lemma
2.5. But this is a contradiction. $\square$
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5 Conclusion

We revisited rule-based calculi for uniform semi-unification [1], on which efficient uniform semi-
unification procedures [4, 8] are based. In this paper, we have given the some proofs omitted in
[1] due to the space limitation.
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