Uniform Semi-Unification *

Takahito Aoto RIEC, Tohoku University Munehiro Iwami Interdisciplinary Faculty of Science and Engineering, Shimane University

Abstract

The notion of uniform semi-unification is extended by unification. We revisited symbolic semi-unification whose solvability coincides with that of uniform semi-unification (Aoto & Iwami, 2013). In this paper, we give the some proofs omitted in our previous work [1] due to the space limitation.

1 Introduction

The notion of semi-unification is extended by unification. If a semi-unifier exists, there exists a most general semi-unifier [3, 5, 9]. However, semi-unification is undecidable in general [5]. Hence, many decidable classes of semi-unification have been studied. For example, uniform semi-unification is decidable [2, 4, 8, 9, 10, 11]. We revisited symbolic semi-unification whose solvability coincides with that of uniform semi-unification [1].

In this paper, we give the some proofs omitted in [1] due to the space limitation. First, we consider symbolic semi-unification in section 2. In section 3, we introduce a rule-based symbolic semi-unification and show its partial correctness. In section 4, we discuss termination of symbolic semi-unification procedure on some derivation strategy. We refer to [1] omitted definitions in this paper.

2 Symbolic Semi-Unification

In this section, we consider a notion of symbolic semi-unification. We defined ∇ -term, ∇ -equation and ∇ -substitution in [1]. We refer to [1] omitted definitions.

Definition 2.1 ([1]) For a set E of ∇ -equations, a semi-unifier of E is a ∇ -substitution σ such that $s\sigma^* = t\sigma^*$ for all $s \approx t \in E$; if E has a semi-unifier, E is said to be semi-unifiable. A symbolic semi-unification problem asks whether there exists a semi-unifier for a given set of ∇ -equations.

Lemma 2.2 ([1]) Let σ be a ∇ -substitution and s, t be ∇ -terms. If $s\sigma^* = t\sigma^*$ then $\nabla(s)\sigma^* = \nabla(t)\sigma^*$.

Definition 2.3 ([1]) For a set E of ∇ -equations, the ∇ -equality generated by E, denoted by \approx_E , is the smallest equivalence relation such that (i) $s \approx_E t$ for any $s \approx t \in E$, (ii) $s \approx_E t$ implies $\nabla(s) \approx_E \nabla(t)$, and (iii) for any $f \in \mathcal{F}$, $f(s_1, \ldots, s_n) \approx_E f(t_1, \ldots, t_n)$ iff, for any $i = 1, \ldots, n$, $s_i \approx_E t_i$ holds.

^{*}This paper is revised version of [1].

Definition 2.4 ([1]) A set E of ∇ -equations is inconsistent if either (i) $x^i \approx_E s$ with $x^i \leq s \notin \mathcal{V}^*$, or (ii) $f(s_1, \ldots, s_m) \approx_E g(t_1, \ldots, t_n)$ with $f \neq g$ for some $f, g \in \mathcal{F}$. Furthermore, E is consistent if it is not inconsistent.

Since we gave only the proof sketch of the next lemma [1], we give the proof of it in detail.

Lemma 2.5 ([1]) Let E be a set of ∇ -equations. Suppose E is semi-unifiable and let σ be a semi-unifier of E. Then for any ∇ -terms $u, v, u \approx_E v$ implies $u\sigma^* = v\sigma^*$.

Proof. The proof proceeds by induction on the derivation of $u \approx_E v$. If $u \approx v \in E$ then the claim follows by assumption. If $u \approx_E v$ follows from $u' \approx_E v'$ where $u = \nabla(u')$ and $v = \nabla(v')$, then by induction hypothesis $u'\sigma^* = v'\sigma^*$, and hence by Lemma 2.2, $\nabla(u')\sigma^* = \nabla(v')\sigma^*$. Other cases follow easily.

Theorem 2.6 ([1]) For any terms $s, t \in T(\mathcal{F}, \mathcal{V})$, the following are equivalent: (i) $\{\nabla(s) \approx t\}$ is semi-unifiable, (ii) $\{s \leq t\}$ is semi-unifiable, and (iii) $\{\nabla(s) \approx t\}$ is consistent.

3 Partial Correctness of Symbolic Semi-Unification

In this section, we discuss a rule-based symbolic semi-unification procedure and prove its partial correctness. We refer to [1] omitted definitions.

Decompose
$$\frac{\{f(s_1, \dots, s_n) \approx f(t_1, \dots, t_n)\} \uplus E}{\{s_1 \approx t_1, \dots, s_n \approx t_n\} \cup E} f \in \mathcal{F}$$
Reduce
$$\frac{\{x^i \approx t, C[x^i] \approx u\} \uplus E}{\{x^i \approx t, C[t] \approx u\} \cup E} x^i > t$$
Delete
$$\frac{\{x^i \approx x^i\} \uplus E}{E}$$
Clash
$$\frac{\{f(s_1, \dots, s_m) \approx g(t_1, \dots, t_n)\} \uplus E}{\bot} f \neq g, f, g \in \mathcal{F}$$

Check $\frac{\{x^i \approx t\} \uplus E}{\bot} \ t \notin \mathcal{V}^*, \ x^i \trianglelefteq t$

Figure 1: Inference rules for symbolic semi-unification ([1])

Definition 3.1 ([1]) One step derivation using any of inference rules listed in Figure 1 is denoted by \rightsquigarrow . Here, the inference rules act on a finite set of ∇ -equations and \boxplus denotes the disjoint union. For an input of a finite set E_0 of ∇ -equations and the relation >, a symbolic semiunification procedure non-deterministically constructs a derivation $E_0 \rightsquigarrow E_1 \rightsquigarrow \cdots$ (possibly following some fixed derivation strategy). The derivation may be finite or infinite, and it is maximal if it does not end with E_k for which a further application of an inference rule is possible. A symbolic semi-unification procedure (following a fixed derivation strategy) terminates if any derivation (following that derivation strategy) is finite. **Remark 3.2** ([1]) We adopt a variant of Reduce using substitution (instead of the replacement):

$$\label{eq:Reduce} \begin{array}{ll} Reduce'' & \frac{\{x^i \approx t\} \uplus E}{\{x^i \approx t\} \cup \{x^i := t\}(E)} \ x^i > t \end{array}$$

Rule-based semi-unification calculi in [4, 8] use the replacement, and those in [6, 7, 11] use the substitution. We note that any substitution can be simulated by repeated applications of replacement.

Since we omitted the proof of the next lemma [1], we give the proof of it here.

Lemma 3.3 ([1]) Suppose $E \stackrel{*}{\rightsquigarrow} E'$ with $E' \neq \bot$. Then $\approx_E = \approx_{E'}$.

Proof. We show that $E \rightsquigarrow E'$ with $E' \neq \bot$ implies $\approx_E = \approx_{E'}$. Then the claim follows by induction on the length of $E \stackrel{*}{\rightsquigarrow} E'$. We distinguish the cases by the inference rule applied to $E \rightsquigarrow E'$. By our assumption that $E' \neq \bot$, inference rules Clash and Check are not used. Suppose that Delete is used. Let $E' \uplus \{x^i \approx x^i\} = E$. Then, since $s \approx_{E'} s$ for any s, the claim follows from the assumption immediately. Suppose Decompose is used. Let $E = F \uplus$ $\{f(s_1,\ldots,s_n) \approx f(t_1,\ldots,t_n)\}$ and $E' = F \cup \{s_1 \approx t_1,\ldots,s_n \approx t_n\}$. $(\approx_E \supseteq \approx_{E'})$ Since $f(s_1,\ldots,s_n) \approx f(t_1,\ldots,t_n) \in E, f(s_1,\ldots,s_n) \approx_E f(t_1,\ldots,t_n)$. Hence by the definition of \approx_E ((iii) of Definition 2.3), $s_i \approx_E t_i$ for all i = 1, ..., n. ($\approx_E \subseteq \approx_{E'}$) Since $s_i \approx t_i \in E'$, $s_i \approx_{E'} t_i$ for all $i = 1, \ldots, n$. Hence by the definition of $\approx_{E'}$ ((iii) of Definition 2.3), $f(s_1, \ldots, s_n) \approx_{E'}$ $f(t_1,\ldots,t_n)$. Suppose Reduce is used. Let $E = F \uplus \{x^i \approx t, C[x^i] \approx u\}$ and $E' = F \cup \{x^i \approx t\}$ $t, C[t] \approx u$. $(\approx_E \subseteq \approx_{E'})$ Since $x^i \approx t \in E'$ and $C[t] \approx u \in E'$, $x^i \approx_{E'} t$ and $C[t] \approx_{E'} u$. Then by the definition of $\approx_{E'}$ ((ii) and (iii) of Definition 2.3) $C[x^i] \approx_{E'} C[t]$ and hence by transitivity of $\approx_{E'}$, $C[x^i] \approx_{E'} u$. ($\approx_E \supseteq \approx_{E'}$) Since $x^i \approx t \in E$ and $C[x^i] \approx u \in E$, $x^i \approx_E t$ and $C[x^i] \approx_E u$. Then by the definition of $\approx_E ((ii)$ and (iii) of Definition 2.3) $C[x^i] \approx_E C[t]$ and hence by symmetricity and transitivity of \approx_E , $C[t] \approx_E u$.

Since we omitted the proof of the next corollary [1], we give the proof of it here.

Corollary 3.4 If $E \stackrel{*}{\rightsquigarrow} E' \neq \bot$, then E is semi-unifiable iff E' is semi-unifiable.

Proof. (\Rightarrow) Suppose E is semi-unifiable and $E \stackrel{*}{\Rightarrow} E' \neq \bot$. Let σ be a ∇ -substitution such that $s\sigma^* = t\sigma^*$ for all $s \approx t \in E$. For any $s \approx t \in E'$, $s \approx_{E'} t$ by the definition of $\approx_{E'}$, and hence by Lemma 3.3, $s \approx_E t$. Hence, by Lemma 2.5, $s\sigma^* = t\sigma^*$ for any $s \approx t \in E'$. Thus E' is semi-unifiable. (\Leftarrow) Suppose E' is semi-unifiable and $E \stackrel{*}{\Rightarrow} E' \neq \bot$. Let σ be a ∇ -substitution such that $s\sigma^* = t\sigma^*$ for all $s \approx t \in E'$. For any $s \approx t \in E$, $s \approx_E t$ by the definition of \approx_E and hence by Lemma 3.3, $s \approx_{E'} t$. Hence, by Lemma 2.5, $s\sigma^* = t\sigma^*$ for any $s \approx t \in E$. Thus E is semi-unifiable. \Box

Since we omitted the proof of the next theorem [1], we give the proof of it here.

Theorem 3.5 ([1]) Let E be a finite set of ∇ -equations. (1) If $E \stackrel{*}{\rightsquigarrow} \perp$ then E is not semiunifiable. (2) If $E \stackrel{*}{\rightsquigarrow} E' \neq \perp$ and no inference rules are applicable to E', then E is semiunifiable.

Proof. (1) By our assumption, $E \stackrel{*}{\rightsquigarrow} E' \rightsquigarrow \bot$ for some E'. Then either $f(s_1, \ldots, s_m) \approx g(t_1, \ldots, t_n) \in E'$ with $f \neq g$ or $x^i \approx t \in E'$ with $t \notin \mathcal{V}^*$ and $x^i \trianglelefteq t$. In the former case, $f(s_1, \ldots, s_m) \approx_E g(t_1, \ldots, t_n)$ and in the latter case, $x^i \approx_E f(\ldots, C[x^i], \ldots)$, by Lemma 3.3.

Suppose E is semi-unifiable. Then, by Lemma 2.5, we have $f(s_1, \ldots, s_m)\sigma^* = g(t_1, \ldots, t_n)\sigma^*$ or $x^i\sigma^* = f(\ldots, C[x^i], \ldots)\sigma^*$, for a semi-unifier σ of E. But this is impossible. (2) By our assumption that no inference rules are applicable to E', we have the following observations on E': (a) One side of the equation is of the form x^i . (Otherwise Decompose rule should be applicable.) (b) If $x^i \approx t \in E'$ with $x^i > t$ then x^i does not occur in t or in other equations in E'; this is because by (a) and the assumption that Check and Reduce can not be applied. Hence $\sigma = \{s := t \mid s \approx t \in E', s > t\}$ is a ∇ -substitution, and for any $s \approx t \in E', s\sigma^* = (s\sigma)\sigma^* = t\sigma^*$. Thus E' is semi-unifiable. Hence by Corollary 3.4, E is semi-unifiable.

4 Termination of Symbolic Semi-Unification Procedure

In this section, we consider termination of symbolic semi-unification procedure on our derivation strategy [1]. We refer to [1] omitted definitions.

Theorem 4.1 ([1]) Every derivation starting from a consistent finite set of ∇ -equations is finite.

Definition 4.2 ([1]) A derivation strategy is said to be refutationally complete if any maximal derivation starting from an inconsistent set of ∇ -equations and following that strategy is finite and ends with \perp .

Lemma 4.3 ([1]) A derivation strategy subject to using Reduce" in place of Reduce and applying Check whenever possible is refutationally complete.

Since we omitted the proof of the next theorem [1], we give the proof of it in detail.

Theorem 4.4 ([1]) The symbolic semi-unification procedure terminates if it follows a refutationally complete derivation strategy; either the input E is semi-unifiable and any maximal derivation ends with a set of ∇ -equations or E is not semi-unifiable and any maximal derivation ends with \bot .

Proof. If E is an inconsistent set of ∇ -equations, then by the refutational completeness of the derivation strategy then any derivation ends with \bot . Otherwise, E is a consistent set of ∇ -equations, and hence by Theorem 4.1, it stops. If the derivation ends with \bot , by Theorem 3.5, E is not semi-unifiable. Otherwise the derivation ends with a set of ∇ -equations and hence by Theorem 3.5, E is semi-unifiable. \Box

Since we gave only the proof sketch of the next corollary [1], we give the proof of it in detail.

Corollary 4.5 ([1]) Let E be a finite set of ∇ -equations. Then E is consistent iff E is semiunifiable.

Proof. (\Rightarrow) Suppose E is not semi-unifiable. Take a refutationally complete strategy for the derivation. Then by Theorem 4.4, the derivation ends with \bot . Then $E \stackrel{*}{\Rightarrow} E' \Rightarrow \bot$ for some E', and thus either $f(s_1, \ldots, s_m) \approx g(t_1, \ldots, t_n) \in E'$ with $f \neq g$ or $x^i \approx f(\ldots, C[x^i], \ldots) \in E'$. Hence either $f(s_1, \ldots, s_m) \approx_E g(t_1, \ldots, t_n)$ or $x^i \approx_E f(\ldots, C[x^i], \ldots)$ by Lemma 3.3. Thus E is an inconsistent set of ∇ -equations. (\Leftarrow) Let σ be a semi-unifier of E and suppose E is inconsistent. Then $f(s_1, \ldots, s_m) \approx_E g(t_1, \ldots, t_n)$ with $f \neq g$ or $x^i \approx_E f(\ldots, C[x^i], \ldots)$ by Definition 2.4. Then $f(s_1, \ldots, s_m) \sigma^* = g(t_1, \ldots, t_n)\sigma^*$ or $x^i\sigma^* = f(\ldots, C[x^i], \ldots)\sigma^*$ by Lemma 2.5. But this is a contradiction.

5 Conclusion

We revisited rule-based calculi for uniform semi-unification [1], on which efficient uniform semiunification procedures [4, 8] are based. In this paper, we have given the some proofs omitted in [1] due to the space limitation.

Acknowledgment

The authors are grateful for Yoshihito Toyama for helpful comments. This work was partially supported by a grant from JSPS No. 23500002.

References

- Aoto, T., Iwami, M.: Termination of rule-based calculi for uniform semi-unification. In: Proc. of the 7th International Conf. on Language and Automata Theory and Applications (LATA) 2013. LNCS, vol. 7810, pp. 56–67. Springer-Verlag (2013)
- [2] Henglein, F.: Type inference and semi-unification. In: Proc. of the ACM Conf. on LISP and Functional Programming (LFP) 1988. pp. 184–197. ACM Press (1988)
- [3] Henglein, F.: Type inference with polymorphic recursion. ACM Transactions on Programming Languages and Systems 15(2), 253-289 (1993)
- [4] Kapur, D., Musser, D., Narendran, P., Stillman, J.: Semi-unification. Theoretical Computer Science 81(2), 169–187 (1991)
- [5] Kfoury, A.J., Tiuryn, J., Urzyczyn, P.: The undecidability of the semi-unification problem. Information and Computation 102(1), 83-101 (1993)
- [6] Leiß, H.: Polymorphic recursion and semi-unification. In: Proc. of the 3rd International Workshop on Computer Science Logic (CSL) 1989. LNCS, vol. 440, pp. 211–224. Springer-Verlag (1990)
- [7] Leiß, H., Henglein, F.: A decidable case of the semi-unification problem. In: Proc. of the 16th International Symp. on Mathematical Foundations of Computer Science (MFCS) 1991. LNCS, vol. 520, pp. 318-327. Springer-Verlag (1991)
- [8] Oliart, A., Snyder, W.: Fast algorithms for uniform semi-unification. Journal of Symbolic Computation 37(4), 455–484 (2004)
- [9] Pudlák, P.: On a unification problem related to Kreisel's conjecture. Commentationes Mathematicae Universitatis Carolinae 29(3), 551–556 (1988)
- [10] Purdom Jr., P.W.: Detecting looping simplifications. In: Proc. of the 2nd International Conf. on Rewriting Techniques and Applications (RTA), 1987. LNCS, vol. 256, pp. 54–61. Springer-Verlag (1987)
- [11] Ružička, P.: An efficient decision algorithm for the uniform semi-unification problem. In: Proc. of the 16th International Symp. on Mathematical Foundations of Computer Science (MFCS) 1991. LNCS, vol. 520, pp. 415–425. Springer-Verlag (1991)