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ABSTRACT. We report on our result on Brill-Noether theory on
graphs. In particular, we prove $CaporaSo^{ノ}S$ conjecture which states
that the existence of graphs on which there are no special divisors
if the Brill-Noether number is negative. In fact, we can prove
full Brill-Noether theorem for a class of trivalent graphs. This,
combined with Baker’s specialization lemma, gives a purely com-
binatorial proof of classical Brill-Noether theorem.

1. INTRODUCTION

This is a report on the author’s recent result concerning the di-
visor theory of graphs. The divisor theory of graphs has undergone
big progress after the seminal work of Baker and Norine [2] about
Riemann-Roch theory of graphs appeared. Since then, this theory has
been developed in several directions. One of remarkable results is the
Brill-Noether theory of graphs developed by Cools, Draisma, Payne and
Robeva [4], which is a deepening of the Riemann-Roch theory. They
showed (among other results) the existence of particular four valent
graphs which are Brill-Noether general, that is, the set of divisors of
given Brill-Noether number (see Section 2) has the expected dimen-
sion. However, graph theoretically four-valent graphs are not general:
general graphs are trivalent. So the natural question is whether there
exist trivalent graphs which are Brill-Noether general.

In this context, L. Caporaso conjectured [3] that there should be
trivalent graphs which has the property that the set of effective divisors
whose Brill-Noether number is negative is empty. In this report, we
give an example of a class of trivalent graphs which confirms Caporaso’s
conjecture. In fact, these graphs are Brill-Noether general (that is, the
Brill-Noether theorem holds even when the Brill-Noether number is
nonnegative).

2. REVIEW ON DIVISOR THEORY ON GRAPHS

In this section we recall the divisor theory on metric graphs very
briefly. See for example [2] for more information.

2.1. Divisors on graphs. Let $\Gamma$ be a compact connected metric graph.
A divisor on $\Gamma$ is a finite $\mathbb{Z}$,-linear combination of points of $\Gamma$ , and we
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write $Div(\Gamma)$ for the additive group of all divisors. A general element
of $Div(\Gamma)$ is written as

$D=a_{1}v_{1}+\cdots+a_{r}v_{r},$

where $a_{i}\in \mathbb{Z}$ and $v_{i}\in\Gamma$ . We define the degree of $D$ by

$deg(D)=a_{1}+\cdots+a_{r}.$

A rational function on $\Gamma$ is a piecewise linear function on $\Gamma$ with
integral slopes. If $f$ is a rational function of $\Gamma$ and $v\in\Gamma$ , define $ord_{v}(f)$

by the sum of incoming slopes of $f$ at $v$ . Then define $div(f)\in Div(\Gamma)$

by

$div(f)= \sum_{v\in\Gamma}ord_{v}(f)\cdot v$

and call it the divisor of $f$ . The divisors of rational functions on $\Gamma$

compose a subgroup Prin ( $\Gamma$ ) of $Div(\Gamma)$ , the subgroup of principal di-
visors.

The Picard group of $\Gamma$ is defined by

$Pic(\Gamma)=Div(\Gamma)/Prin(\Gamma)$ .

One sees every principal divisor has degree $0$ , so there is a well-defined
map

$deg:Pic(\Gamma)arrow \mathbb{Z}.$

An element of $Pic(\Gamma)$ is called a divisor class. Denote by $Pic_{d}(\Gamma)$ the
subset $deg^{-1}(d)$ of $Pic(\Gamma)$ . In particular, $Pic_{0}(\Gamma)$ is a subgroup of
$Pic(\Gamma)$ .

2.2. Linear system of divisors. A divisor $D=a_{1}v_{1}+\cdots+a_{r}v_{r}\in$

$Div(\Gamma)$ is effective if each coefficient $a_{i}$ is nonnegative. A divisor $D’$ is
linearly equivalent to $D$ if $D-D’\in Prin(\Gamma)$ .

The rank $r(D)$ of an effective divisor $D$ is the largest integer $r$ such
that, for every effective divisor $E$ of degree $r,$ $D-E$ is linearly equiva-
lent to an effective divisor. If $D$ is not linearly equivalent to an effective
divisor, then set $r(D)=-1.$

For nonnegetive integers $r$ and $d$ , the Brill-Noether locus

$W_{d}^{r}(\Gamma)\subset Pic_{d}(\Gamma)$

is the set of divisor classes of degree $d$ and rank at least $r.$

In classical theory of divisors on Riemann surfaces, for an Riemann
surface of genus $g$ , the Brill-Noether locus $W_{d}^{r}(C)$ is similarly defined.
Let

$\rho(g, r, d)=g-(r+1)(g-d+r)$

be the Brill-Noether number. Then it is known that for a general curve,
if $\rho(g, r, d)$ is nonnegetive, the dimension of $W_{d}^{r}(C)$ is equal to $\rho(g, r, d)$ ,
and if $\rho(g, r, d)$ is negative, then $W_{d}^{r}(C)$ is an empty set.
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For graphs however, there are open sets in the moduli space of metric
graphs of genus $g$ , where $\dim W_{d}^{r}(\Gamma)$ is strictly larger than $\rho(g, r, d)$ (see
[3]). One of the conjectures of Caporaso is the following.

Conjecture 2.1. Assume $g\geq 2$ and $\rho(g, r, d)<0$ . Then there exists
a 3-regular graph $\Gamma$ of genus $g$ for which $W_{d}^{r}(\Gamma)=\emptyset.$

Theorem 2.2. Caporaso’s conjecture holds for the following graphs.

$1_{3} 1_{\epsilon}$ $1_{3g3}$

FIGURE 1. The graph $\Gamma_{g}$

Here the edge lengths of the edges $l_{i},$ $1\leq i\leq 3g-3$ are given by

length $(l_{i})=\epsilon^{i},$

with $\epsilon$ small positive constant.

Remark 2.3. The edge length need not strictly take these values. If we
perturb the lengths of edges slightly (compared to its original length, for
example, we can change the length of the edge $l_{i}$ to $\epsilon^{i}+O(\epsilon^{i+1})$), then
the resulting graph still satisfies the conclusion of Theorem 2.2. Thus,
we actually have the open subset of the moduli space of the metric graphs
where the conclusion of Theorem 2.2 holds.

Remark 2.4. The same line of argument proves that in fact the full
Brill-Noether theorem is true for these graphs. That is, when the Brill-
Noether number $\rho$ is nonnegative, then the corresponding Brill-Noether
locus has dimension $\rho$ . In $thi\mathcal{S}$ note, we concentrate on the case $\rho<0.$

3. IDEA OF THE PROOF

Let us write the graph in the statement of Theorem 2:2 by $\Gamma_{g}$ . Recall
that Brill-Noether number is given by

$\rho=g-(r+1)(g-d+r)$ .

One sees that $\rho=-1$ if and only if the genus $g$ of $\Gamma_{g}$ , the degree $d$ of
the divisor and rank $r$ of the linear system satisfy the relation

$(g, d)=(r(p-1)+p-2,pr-1)$

for some positive integer $p$ . The cases when $\rho$ is smaller than $-1$ are
easier than the case $\rho=-1$ , so we consider the cases where $\rho=-1.$
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An important tool for the proof is the chip-firing deformation which
we introduce below. It gives a convenient way to construct linearly
equivalent divisors of a given divisor.

Recall the chip firing move on a graph [1, 2]. Let $\Gamma$ be a graph and
$D$ a divisor on it. Let $v$ be a $k$-valent vertex of $\Gamma$ and $v_{1},$ $\cdots,$ $v_{k}$ be the
neighboring vertices of $v$ . Then applying a chip-firing move at $v$ to $D$

gives the new divisor $D’$

$\{\begin{array}{l}D’=D+kv-v_{1}-v_{2}-\cdots-v_{k} (’ borrowing’ move), orD’=D-kv+v_{1}+v_{2}+\cdots+v_{k} (’ giving’ move).\end{array}$

Any divisor linearly equivalent to $D$ can be obtained as a result of a
sequence of chip-firing moves.

In the case of a metric graph, a straightforward generalization of
chip-firing move can be defined, which we call chip-firing deformation.
To define it, we prepare some notation. Let $\Gamma$ be a compact connected
metric graph. Let $v$ be a $k$-valent point of $\Gamma$ (a point on the interior of
an edge is a divalent point. The valency at the vertices of $\Gamma$ is defined
as usual). Consider the open subset $\Gamma\backslash \{v\}$ of $\Gamma$ . This is a graph with
$k$ open ends. Add one valent vertices to each of these ends. This gives
a closed graph $\Gamma’$ which is not necessarily connected.

Definition 3.1. We call the graph $\Gamma’$ the graph obtained from $\Gamma$ by
cutting $\Gamma$ at $v.$

Let $D$ be a divisor on $\Gamma$ whose summand at the point $v$ is $lv$ with
$l>0.$

Definition 3.2. A divisor $D’$ on $\Gamma’$ is obtained from $D$ by cutting the
pair $(\Gamma, D)$ at $v$ if

$D’=D-lv+ \sum_{i=1}^{k}c_{i}v_{i}$

with $e_{i}\geq 0$ and $\sum_{i=1}^{k}c_{\iota’}=l.$

Note that $D-lv$ does not have a summand at the point $v$ , so we
can think of it as a divisor on the graph $\Gamma’$ . Thus, the expression of $D’$

in Definition 3.2 makes sense.
Now we define the chip-firing deformation. For simplicity, we only

define it for the case of positive ends. Let $\Gamma$ be a metric graph and $D$

an effective divisor on $\Gamma$ . Let

$v_{1}, \cdots, v_{a}$

be points of $\Gamma$ and $\Gamma’$ be the graph obtained from $\Gamma$ be cutting it at
each of the points $v_{1},$ $\cdots,$ $v_{a}$ . Let

$\Gamma_{1}’, \cdots, \Gamma_{b}’$

be the connected components of $\Gamma’$ . Assume that by cutting the pair
$(\Gamma, D)$ suitably at each of the points $v_{1},$ $\cdots,$ $v_{a}$ , we obtain a component
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of $\Gamma’$ (let it be $\Gamma_{1}’$ for simplicity) and an effective divisor $D_{1}’$ on it which
have the following property:

$\bullet$ Each one-valent vertex is contained in the support of the divisor
$D_{1}’.$

Let
$w_{1}, \cdots, w_{c}$

be the one-valent vertices of $\Gamma_{1}’$ and write $D_{1}’$ as

$D_{1}’=D_{1}"+ \sum_{i=1}^{c}a_{i}w_{i}$

with $a_{i}>0$ for all $i$ . Here $D_{1}"$ is the subdivisor of $D_{1}’$ whose support is
disjoint from the one-valent vertices of $\Gamma_{1}’.$

Take a positive number $\epsilon$ so that it is not greater than the length of
any leaf. Here a leaf is an edge of $\Gamma_{1}’$ which has one of $w_{1},$ $\cdots,$ $w_{c}$ as
one of its ends. Let $\Gamma_{1,\epsilon}’$ be the graph obtained from $\Gamma_{1}’$ by shortening
each leaf $f_{i},$ $i=1,$ $\cdots,$

$c$ by the length $\frac{\epsilon}{a_{i}}$ . Here $f_{i}$ has $w_{i}$ as one of its
ends and $a_{i}$ is the coefficient of $w_{i}$ in $D_{1}’$ (see the above expression for
$D_{1}’)$ .

Let $w_{i,\epsilon}$ be the point of $\Gamma_{1,\epsilon}’$ corresponding to $w_{i}$ in the obvious way.
If the length of the leaf $f_{i}$ is greater than $\epsilon$ , then $w_{i,\epsilon}$ is again a one-
valent vertex, and if the length of $f_{i}$ is equal to $\epsilon$ , then $w_{i,\epsilon}$ coincides
with another end of $f_{i}$ . We point out that in the latter case, some $w_{i,\epsilon}$

and $w_{i’,\epsilon}$ may give the same point even if $i\neq i’$ . So we have a divisor

$\sum_{i=1}^{c}a_{i}w_{i,\epsilon}$

on $\Gamma_{1,\epsilon}’.$

Note that the graph $\Gamma_{1,\epsilon}’$ is naturally a sub metric graph of $\Gamma$ although
$\Gamma_{1}’$ is not in general. So the divisor $\sum_{i=1}^{c}a_{i}w_{i,\epsilon}$ can be seen as a divisor
on $\Gamma$ . Also note that

$\sum_{i=1}^{c}a_{i}w_{i}$

naturally gives an effective divisor on $\gamma$ by mapping $w_{i}$ to one of the
points from $v_{1},$ $\cdots,$ $v_{a}$ where it is cut. Let

$\sum_{i=1}^{c}a_{i}\overline{w}_{i}$

be this divisor on $\Gamma.$

Summarizing, we replaced the subdivisor $\sum_{i=1}^{c}a_{i}\overline{w}_{i}$ of $D$ to a divisor
$\sum_{i=1}^{c}a_{i}w_{i,\epsilon}$ , and obtained a new effective divisor

$\tilde{D}=D-\sum_{i=1}^{c}a_{i}\overline{w}_{i}+\sum_{i=1}^{C}a_{i}w_{i,\epsilon}.$
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Definition 3.3. We call the above process to obtain $\tilde{D}$ from $D$ a chip-
firing deformation.

The following results hold for chip-firing deformation, analogously to
the case of chip-firing move.

Lemma 3.4. If $\tilde{D}i_{\mathcal{S}}$ obtained from $D$ by a chip-firing deformation,
then $\tilde{D}$ is linearly equivalent to D. $\square$

Proposition 3.5. If $D’i\mathcal{S}$ an effective divisor which is linearly equiv-
alent to $D$ , then $D’$ is obtained from $D$ by a sequence of chip-firing
deformations. $\square$

As an example of the use of the notion of chip-firing deformation, we
prove the following result.

Lemma 3.6. Let $l_{i},$ $i\in\{0, 1, 4, \cdots, 3g-2\}$ be a vertical edge of $\Gamma_{g}.$

Let $D$ be an effective divisor on $\Gamma_{g}$ whose degree is bounded by $3g.$

Assume that the intersection

Supp$(D)\cap int(l_{i})$ ,

where int $(l_{i})=l_{i}\backslash \partial l_{i}$ , is one point whose coeffi cient is 1 and which is
contained in a medium neighborhood of the middle point of $l_{i}$ . Then, if
$D’$ is any effective divisor linearly equivalent to $D$ , the intersection

Supp$(D’) \bigcap_{1}int(l_{i})$

is not empty.

Remark 3.7. Note that the right most vertical edge $l_{3g-1}$ is excluded

from the statement of the lemma.

Proof. Let $p$ be the point Supp$(D)\cap int(l_{i})$ . Let $a,$
$b$ be the two end

points of $\partial l_{i}$ . For any divisor

$E= \sum_{j\in J}b_{j}q_{j}$

on $\Gamma_{g}$ , consider the following real valued function $f_{i}$ . Namely, let

$E’= \sum_{k\in K}b_{k}q_{k}$

be the subdivisor of $E$ where

Supp$(E)\cap l_{i}=\{q_{k}\}_{k\in K}.$

Then

$f_{i}(E)= \sum_{k\in K}b_{k}(d(a, q_{k})-d(b, q_{k}$

where $d$ is the distance function on $\Gamma_{g}$ . By assumption,

$f_{i}(D) \equiv\frac{1}{2}\epsilon^{i}+O(\epsilon^{i+1}) mod \epsilon^{i}.$
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If the statement of the lemma is not true, there is an effective divisor
$D’$ linearly equivalent to $D$ such that

$f_{i}(D’)\equiv 0 mod \epsilon^{i+1}$

Consider a chip-firing deformation which changes the value of $f_{i}.$

Obviously the relevant graph $\Gamma_{1}’$ must contain a part of the edge $l_{i}.$

Then there are two cases:
(1) There are two vertices of $\Gamma_{1}’$ contained in $l_{i}.$

(2) There is only one vertex of $\Gamma_{1}’$ contained in $l_{i}.$

In the case (1), the graph $\Gamma_{1}’$ is a subsegment of $l_{i}$ , or contains the
complement of a subsegment of $l_{i}$ . In each case, it is clear that the
corresponding chip-firing deformation does not change $f_{i}$ . In the case
(2), the graph $\Gamma_{1}’$ contains a part of some edge $l_{j}$ with $j>i$ . Then,
the corresponding chip-firing deformation can change the value of $f_{i}$ at
most $O(\epsilon^{i+1})$ . Since the degree of the divisor $D$ is bounded by $3g$ , it
follows that we can change the value of $f_{i}$ at most $O(\epsilon^{i+1})$ , proving the
lemma. $\square$

We name the vertices of the graph $\Gamma_{9}$ as follows:

$v_{2} 1_{3} v_{4} 1_{6} v_{6} v_{2g4}1_{3garrow 3}v_{2g2}$

FIGURE 2

Consider the following open graph $\gamma_{k+1}$ of the graph $\Gamma_{g}$ :

$v_{2}$ $1_{3}$ $v_{4}$ $1_{6}$ $v_{\epsilon}$

FIGURE 3

It has $k+1$ vertical edges $l_{0},$ $l_{1},$ $l_{4},$
$\cdots,$

$l_{3k-2}$ . Let $a_{0},$ $a_{1},$ $a_{4},$ $\cdots,$ $a_{3k-2}$

be the middle points of these edges. Let $S_{k+1}$ be the set of ordered
sequences of $k+1$ nonnegetive integers $(z_{0}, z_{1}, z_{4}, \cdots, z_{3k-2})$ satisfying

$z_{0}+z_{1}+z_{4}+\cdots+z_{3k-2}=k+1.$
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Let $\mathcal{D}_{k+1}$ be the following set of effective divisors

$\mathcal{D}_{k+1}=\{z_{0}a_{0}+z_{1}a_{1}+z_{4}a_{4}+\cdots+z_{3k-2}a_{3k-2}|(z_{0}, z_{1}, z_{4}, \cdots, z_{3k-2})\in S_{k+1}\}.$

Using chip-firing deformation, we can also prove the following result.

Proposition 3.8. Let $D$ be an effective divisor of degree $d$ on $\Gamma_{g\prime}$

where $d$ is a $p_{0\mathcal{S}}itive$ integer not larger than 39. Let $E=D\cap\gamma_{k+1}$ be
the subdivisor of $D$ whose support is contained in $\gamma_{k+1}$ , where $k$ is a
fixed nonnegative integer with $k\leq g-1$ . Assume the divisor $D$ satisfies
the following two conditions:

(a) For any element $\alpha$ of $\mathcal{D}_{k+1}$ , there exists a divisor linearly equiv-
alent to $D$ which contains $\alpha$ as a subdivisor.

(b) $D$ is linearly equivalent to an effective divisor $D’$ such that the
subdivisor $E’=D’\cap\gamma_{k+1}$ satisfies

$\deg E’\leq k,$

Then $D$ is linearly equivalent to an effective divisor $\tilde{D}$ such that the
$subdivi_{\mathcal{S}}or\tilde{E}=\tilde{D}\cap\gamma_{k+1}$ satisfies

$deg\tilde{E}\geq 2k+2.$

$\square$

Using this proposition, we can prove the following result.

Proposition 3.9. Let $D$ be an effective $divi_{\mathcal{S}}or$ on $\Gamma_{g}$ with $\deg(D)\leq 3g$

such that for any member $\alpha$ of $\mathcal{D}_{k+1},$ $k\leq g-1$ , there is a $divi_{\mathcal{S}}orD’$

linearly equivalent to $D$ such that $D’$ contains $\alpha$ as a $\mathcal{S}$ubdivisor. Then
for any $effec_{\sim}tived_{\sim}$ivisor $\tilde{D}$ linearly equivalent to $D$ , the degree of the
intersection $E=D\cap\gamma_{k+1}$ is at least $k.$ $\square$

Now we outline the proof of Theorem 2.2. In this note we give a
detailed argument only for the case $p=2$ . Namely,

$(g, d)=(r, 2r-1)$ .

Assume that there is an effective divisor $D$ on $\Gamma_{g}$ with $\deg(D)=2g-1$
which has rank at least $r$ . Let $a,$

$b$ be points on the edge $l_{3g-1}$ such that
$d(v_{2g-3}, a)=\epsilon^{3g-1}-10\epsilon^{3g-2}$ and $d(v_{2g-3}, b)=\epsilon^{3g-1}-5\epsilon^{3g-2}$ . Let $\overline{ab}$

be the interval on $l_{3_{9}-1}$ of length $5\epsilon^{3g-2}$ whose end points are $a,$
$b$ . Let

$\Gamma_{g}’$ be the open subgraph of $\Gamma_{g}$ defined by

$\Gamma_{g}’=\Gamma_{9}\backslash \overline{ab}.$

Apply Proposition 3.9 to the graph $\Gamma_{g}’$ . Note that the graph $\Gamma_{g}’$ is
not the same as the$\cdot$ graph $\gamma_{g}$ in Proposition 3.9, the proposition is
applicable to $\Gamma_{g}’$ . Then any effective divisor $D’$ linearly equivalent to $D$

contains a subdivisor of degree at least $g$ whose support is contained
in $\Gamma_{g}’$ . On the other hand, there must be an effective divisor linearly
equivalent to $D$ which has $ga$ as a subdivisor, where $a$ is a point in $\overline{ab}.$

However, such a divisor has degree at least $2g$ , a contradiction. This
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proves Theorem 2.2 for the case $\rho=1(\rho=-1)$ . The other cases with
$\rho=-1$ can be proved by similar argument. $\square$
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