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1 Introduction

Many living matters rely on taxis, that is, movement responsive to a stimulus such as tem-
perature, light, or a chemical. Here, we consider a directed motion induced by a chemical,
so-called chemotaxis. Chemotaxis has been studied mathematically in numerous PDE models
(see Ref. [3] and references therein). In particular, we study a model of chemotaxis and growth,
introduced by Mimura and Tsujikawa [5]:

$\{\begin{array}{ll}\partial u/\partial t = D\Delta u-a\nabla\cdot(u\nabla\rho)+ru(1-u) in \Omega\cross(0, \infty) ,\partial\rho/\partial t = \Delta\rho+fu-g\rho in \Omega\cross(0, \infty) ,\partial u/\partial v = \partial\rho/\partial v=0 on \partial\Omega\cross(0, \infty) ,\end{array}$ (1.1)

where $\Omega$ is a bounded domain in $\mathbb{R}^{d}$ with boundary $\partial\Omega$, and $v$ denotes the outward normal
vector on the boundary. The coefficients $D,$ $a,$ $r,$ $f$ , and $g$ are positive constants. The unknown
functions of the model are the population density $u=u(x, t)$ of a living matter and the density
$\rho=\rho(x, t)$ of a chemical substance. The initial conditions are $u(x, 0)=u_{0}(x)$ and $\rho(x, 0)=$

$p_{0}(x)$ in $\Omega$ . The living matter directs its motion up a gradient of $\rho$ , and produces the chemical
substance. The chemical substance decomposes linearly. The general conservation equation for
$u(x, t)$ is $\partial_{t}u+\nabla\cdot J=f(u)$ , where $f(u)$ denotes the growth of $u$ . The flux $J$ includes the
normal diffusion and the chemotaxis: $J=J_{diff}+J_{t\dot{m}s}$ . These contributions are $J_{diff}=-D\nabla u$

with the diffusion constant $D$ , and $J_{taxis}=u\chi(\rho)\nabla\rho$ with the chemotactic factor $\chi(\rho)$ . If the
living matter is assumed to grow logistically and $\chi(\rho)$ is a constant, the model (1.1) is obtained.

A nonlinear effect such as the taxis induces spatial pattem formations. The pattern in the
model (1.1) emerges due to the competition of spatial expansion and contraction of $u$ . In the
case of $a=0,$ $u$ and $\rho$ are independent of each other, and the equation of $u$ reduces to the
Fisher-Kolmogorov equation, which has traveling wavefront solutions. In the case of $r=0,$

on the other hand, the model (1.1) is equivalent to the classical Keller-Segel model, which
has blow-up solutions with a $\delta$-function singularity. We can intuitively regard $a$ and $r$ as con-
trol parameters of contraction and expansion, respectively. Several interesting spatial pattems
have been obtained in chemotaxis models. However, most are one-dimensional (ID) or two-
dimensional (2D) pattems, while there are few theoretical studies for three-dimensional (3D)

cases [8, 9]. $3D$ pattems in other models also have been investigated in detail because of the
difficulty observing $3D$ pattems in experiments, although this is being rectified now by the use
of innovative equipment such as tomographs [1]. Therefore, the study of $3D$ patterns needs
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to advance; the present paper focuses on $3D$ pattern formations in the chemotaxis and growth
model (1.1). Kuto et al. [4] have analyzed the $2D$ model and shown the existence of hexagonal
patterns represented by the superposition of multiple cosine modes. We then expect that the $3D$

model has solutions that exhibit cubic-crystal pattems as a superposition of cosine modes. We
first review the local bifurcation analysis by Kuto et al. [4], and show the results of $2D$ and $3D$

numerical calculations.

2 Preliminaries

We consider the stationary problem of the model (1.1):

$\{\begin{array}{ll}D\Delta u-a\nabla\cdot(u\nabla\rho)+ru(1-u) =0 in\Omega,\Delta\rho+fu-g\rho =0 in\Omega,\partial u/\partial v=\partial\rho/\partial v=0 on\partial\Omega.\end{array}$ (2.1)

Kuto et al. [4] verified that hexagonal pattems emerge in the $2D$ case of (2.1). We briefly review
their results in this section.

2.1 bifurcation points of $2D$ patterns

By considering the dual periodicity of hexagons, the domain $\Omega$ is assumed to be the rectangle
$\Omega_{r}=(0, L)\cross(0, L/\sqrt{3})$ , where $L>0$ . We introduce a Hilbert space with Neumann boundary
condition $H_{v}^{2}(\Omega_{r})=\{w\in H^{2}(\Omega_{r}) : \partial w/\partial v=0 on \partial\Omega_{r}\}$ . Associated with (2.1), a nonlinear
operator $F$ : $H_{\nu}^{2}(\Omega_{r})\cross H_{v}^{2}(\Omega_{\eta})\cross \mathbb{R}arrow L^{2}(\Omega)\cross L^{2}(\Omega)$ is defined as

$F(u, \rho, a)=(\begin{array}{lll}D\Delta u-a\nabla\cdot(u\nabla\rho)+ ru(1- u)\Delta\rho+fu-g\rho \end{array})$ . (2.2)

Here $a\in \mathbb{R}$ is a bifurcation parameter. We consider the linearized problem around a trivial
solution $(u, \rho)=(1, f/g)$ :

$F_{(u,\rho)}(a)(\begin{array}{l}u_{\delta}\rho_{\delta}\end{array})=(\begin{array}{l}D\Delta u_{\delta}-a\Delta\rho_{\delta}-ru_{\delta}\Delta\rho_{\delta}+fu_{\delta}-g\rho_{\delta}\end{array})=0$ . (2.3)

From the Neumann boundary condition, solutions of $(u_{\delta}, \rho_{\delta})$ are represented by the Fourier
series expansion $u_{\delta}= \sum_{n}\tilde{u}_{n}\Phi_{n}(x)$ and $\rho_{\delta}=\sum_{n}\tilde{\rho}_{n}\Phi_{n}(x)$ , where

$\Phi_{n}(x)=\cos(\frac{\pi n_{x}x}{L})\cos(\frac{\sqrt{3}\pi n_{y}y}{L})$ . (2.4)

Each element of $n=(n_{x}, n_{y})$ is a non-negative integer. Note that the amplitudes $\tilde{u}_{n}$ and $\tilde{\rho}_{n}$ are
zero for $n=0$. Equation (2.3) has nontrivial solutions if and only if

$-(D\hat{n}^{2}+r)$ $a\hat{n}^{2}$

$f$ $-(\hat{n}^{2}+g)$

$=0$ $\Leftrightarrow$

$a= \frac{(D\hat{n}^{2}+r)(\hat{n}^{2}+g)}{f\hat{n}^{2}}.$

$:=a_{c}(n)$ , (2.5)

where $\hat{n}^{2}=\pi^{2}(n_{x}^{2}+3n_{y}^{2})/L^{2}$ . When $a=a_{c}(n)$ , the bifurcation of corresponding modes can
emerge. Some modes have the same value of $a_{c}(n)$ . Multiple degenerate bifurcations can
produce complex pattems such as hexagons.
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2.2 local bifurcation analysis

For the rectangular domain $\Omega_{\eta}$ , Kuto et al. [4] carried out the local bifurcation theory of Crandall
and Rabinowitz [2].

Theorem 2.1 (Theorem 5.1 in Ref. [4]). If $\dim KerF_{(u,\rho)}(a_{c})=1$ , there exists a positive con-
stant $\delta$ such that non-constant solutions of (2.1) near $(u, \rho, a)=(1, f/g, a_{c})\in H_{v}^{2}(\Omega_{r})\cross$

$H_{\nu}^{2}(\Omega_{r})\cross \mathbb{R}$ can be represented by

$(\begin{array}{l}u(s)\rho(s)a(s)\end{array})=(\begin{array}{l}1f/ga_{c}(n)\end{array})+s(\begin{array}{l}\Phi_{n}(x)k\Phi_{n}(x)\sqrt{}\end{array})+s^{2}(\begin{array}{l}u_{h}(s)\rho_{h}(s)a_{h}(s)\end{array})$ (2.6)

with $\beta=0$ for all $s\in[-\delta, \delta]$ . Here $\Phi_{n}(x)$ is defined in (2.4), $k=f \int(\hat{n}^{2}+g)$ , and $(u_{h}(s)$ ,

$\rho_{h}(s)$ , $a_{h}(s))\in H_{v}^{2}(\Omega_{r})\cross H_{v}^{2}(\Omega_{r})\cross \mathbb{R}$ is a smoothfiznction of $s.$

This theorem implies that, if $n_{x}=0$ or $n_{y}=0$ , the stripe solutions bifurcate at $a_{c}$ , or otherwise
the rectangle solutions bifurcate at $a_{c}.$

The simplest pattern of threefold symmetry is represented by two cosine modes:

$\Psi(x)=\cos(\frac{2\pi x}{L})+2\cos(\frac{\pi x}{L})\cos(\frac{\sqrt{3}\pi y}{L})$ . (2.7)

This is the superposition of modes $(2, 0)$ and $(1, 1)$ of (2.4), where those solutions bifurcate at
the same $a_{c}$ . The hexagonal pattem is represented by $c\Psi(x)$ with a negative constant $c$ . Since
$\dim KerF_{(u,\rho)}(a_{c}(2,0))>1$ , we cannot apply Theorem 2.1 for the bifurcation of the threefold-
symmetry pattern. Kuto et al. [4] introduced a closed subspace of threefold symmetry $H_{hex}^{2}$ of
$H_{v}^{2}(\Omega_{\eta})$ according to Ref. [6], and showed the local bifurcation of hexagonal patterns.

Theorem 2.2 (Theorems 6.1 and 6.2 in Ref. [4]). There exist a positive constant $\delta$ and a neigh-
borhood $O_{hex}$ of $(u, \rho, a)=(1, f/g, a_{c}(2, O))$ in $H_{hex}^{2}\cross H_{hex}^{2}\cross \mathbb{R}$ such that non-constant solu-
tions of (2.1) contained in $O_{hex}$ can be represented by

$(\begin{array}{l}u(s)\rho(s)a(s)\end{array})=(\begin{array}{l}1f/ga_{c}(2,0)\end{array})+s(\begin{array}{l}\Psi(x)k\Psi(x)\beta\end{array})+s^{2}(\begin{array}{l}u_{h}(s)\rho_{h}(s)a_{h}(s)\end{array})$ (2.8)

with

$\beta=\frac{4\pi^{2}+gL^{2}}{8\pi^{2}f}(r-\frac{4\pi^{2}D}{L^{2}})$ (2.9)

for $s\in[-\delta, \delta]$ . Here $\Psi(x)$ is defined in (2.7), $k=fL^{2} \int(4\pi^{2}+gL^{2})$ , and $(u_{h}(s),$ $\rho_{h}(s)$ ,

$a_{h}(s))\in H_{hex}^{2}xH_{hex}^{2}\cross \mathbb{R}$ is a smoothjUnction of $s.$

Remarkably, $\beta$ is zero for the stripe and rectangle solutions, but not generally zero for the
solutions of threefold symmetry. This implies that the bifurcation to the stripe and rectangle
pattems is pitchfork type and that to the hexagonal pattems is generically transversal type.
Further, (2.8) and (2.9) suggest the existence of either a pattem $u_{\delta}\approx s\Phi_{n}(x)$ or its inverse
pattem $u_{\delta}\approx-s\Phi_{n}(x)$ near the bifurcation point. We discuss it later by numerical calculations.
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3 Bifurcation to cubic-crystal patterns

We next explore the emergence of crystal-like pattems in the $3D$ chemotaxis and growth model
(1.1). In the present paper, our focus is cubic crystals, i.e., simple cubic (SC), face-centered
cubic (FCC), and body-centered cubic (BCC) pattems. The domain is the cube $\Omega_{c}=(0, L)\cross$

$(0, L)\cross(0, L)$ , where $L>0$ . For the $3D$ case, we can also apply the result of Sec. 2.1, while
the basis of Fourier series expansion is

$\Phi_{n}(x)=\cos(\pi n_{x}x/L)c.os(\pi n_{y}y/L)\cos(\pi n_{z}z/L)$ (3.1)

instead of (2.4), and moreover (2.5) holds with $\hat{n}^{2}=\pi^{2}(n_{x}^{2}+n_{y}^{2}+n_{z}^{2})/L^{2}.$

The cubic-crystal pattems are expressed by cosine modes. The FCC pattern has the same
symmetry as the mode $(1, 1, 1)$ , i.e., $\Phi_{(1,1,1)}(x)$ . Since $\dim KerF_{(u,\rho)}(a_{c}(1,1,1))=1$ , we can
apply the local bifurcation theory for the existence of the non-constant solution. The BCC and
SC pattems cannot be expressed by a single cosine mode. The BCC pattem is represented
by the superposition of $\Phi_{(1,1,0)}(x)$ , $\Phi_{(1,0,1)}(x)$ , and $\Phi_{(1,1,0)}(x)$ . Similarly, the SC pattem is
the superposition of $\Phi_{(1,0,0)}(x)$ , $\Phi_{(0,1,0)}(x)$ , and $\Phi_{(0,0,1)}(x)$ . The BCC and SC pattems are
therefore $3D$ degenerate: dim Ker $F_{(u,\rho)}$ $(a_{c}(1, 1, 0))$ $=$ dim Ker $F_{(u,\rho)}(a_{c}(1,0,0))=3$ . We thus
cannot apply the local bifurcation theory directly for BCC and SC. Nevertheless, as with the
$2D$ case, one can carry out the local bifurcation analysis in an appropriately restricted function
space to prove that the bifurcation to the SC and FCC pattems is pitchfork type $(i.e., \beta=0)$ and
that the bifurcation to the BCC pattem is transversal type $(i.e., \beta\neq 0)$ . We do not mention the
details here, but show numerical results in the next section.

4 Numerical solutions

4.1 method

We carried out a numerical calculation for the model (1.1). The control parameters were $a$ and
$r$ ; the other parameters were set as those in Ref. [4]: $D=0.0625,$ $f=1$ , and $g=32$ . The
initial function $u_{0}(x)$ included the perturbation $\xi(x)$ around the constant solution: $u_{0}(x)=$

$1+\xi(x)$ , where the value of $\xi(x)$ was random number in the uniform distribution between
$-0.05$ and 0.05. The function $\rho_{0}(x)$ was constant: $\rho_{0}(x)=f/g=0.03125$ . We employed
the explicit numerical scheme in time. The spatial-derivative terms were approximated by the
central difference. The grid sizes were $\Delta x=\Delta y=\Delta z=2^{-5}$ in space and $\Delta t=2^{-15}$ in time.
The simulation continues to a steady state.

4.2 result and discussion

4.2.1 $2D$ : hexagonal pattern

The domain in this case was $\Omega_{r,4}=(0,4L)\cross(0,4L/\sqrt{3})$ . The system size $L$ was determined to

obtain the hexagonal pattern at the first bifurcation. It is proved that $a_{c}(n) \geq(\sqrt{r}+\sqrt{Dg})^{2}\int f$ $:=$

$a_{\min}$ , where $a_{\min}$ is attained at $L=\pi|n|(D/rg)^{\iota/4}$ with $|n|^{2}=n_{x}^{2}+3n_{y}^{2}.$
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Figure 1: $2D$ steady-state patterns of dots (left) and hexagons (right) in $\Omega_{r,4}$ . The parameter $r$ was $r=1.5$ (left)

and $r=3.5$ (right), while a was adjusted to $(a-a_{c})/a_{c}=0.01$ . The length $L$ was set to obtain each pattern as the
first bifurcation; $L=1.1875$ (left) and $L=0.9609375$ (right). The dot pattem emerges from $\beta=-1.5$ of (2.9). In
contrast, the hexagonal pattern emerges from $\beta=0.75.$

The hexagonal pattem and its inverse (dot pattern) were obtained as suggested by (2.8) and
(2.9). Each pattem shown in Fig. 1 is linked to a positive and negative $\beta$ , where $\beta$ changes sign
at $r=2$ under the parameters. Kuto et al. [4] mentioned that the obtained hexagonal patterns are
inverse, counter to the theoretical prediction; Theorem 2.2 implies that the hexagonal pattem
emerges at a negative $\beta$ and its inverse emerges at a positive $\beta$ . Kuto et al. conjectured that
the branch predicted from Theorem 2.2 is unstable and the pattern corresponding to a tumed-
back branch is stable. These results are consistent with the competition between expansion and
contraction mentioned in Sec. 1. That is, a large $r$ (an expansion effect larger than contraction)

leads to a hexagonal spread of the living matter. In contrast, a small $r$ (a contraction effect larger
than expansion) leads to a dot aggregation. Note that the conjecture of stability is alsojustified
by using a center manifold analysis [7].

4.2.2 $3D:cubic$-crystal pattern

The domain in this case was $rk$ , where the system size $L$ was determined to obtain a crystal-like
pattem at the first bifurcation. Similarly to in the above, $a_{c}(n) \geq(\sqrt{r}+\sqrt{Dg})^{2}\int f$ $:=a_{\min},$

where $a_{\dot{m}n}$ is attained at $L=\pi|n|(D/rg)^{1/4}$ with $|n|^{2}=n_{X}^{2}+n_{y}^{2}+n_{z}^{2}$ . Note that $|n|=1$ for

SC, $|n|=\sqrt{2}$ for BCC, and $|n|=\sqrt{3}$ for FCC.
The cubic-crystal pattems (i.e., BCC, FCC, and SC) were obtained as shown in Figs. 2-5.

Note that, for exhibiting the unit lattice of cubic crystals, the domain in the figures was extended
to $fk_{2}=(0,2L)\cross(0,2L)\cross(0,2L)$ in consideration of the reflection boundary. The BCC
pattem has two types: regular BCC (Fig. 2) and its inverse (Fig. 3). It is proved that $\beta$ for the
BCC pattem changes sign at $r=2$ under the parameters. The FCC (Fig. 4) and SC (Fig. 5)

patterns have no inverses, i.e., $\beta=$ O. The difference originates from the existence or non-
existence of a symmetry; i.e., an inverse pattem is obtained by the translation of the original for
the FCC or SC pattem. The symmetry of the crystal determines the type of the bifurcation.

The stability of the $3D$ pattems has yet to be elucidated. First, the obtained BCC patterns
are inverse, counter to the theoretical prediction. Note that the results are reasonable from the
viewpoint of the competition between expansion and contraction: a small $r$ indicating strong
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$f^{r_{1}}$gure 2: Overhead views of a steady-state BCC pattern in $\Omega_{c,2}$ , where $L=0.90625$ was set to obtain the pattern
as the first bifurcation, Left and right represent color maps of $u$ on the surface and on its inside cross-section,
respectively. The parameters are $(a-a_{c})/a_{c}\approx O.002$ , and $r=1.0$ corresponding to $\beta-\sim-0.5.$

Figure 3: Overhead views of a steady-state pattern of inverse BCC in $\Omega_{c,2}$ , where $L=0.65625$ was set to obtain
the pattern as the first bifurcation. Left and right represent color maps of $u$ on the surface and on its inside cross-
section, respectively. The parameters are $(a-a_{c}$ } $/a_{c}\approx 0.002$ , and $r=3.5$ corresponding to positive $\beta=0_{r}75.$

Figure 4: $\circ$verhead views of a steady-state FCC pattern in $\Omega_{c.2}$ , where $L\overline{\sim}1.12500$ was set to obtain the pattern
as the first bifurcation. Left and right represent color maps of $u$ on the surface and on its inside cross-section,
respectively. The parameters are $(a-a_{c})/a_{c}\approx 0.002$ and $r=1.O.$
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Figure 5: Overhead views of a transient SC pattern in $\Omega_{\kappa,2}$ , where $L=0.65625$ was set to obtain the pattern as the
first bifurcation. Left and right represent color maps of $u$ on the surface and on its inside cross-section, respectively.
The parameters are $(a-a_{c})/a_{c}\approx 0.0003$ and $r=1.O$. This result is at $t=1\infty.$

Figure 6: Overhead views of a pipe-like pattern in $fk_{2}$ , where the parameters are the same as those of Fig. 5. Left
and tight represent color maps of $u$ on the surface and on its inside cross-section, respectively. This result is at
$t=33800$ (steady state).

contraction leads to the spot pattem, and a large $r$ indicating strong expansion does to the spread
pattem. Second, although steady-state BCC (both faces) and FCC patterns were obtained, the
SC pattem emerged only temporally around $t=100$ and th\‘en converged to a pipe-like pattern
as shown in Fig. 6. The stability of pattems should be examined by a center manifold analysis
for $3D.$

5 Summary

We have examined the chemotaxis and growth model introduced by Mimura and Tsujikawa. In
a $2D$ rectangular domain, the hexagonal pattern and its inverse emerge, which is theoretically
justified by the local bifurcation analysis. Although the pattems obtained by numerical calcula-
tions are inverse pattems, counter to the theoretical prediction, the pattems are reasonable from
the viewpoint of the competition between spatial expansion and contraction of a living matter.
In the $3D$ cubic domain, we have shown the cubic-crystal patterns FCC, SC, and BCC. The FCC
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and SC patterns do not have solutions consisting of their inverse pattems, while the BCC pattern
does. This difference originates from a symmetry inherent in each crystal and determines the
type of bifurcation. Furthermore, we have obtained the stable FCC and BCC pattems, but the
SC pattem emerges only temporally. We will discuss the stability of the $3D$ crystal pattems
elsewhere.
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