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INTRODUCTION

In this paper, we consider a population model which is defined by Fibonacci type at first.

Namely we consider the population model ofwell known Fibonacci rabbits. Then we

encounter with the difficulties to obtain realistic models. Namely we have the following

two problems:.

(1) The infinity population numbers problem: The population numbers become

infinity (as the exponential order).

(2) The life time length problem: Each rabbit can live forever.

We discuss these problems by introducing a concept of“degeneration” ofpopulation

numbers and give the final answer by introducing the theory of linear recurrence
sequences. Finally we compare the given discrete population models with well known

Malthus model, Verhulst model and Voltera-Lotka model and suggest possibilities of

description on mass extinctions.

1. Fibonacci rabbits model

In this section we recall some basic facts on Fibonacci rabbit population model. The

generation rules are given as follows:
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The generation rules of Fibonacci rabbits:
(1) Every pair ofmale and female rabbits bear a pair ofrabbits of the same type every
month, after two months they are bom.

(2) Each rabbit never dies and lives forever.

The sequence of number of $n$-generation Fibonacci rabbits $\{a_{n}\}$ is called Fibonacci
sequence and it is given by the following $recu\iota$Tence formula:

$a_{n}=a_{n-1}+a_{n-2}(a_{0}=a_{1}=1)$

We recall well known facts on Fibonacci sequence:
(i) The generation function of the sequence is given as follows:

$\frac{1}{1-x-x^{2}}=\sum_{n=0}^{\infty}a_{n}x^{n}$

(ii) By use of the decomposition of the rational functions, we have

$a_{n}= \frac{1}{\sqrt{5}}(\alpha^{n+1}-\beta^{n+1})$

where $\alpha,\beta(\alpha>\beta)$ are the roots of the characteristic equation $x^{2}-x-1=0$ . Hence we
see that the numbers ofrabbits tend to infinity by the fact: $\alpha>1,|\beta|<1$ . By this fact we
have proposed the problems in Introduction.

2. Degenerations of Fibonacci rabbits sequence
We introduce a concept of degeneration for generation of Fibonacci rabbits and discuss
the problems in Introduction:

Definition(Degeneration)

The generations are called $ofN$-generation life time type, when each member can live at

most $N$ generations. The $N$-generation is called Type I, when it makes babies untill just
before it dies. Otherwise it is called ofType II. by the generation rule Namely it makes

babies successively, but it does not make babyjust before it dies.

At first we notice that degeneration sequences produce several sequences which are
interesting in the theory of Fibonacci sequences:
(1) 3-generation ofType I: We can obtain the following sequence $\{b_{n}\}$ for 3-generation

ofType 1 by the following recurrence formula:
$b_{n}=b_{n-2}+b_{n-3}+b_{n-4}(b_{1}=b_{2}=b_{b}=1)$

(2)(Padovan sequence) We can obtain the Padovan sequence $\{c_{n}\}$ for 3-generation of
type II. The Padovan sequence $\{c_{n}\}$ is a sequence ofnatural numbers which is defined
by the following $recu\iota$Tence fonmula ([2]):
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$c_{n}=c_{n-2}+c_{n-3}(c_{0}=c_{1}=c_{2}=1)$

(3)2-degeneration model ofType II: We can obtain the sequence: 1,2,1,2, $\cdots$ : This gives

the simplest solution to the problem (2) in Introduction. This example shows that we

may expect to obtain the realistic model by successive degenerations processes from

Fibonacci rabbits.

Here we can propose the following problems connected to the two problems (1) and (2):

(1)’ Can we obtain sequences with increases ofpolynomial type by making

degeneration of the Fibonacci sequence?

(2) ’ Can we obtain the sequences ofperiodic bounded sequences by making

degenerations?

We notice that the Padovan rabbits still divergent to infinity as exponential order when

time tends to infinity.

3. Degeneralization for general’sequences

We can introduce a concept of degeneration for more general sequences and discuss the

same problems for them: For example, we can perform for Tribonacci sequence([2]).

The Triboonacci sequence $\{t_{n}\}$ is a sequence which is defined by the following

recurrence formula([2]):

$t_{n}=t_{n-1}+t_{n-2}+t_{n-3}(t_{0}=t_{1}=t_{2}=1)$

This sequence divergent as exponential order. We can associate a population model

for the sequence and consider the degeneration ofthe sequence. Then we may expect to

obtain sequences systematically which are already known in its theory. On the basis of

this fact, we can fmd a hierarchy structure in sequences of Fibonacci type.

4.Construction of population model by use of linear recurrence sequence

In order to solve the problems (1) and (2) in Introduction, we introduce the theory of

linear recurrence sequences([4]).

DEFINITION

A sequence $\{a_{n}\}$ is called linear $recm\tau$ence sequence, when it is defined by the

following recurrence formula:

$a_{n}=c_{1}a_{n-1}+c_{2}a_{n-2}+ +c_{r}a_{n-r}$

where $c_{1},c_{2},\ldots,$ $c_{r}$ are constants. Then the sequence can be determined by the initial

condition; $\{a_{1},a_{2},\ldots, a_{r}\}.$

We give some basic notations
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(1) (Generating function)

The generating function is given by a rational function $F(x)$ :

$F(x)= \sum_{n=0}^{\infty}a_{n}x^{n}$

Conversely, when a rational function is given, then the coefficient ofTaylor expansion
gives a linear $recu\iota$Tence sequence.
(2) (Characteristic polynomial and characteristic roots)

The characteristic polynomial of the linear recurrence sequence is given as follows:
$f(x)=x^{r}-a_{1}x^{r-1} -a_{r}$

(ii) $f(x)=0$ is called characteristic equation and its roots are called characteristic roots.
The different characteristic roots are denoted by $\alpha_{1},\alpha_{2},\ldots,$

$\alpha$ $\alpha_{1}|>|\alpha_{2}|>$ $>|\alpha,$ $|$) and
we assume the following decomposition:

$f(x)=(x-a_{1})^{m_{1}}(x-a_{2})^{m_{2}}\ldots.(x-a_{l})^{m,}$

Then we can discuss the problems depending on the absolute values of the roots and the
initial conditions. Namely we can prove the following theorem:

THEOREM

Let $\{a_{n}\}$ be a linear recurrence sequence. Then we can obtain the following assertions:
(1) When there exists one root whose absolute value is bigger than 1, the sequences

divergent as exponential degree for suitable initial values.
(2) When there exists one root whose absolute value is one, the sequences divergent as

polynomial degree for suitable initial values with/out periodic perturbations or they
are periodic(see Figure 4).

(3) The classification can be given.

The proofs can be given by the following Lemma:
Lemma

Let $\{a_{n}\}$ be a linear recurrence sequence. Then we have the following assertions:
(1) The following elements are linearly independent:

$\{a_{k}^{m_{k}},na_{k}^{m_{k}},n^{2}a_{k}^{m_{k}} n^{m_{k}-1}a_{k}^{m_{k}},\}(k=1,2,.., l)$

(2) Each $\{a_{n}\}$ can be expressed as a linear combination ofthe elements of (1):

$a_{n}= \sum_{k=1}^{l}\sum_{=1}^{m_{k}}c_{k,t}n^{t}a_{k}^{m}$’

The coefficients can be determined by the initial conditions
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5. Examples

We give several examples and their computer simulations:

(1) Choosing $c_{1}=c_{2}=1(r=2)$ and $a_{1}=1,a_{2}=1$ , we can obtain Fibonacci sequence

(see Figure 1). We see that the characteristic polynomial is $f(x)=x^{2}-x-1$ . Hence we

see easily that it divergent infinity as exponential order
(2) Choosing $c_{1}=3,c_{2}=-3,c_{3}=1(r=3)$ and $a_{1}=3,a_{2}=1,a_{3}=0$ , we can obtain the

sequence which is called Euler’s trigonometrical sequence (see Figure 2). We see that

the characteristic polynomial is $f(x)=(x-1)^{3}$. Hence we see easily that it divergent to

infinity as polynomial order

(3) Choosing $c_{1}=1,c_{2}=-2,c_{3}=2,c_{4}=1(r=4)$ and $a_{1}=1,a_{2}=2,a_{3}=a_{4}=1$

we can obtain a periodic sequence (see Figure 3). We see that the characteristic

polynomial is $f(x)=(x-1)(x^{2}+1)$

(4) Choosing $c_{1}=2,c_{2}=-2,c_{3}=2,c_{4}=1(r=4$} and $a_{1}=1,a_{2}=2,a_{3}=a_{4}=1$, we

can obtain a sequence which has a divergence ofpolynomial type, but periodic along

the polynomial divergence(see Figure 4). We see that the characteristic polynomial is
$f(x)=(x-1)^{2}(x^{2}+1)$ .

$//$

Figure 1 Figure 2

Figure 3 Figure 4

5. Future problem

We discuss our discrete population model and state several problems in the future.
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Our discrete model vs continuous model

We compare our discrete population model with well known continuous model and
state several problems. At first we have to examine the reason why we may use
continuous model. We believe that we may use continuous models, when treated
population models which constitute many population. This consideration describes the
real population quite well, for example, Malthus model or Verhulst model. Especially
Verhulst model describes them quite we11([3]). We may say that our model of
exponential type $C0$IYesponds to the Malthus model. Still we have no models which
correspond to Verhulst model. In order to realize the corresponding models, we have to
introduce a concept ofdeformation ofmodels oflinear reculTence sequences. Then we
can obtain the corresponding model. We can describe the deformations in terms of the
deformations of characteristic polynomial: We explain deformation by use of the
following examples: We consider

$f(x)=(x-\alpha)(x^{2}+1)$

where $\alpha$ is a deformation parameter. When $\alpha$ is bigger than 1, the model the model
behaves as exponential model. When $\alpha$ tends to 1, the model becomes that ofperiodic
type.

Our discrete model vs chaotic model

The well known chaotic dynamical system due to May is given by the discretization of
Verhulst equation ([5]). The motivation of introduction of chaotic dynamical system is
to describe a population model ofcertain insects which behaves a periodic model. This
model can be also obtained from our mode by use of deformations (Figure 5).

Mass extinction
We know that we have the explosion in the Cambrian period and the mass extension in
Pemian period in the history ofmarine animals. Hence we can observe the process of
the exponential increase at first and then mass extinction happens.

Figure 5
The first part can be described by use ofMalthus model. But the mass extinction in the
Pennian period is difficult to describe by the continuous model. We can observe many
examples ofmass extinction in the usual world. For example, we see that fishes produce
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so many eggs, but only few fishes can survive at the final stage. Because this fact, the

nature make a good valance and makes the stable populations. The main problem for

population genetics can be stated as follows:

PROBLEM

How can we describe the total process in population from the explosion to the mass

extinction?

It is well known that the logistic equation can describe the former halfpart ofthe

process. But it seems to us that it can not describe the mass extinctions. We may try to

solve this problem by use ofour results.

Other problems

We can discuss the Voltera-Lotka model of the coexsistence population model on lions

and rabbits by use our modelt

$\{\begin{array}{l}dx/dt=ax-bxydy/dt=cxy-dy\end{array}$

where $a,b,c,d$ are positive constants and $x$ and $y$ are the number of rabbits and

lions respectively. Taking the fact that the Malthus equation corresponds to our

non-degenerate model into account, we may discuss the equation in terms of our model.

Namely we may consider the following system oflinear recu1Tence sequences:

$\{\begin{array}{l}a_{n+2}=a(a_{n+1}+a_{n})-b(a_{n+1}+a_{n})(b_{n+1}+b_{n})b_{n+2}=c(b_{n+1}+b_{n})-d(a_{n+1}+a_{n})(b_{n+1}+b_{n})\end{array}$

The problem can be stated as follows: Find sequences $\{a_{n}\},$ $\{b_{n}\}$ so that they are
periodic. We have never seen the study on a system oflinear recu1Tence sequences.
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