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In this article we study a new tumour angiogenic mathematical model, which is described by the It6 type
stochastic differential equation (SDE) driven by a Brownian motion. This mathematical model is able to
describe the vessel dynamics of tips in tumour angiogenesis. We derive an explicit expression of the limit
function in mean principle and an explicit representation of the characterization equation in fluctuation for
the tumour angiogenic SDE model. In addition, we finally expand the stability augument for the stochastic
system, and discuss a sufficient condition for instability of the corresponding random model. We think that
this discussion guarantees some potential capabxllt;y for our model to describe faithfully certain irregularity
of the tumour angiogenesis in question. ‘
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1 Introduction

In this article we consider the tumour angiogenesis and propose a new tumour angiogenic mathematical
model, which is given by the so-called Itd type stochastic differential equation (SDE) driven by a Brownian
random process, namely, a Wiener process. This mathematical model is able to describe the vessel
dynamics of tips in tumour angiogenesis. Let us look at the figure 1. It is an illustration of cancer vessels,
which is our target. If you only catch a glance at the lump of cancer cells in Flgure 2, then there is
no telling where the tumour vessels are. Howaver when you take a quick look at the photographs of
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blood vessels, even if vessels stand out themselves in green color from the background, you cannot tell
which one is the tumour vessel (see Figure 3). Because they all consist of. irregular complicated shapes.
Actually, the left picture in Figure 3 is tumour vessel before medical treatment, and the middle is the
one after proper medical treatment, while the right is normal vessel. We are eager to apply the random
model theory to life science, especially in the field of medicine. We are aiming at providing with aids for

medical diagnoses, in the near future, by supplying better information of ﬁumour vessels based upon the
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random models. In this article we study longtime asymptotic behavior of our SDE model, and derive an

2 cancer cells (pa.2)

explicit expression of the limit function in mean principle. Moreover, we apply fluctuation analysis to the
tumour angiogenic SDE model and derive an explicit representation of the characterization equation in
fluctuation for the model. In addition, we finally expand the stability augument for the stochastic system,
and discuss a sufficient condition for instability of the corresponding random model. We think that this
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discussion guarantees some potential capability for our model to describe faithfully certain irregularity
of the tumour angiogenesis in question. Lastly let us look at the figure 4. Now you shall see which is
the normal one. Of course, so the left is. The middle is the one before treatment and the right is after

treatment.
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2 Stochastic modelling

In Doku-Misawa (2013) [9] we studied mean principle and fluctuation of SDE model for tumour angio-
genesis, see also Doku (2011) [7] and Misawa (2013) [14]. In this paper we propose a new mathematical
model which is a generalization of the previous tumour angiogenic SDE model in Déku-Misawa (2013)
[9], and derive an explicit expression of the limit function in the mean principle of the model, as well as

an explicit representation of the characterization equation in the fluctuation. We shall introduce below
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5 tumour angiogenesis

some notations, terminology and modelling of blood vessel networks in angiogenesis. Let Ny be the initial



number of tips, N(t) be the total number of tips at time ¢, X (t) € R? be the pbsition of the i-th tip
at time ¢ with d = 3, and v*(¢) be the moving velocity of the i-th tip at time ¢. Then the network of

endothelial cells is expressed as the union of the trajectories of the tips, namely,
X(t) = X(t,w) = UND{X(s), T, < s < 1), (1)

where T; denotes the birth time of the i-th tip, that is to say, the time when an existing vessel branches
and the i-th trajectory springs up. As is well known, the tip generating process is described by a marked

point process. However, in the standpoint of its analysis and applications, it is more convenient to give

X 6 tip branching model

it as a probability measure on the product space between time space and position space. Hence, the
corresponding process is given as a probability measure G = G(dt x dz),ie., G(dtxdz) =3, dy(rm Yy}
where T™ is the birth time of the n-th tip and Y™ is the spatial position of the n-th tip that has been

newly born. For each i we write
X =Xi() = (Xi0), X30), Xi(0) €R®,  wi =wi(t) = (vl (1), vi(t), vi (1)) € R?, 2)

and for each j (j = 1,2,3) we have X}(¢) € R and vi(t) € R. Next we shall propose a new stochastic

differential equation (SDE) model which describes the blood vessel dynamics. Under these circumstances
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the formulation via a random model (i.e., an SDE model) on the vessel motion is given by the following

simultaneous equations. As a matter of fact, for each i,
dX'(t) = E(¢, X)vidt, and dvi(t) = a(t, X*,v')dt + ovidW;, t>Ty) (3)

where Wi = Wi(t) = (Wi(t), Wi(t), Wi(t)) € R3 is a three-dimensional Brownian motion (or Wiener
process). Next we refer to the concrete components of the afore-mentioned equations. Namely, C(t, z)
denotes the concentration rate of TAF (tumour angiogenic factors), and f (t,z) is the fibronectin and/or
their gradients. The positive constant ¢ > 0 is a diffusion coefficient, and the term Z is given by
E(t,X) :=1—~p,I %, {XF}, where p, is a switching parameter, and the parameter p, takes only the 0 and
1 values. Actually, the state p, = 0 indicates that no impingement is considered, while p, = 1 means
that the phenomenon of anastosis is taken into account. Iy{-} is the indicator or characteristic function
associated with the existing blood network status. According to several system biological or molecular
biological observations, the coefficient term (or the drift term) a(t, z,v) of (3) is thought to be a function
of C(t,z) and f(¢,z). Here we suppose that it is given by a(t, X?,v) := —kv} + ®(C(t, X}), f(¢, X)),
k > 0. There are surely various discussions for the term @ to be described. Suggested by considerations
of the bias depending on TAF and the fibronectin field of Plank-Sleeman (2004) [15], and also inspired
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8 branching mechanism and simulation

by the argument on the magnitude of the chemotactic and haptotactic gradient for the reorientation of

the cell increase of Stéphanou et al. (2006) [17], we adopt the function ® of the following form:
®(C, f) = ®(C(¢, X}), f(t, X)) = do - VO(t, X]) + ds - V (£, X}) (4)

with dy >0,d2 >0,v> 0,9 >0,

'VC(t, XZ)' Vi
dg =dy——M————, d df =ds|Vf(t,X7)| 5
c 1(1+7C(t,X§))q and dy = dp|Vf(t, X;)| (5)
Note that
oC oC oC
= (6hC,0:C,05C) = (6.'1: By’ O3 —) and
8f af af . o 0g .
f (alfa a’-’fa a3f) ( 6.732 6 ) with alg - 8$i (Z - 1’ 21 3)1 (6)
and also that the term ® = (®1,®2, P3) is considered to have a form
oC of . .
i = ®,;(C(t,z), f(t,x)) = Kl@ +K2(9 , with (j=1,2,3). (7)

_For brevity’s sake, we abbreviate its individual tag number ¢ in what follows. We also use the following

notations.
Xt = (Xtv Ut) = (th,XtZ:th,UtlaU?yU?)- and Bt = (Btywt) = (Btla-étzu-éga ththza Wts)

where B; = (Bi,i = 1,2,3) is a three-dimensional Brownian motion independent of W;. Then our newly

proposed tumour angiogenic SDE model for vessel tip dynamics (4) is equivalent to

X\ _ ((1-palg (Xk))vt 0 0\ /X, B,
d(w)‘( at. %) )% 0 o) \u)\w) ®)
and furthermore, for simplicity, we shall write it as follows:

dXt = F(t,Xt)dt + G(Xt)dBt, ~and XO = Z, (9)

with, for T > 0, F(t,z) : [0,7] x R® — RS, and G(z) : R® — (R® ® R®) x R® = R®. This is nothing
but an It6 type stochastic differential equation with respect to a Brownian motion, to which the usual

stochastic calculus (or I calculus) can be applied.

3 Assumptions and main results

According to the general theory on stochastic differential equations (cf. @ksendal (1998) or Ikeda-
Watanabe (1989)), in order to obtain the existence and uniqueness result for solutions to the stochastic
differential equation (SDE) of It6 type (9), we have only to assume the following conditions. For the

function G(t,z) = G(z) by convention, we assume:



(A.1) There exists a proper positive constant C' > 0 such that for V¢ € [0,7] and Vz € RS
[E(t,2)] + |G, o)l < C(1 + |z)). (10)
(A.2) There exists a proper positive constant D > 0 such that for V¢ € [0,T] and Vz,y € R®
|E(t,2) - F(t,y)| + [IG(t, 2) — G(t, )]l < Dz ~ y. (11)

Here note that G(t, 2) = (Gi;(t,2)) € M(6 % 6) and ||G(t, 2)|| = 2, ; |G;(t,2)* = 0, T, G% (¢, ),
where M(6 x 6) denotes the totality of (6,6)-type square matrices.

(A.3) The initial value Z is a random variable and is independent of the o-algebra F2 = (B, : 5> 0),
and satisfies the integrability condition E|Z|? < +o0.

Then it is well known as the theorem on existence and uniqueness of solutions to SDEs that under
the assumptions (A.1), (A.2) and (A.3), the SDE (9) possesses the unique solution which is £-continuous
and satisfies (i) X; is F7-adapted where FZ = 0(Z) V o(B, : s < t); and (i) IEfOT |X:|?dt < c0. On
this account, we can prove the following first main result. For simplicity we set Y] (t,z,y) = ft,z) —
f(t,y) and FZ := 0(Z)Vo(B, : s < t).

THEOREM 1. (Existence and uniqueness of solution to SDE) Assume (A.3). We also suppose that

IVC(t,x)| + |Vf(t,z)| < Ci(1 + |z]), for 3ICy > 0,V¢> 0,Vx (12)
]T[VC](t, z, )| + (T[Vﬂ(t, z,y)| < Colz—y|, for 3C; >0,Vt>0,Vz,y. (13)

Then SDE (11) possesses the unique solution X = (X;) € R® such that (a) Xy is t-continuous, (b) X, is
FZ-adapted, and (c) X; satisfies the integrability condition ]EfoT | X:|2dt < +o0.

We use the scaling to the model relative to £ > 0, and consider a scaled process X (w) = X=(t, w)
= X(%,w). In this stage we are very concerned on the asymptotic behavior of X¢(t,w) as € — 0. In
order to analyze the asymptotic behaviors and derive the mean principle for our SDE model, we need

the following conditions.
sup |vg(w)| < +oo, P—a.s. (14)
t>0

sup [VC(t, z)| < +o0, and sup|Vf(t,z)| < +oco, uniformlyin z. (15)
t>0 t>0

For Vs, u such that 0 < s < u, lim._,o fsu Fe(t,y)dt = [ F°(t,y)dt, where F<(t,y) is defined by F(L,y).
Then we call F* is integrally continuous at & = 0 with respect to (t,v).

We are now in a position to state the second main result in this paper, which supplies with an explicit
expression of the limit function in mean principle. - Although our SDE model (3) (or (8), (9)) is an
extension of the tumour angiogenic model treated in Déoku-Misawa (2013) [9] and Misawa (2013) [14],
this result sharpens the previous mean principle theorem (cf. Theorem 22, §4.2 in [9]).

THEOREM 2. Suppose the same conditions (12) and (13) as in Theorem 1. In addition, we assume
(14), (15) and integral continuity.

(a) Under the hypothesis that Xs(w) = y = (§,§) € RS = R3? x R, P-a.s., there exists a proper function
F(y) : RS — R® such that

T
lim % /0 F(s,y)ds = F(y) (16)

T—o0
holds uniformly in y.
(b) Moreover, if u = u(t) is a solution of the Cauchy problem for deterministic dynamic differential

equation
%(t) = Plu(t)  with u(®)lseo = 2, (17)
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then the convergence in law X (1) = u(t) holds as € approaches to zero.

(¢) The limit function F is given concretely by

o9
(—k@ + a(o0) - VC(o0,3) + B(oc) - V (oo, .«7)) 18)

with a(o0) = do(00,), B(oo) = df(co,§) for do = do(t, X:) and df = ds(t,X:). Here we set co =
1 - palg{X¥}.

Next we shall introduce the third main result in this paper, which provides with an explicit rep-
resentation of the characterization equation for the fluctuation of the rescaled tumour angiogenic SDE
model. Before stating the theorem, we define the fluctuation quantity based upon the fundamental results

(cf. Lemma 6 in §4 of [13]): i.e., (i) vanishing of the Itd type stochastic integral of rescaled function

\/E/OtGE(y)dB§=>O (as € 0); (19)

(ii) the limiting equality of the SDE model: lim\o X (%) = 2 + fot F(lime\0 X (£))ds. As a matter of

fact, we define the fluctuation as
VE=Ve(tw) = —1——{X E,w) —u(t)}, P—as for t>0 and £>0. (20)
b ‘\/E E

THEOREM 3. We assume (12), (13), (14), (15) and integral continuity.
(a) There exist some proper functions £(t,w) € L*(0,T), P-as., and ¥(t,w) € L%(0,T), P-a.s. such that

' t s ¢ ' b o |
hm/o (V~F(E,z))-yds=/0 &(s) -yds, and ;%A G* (X (s))ds-—/o U(s)ds. (21)

e—0

(b) The fluctuation V§ converges in law to some process Z; as e — 0.
(c) The limit process Z; satisfies the following SDE : dZ, = £(t)Z,dt + U (t)dB;.
(d) Actually, the limit functions in (21) which determine the characterization equation of the fluctuation,

are eaplicitly presented as
£(s,w) = V- F(oo,u(s)) and U(s,w) = G(oo,u(s)) = (g 2) u(s) = (g 2) (Zg) - (ﬂ?s))'
(22

If we rewrite the definition (20) of fluctuation, then we immediately obtain X (%) = u(t) + 2V*(2).
Here wu(t) is the solution of the ordinary differential equation like Lu(t) = F(u(t)), so that, the solution
curve (parametrized by time t) is a smooth curve with respect to t. The above expression suggests that
the rescaled process X (ﬁ) (which satisfies a SDE (23) below) is obtained by adding a random quantity
(Auctuation) /eV*(¢) to the curve u(t) additively for each t. In other words, the random quantity
X (%) (controlled by our SDE model) can be regarded as the sum structure being decomposed as the

deterministic term u(t) and randomly perturbed term. Note that the rescaled process X (%) satisfies

X(é) =z+/0tF(-§,X(§))ds+\/E/otG(X (g))dBj(w). (23)

4 Stability argument
In this section we discuss the stability analysis for the stochastic model. The solution X; = 0 of SDE
(9): dX; = F(t, Xy)dt + G(X;)dBy is stable in probability for ¢ > 0 if for Vs >0, Ve > 0,

lim P(sup | X;"*(w)| > €) =0 (24)
z—0 t>s
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holds. The solution is asymptotically stable in probability if the solution is stable in probability and
Jim P(Jim X2*(w) = 0) = 1 (25)

holds. Condition [D] is that any solution of SDE (9) begining in the domain ¢ < || < r, almost surely
reaches the boundary of this domain in a finite time, for any sufficiently small r and € > 0. Let U C R
be a domain, and E = (0,00) x U be a domain including {z = 0}. Let A(z) = (a;j(z)) such that
A(z) = G(2)G*(z). We assume that there exists a function Vit,z) € Ctl’zz(E) being positive definite in

Lyapunov’s sense, and satisfying

v 1 )
LV =—-+ ;Fi(t,x)&-V +5 ;jaij(x)aijv <0. (26)

Then the solution is stable in probability. Furthermore, suppose that there exists a positive definite
function V(¢,z) € C’tl’f(E) such that lim;_,osup,so V(¢,z) = 0 and LV < 0. Then under the condition
[D] the solution of SDE is asymptotically stable in probability.

X 10 cancer cells

5 Instability for the stochastic system

In this section we state the instability for the random model. Assume the condition [D]. We suppose
that there exists V(t,7) € CL2(E,) with B, = (0,00) x B, such that (i) LV < 0 in B, \ {0}; and (ii)
limg oinfyso V(¢ 2) = o0. Then the solution of SDE is not stable in probability. Moreover, the event
{sup;s0 | X;"¥(w)| < r} has probability zero for all s > 0, z € B,. We can state a more precise result
for instability. Suppose that the expansions Fj(t,z) = 2 FJ (t)x; + o(|z|) uniformly in t, and a;;(z)
= Yk @%zr + o(|z]) hold in the neighborhood of & = 0, where FY(t), &fj are bounded. In addition, we
assume that for 3¢ > 0, £/ > 0 and V¢t > 0

Ffj(t) =/0 (F(s) - %(&fj)z —¢e)ds > -4 (@

Then we can show that the auxiliary function Vl’; (t,z) = —logz| + I‘fj(t) satisfies the conditions on V'

in the above-mentioned result. Hence the solution of SDE is not stable in probability.
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