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O. Introduction and Statements

This is a summary of $[U14p].$

We correct the definitions and descriptions of the integral structures in our previ-
ous paper [U14]. We use $\Gamma$-integral structure of Iritani in [Ill] for $A$-model. Using
the corrected version, we study open mirror symmetry for quintic threefolds through
$\log$ mixed Hodge theory, especially the recent result on N\’eron models for admissible
normal functions with non-torsion extensions in the joint work [KNU14] with K. Kato
and C. Nakayama. We positively use integral structures of local systems with graded
polarizations over the boundary points.

In a series ofjoint works with Kato and Nakayama, we are constructing a fundamental
diagram which consists of various kind of partial compactifications of classifying space
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of mixed Hodge structures and their relations. We try to understand Hodge theoretic
aspects of mirror symmetry in this framework of the fundamental diagram.

Fundamental Diagram
For a classifying space $D$ of Hodge structures of specified type, we have

$D_{SL(2),va1} -D_{BS,va1}$

$\downarrow$ $\downarrow$

$\Gamma\backslash D_{\Sigma,va1}$ $arrow D_{\Sigma}^{\#}$

,val $arrow$ $D_{SL(2)}$ $D_{BS}$

$\downarrow$ $\downarrow$

$\Gamma\backslash D_{\Sigma} arrow D_{\Sigma}^{\#}$

in pure case: [KU99], [KU02], [KU09]. For mixed case, we should extend to an amplified
diagram: [KNU08], [KNU09], [KNUII], [KNU13], continuing.

Mirror symmetry for quintic threefolds

Mirror symmetry for the $A$-model of quintic threefold $V$ and the $B$-model of its mirror
$V^{o}$ was predicted in the famous paper [CDGP91]. We recall two styles of the theorem
(1) and (2) below.$\cdot$ Every statement in the present paper is near the large radius point $q_{0}$

of the complexified K\"ahler moduli $\mathcal{K}\mathcal{M}(V)$ and the maximally unipotent monodromy
point $p_{0}$ of the complex moduli $\mathcal{M}(V^{o})$ .

Let $t:=y_{1}/y_{0},$ $u:=t/2\pi i$ be the canonical parameters and $q:=e^{t}=e^{2\pi iu}$ be the
canonical coordinate from 2.2 below and the respective ones in 2.3 below.

The following theorem is due to Lian-Liu-Yau $[LLuY97].$

(1) (Potential). The potentials of the two models coincide: $\Phi_{GW}^{V}(t)=\Phi_{GM}^{V^{o}}(t)$ .

The following theorem is formulated by Morrison [M97] and proved by Iritani [Ill].

(2) (Variation of Hodge structure). The isomorphism $(q_{0}\in\overline{\mathcal{K}\mathcal{M}}(V))arrow\sim(p_{0}\in\overline{\mathcal{M}}(V^{o}))$

of neighborhoods of the compactifications, by the canonical coordinate $q=\exp(2\pi iu)$ ,

lifts to an isomorphism, over the punctured neighborhoods $\mathcal{K}\mathcal{M}(V)arrow\sim \mathcal{M}(V^{o})$ , of
polarized $Z$-variations of Hodge structure with a specified section

$(\mathcal{H}^{y}, S, \nabla^{even}, \mathcal{H}_{Z}^{y}, F;1)arrow\sim(\mathcal{H}^{V^{o}}, Q, \nabla^{GM}, \mathcal{H}_{Z}^{V^{o}}, F;\tilde{\Omega})$ .

Our (3) below is equivalent to (1) and (2) by a $\log$ version [KU09, 2.5.14] of the
nilpotent orbit theorem of Schmid [S73] (this part of [U14] is valid).

(3) (Log Hodge structure, Log period map) . The isomorphism $(q_{0}\in\overline{\mathcal{K}\mathcal{M}}(V))arrow\sim(p_{0}\in$

$\overline{\mathcal{M}}(V^{o}))$ of neighborhoods of the compactifications uniquely lifts to an isomorphism

of $B$-model $\log$ variation of polarized Hodge structure with a specified section $\tilde{\Omega}$ for
$V^{o}$ and $A$-model $\log$ variation of polarized Hodge structure with a specified section
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1 for $V$ , whose restriction over the punctured $\mathcal{K}\mathcal{M}(V)arrow\sim \mathcal{M}(V^{O})$ coincides with the
isomorphism of variations of polarized Hodge structure with specified sections in (2).

This rephrases as follows. Let $\sigma$ be the common monodromy cone, transformed by
a level structure into End of a reference fiber of the local system, for the $A$-model and
for the $B$-model. Then, we have a commutative diagram of horizontal $\log$ period maps

$(q_{0}\in\overline{\mathcal{K}\mathcal{M}}(V))arrow\sim(p_{0}\in\overline{\mathcal{M}}(V^{o}))$

$\searrow$ $\swarrow$

$([\sigma, \exp(\sigma_{C})F_{0}]\in\Gamma(\sigma)^{gp}\backslash D_{\sigma})$

with extensions of specified sections in (2), where $(\sigma, \exp(\sigma_{C})F_{0})$ is the nilpotent orbit,
regarded as a boundary point, and $\Gamma(\sigma)^{gp}\backslash D_{\sigma}$ is the fine moduli of log Hodge structures
of specified type. (For fine moduli $\Gamma(\sigma)^{gp}\backslash D_{\sigma}$ , or more generally $\Gamma\backslash D_{\Sigma}$ , see [KU09].)

Open mirror symmetry for quintic threefolds
The following theorem is due to Walcher [W07] and Morrison-Walcher [MW09].

(4) (Inhomogenous solutions).
Let $\mathcal{L}$ be the Picard Fuchs differential operator for quintic mirror (cf. 2.2). Let

$\mathcal{T}_{A}=\frac{u}{2}\pm(\frac{1}{4}+\frac{1}{2\pi^{2}}\mathring{\sum_{ddd}}n_{d}q^{d/2})$

be the $A$-model domainwall tension in [MW09], and

$\mathcal{T}_{B}=\int_{C_{-}}^{C_{+}}\Omega$

be the $B$-model domainwall tension, where $c_{\pm}\subset V^{o}$ are the disjoint smooth curves
coming from the two conics in $\{x_{1}+x_{2}=x_{3}+x_{4}=0\}\cap V_{\psi}\subset P^{4}(C)$ [ibid].

Then

$\mathcal{L}(y_{0}(z)\mathcal{T}_{A}(z))=\mathcal{L}(\mathcal{T}_{B}(z))(=\frac{15}{16\pi^{2}}\sqrt{z}) (z=\frac{1}{(5\psi)^{5}})$ .

Concerning this, we have the following observations.

(5) (Log mixed Hodge structure, Log normal function) . We describe for $B$-model. The
same holds for $A$-model by (1)$-(3)$ and the correspondence table in 2.5 below.

Put $\mathcal{H}$ $:=\mathcal{H}^{V^{o}}$ and $\mathcal{T}$

$:=\mathcal{T}_{B}$ . We use $e^{0}\in I^{0,0},$ $e^{1}\in I^{1,1}$ which are a part of a basis
of $\mathcal{H}_{\mathcal{O}^{\log}}$ respecting the Deligne decomposition at $p_{0}$ (see 2.5 $(3B)$ ) and a flat sections
$s^{0}=e^{0},$ $s^{1}=e^{1}-ue^{0}$ (see 2.5 $(5B)$ ). To make the local monodromy of $\mathcal{T}$ unipotent,
we take a double cover $z^{1/2}\mapsto z$ . Let $L_{Q}$ be the translated local system from the
trivial extension $Q\oplus \mathcal{H}_{Q}$ by $-(\mathcal{T}/y_{0})s^{0}$ in $\mathcal{E}xt^{1}(Q, \mathcal{H}_{Q})$ . Let $J_{L_{Q}}$ be the N\’eron model
on a neighborhood $S$ of $p_{0}$ in the $z^{1/2}$-plane which lies over $L_{Q}$ in [KNU14]. Then,
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$J_{L_{Q}}=\mathcal{E}xt_{LMH/S}^{1}(Z, \mathcal{H})$ (extension group of $\log$ mixed Hodge structures over $S$ ) in the
present case ([KNU13, III, Corollary 6.1.6], cf. 1.4 below), and we have the following
$(5.1)-(5.3)$ .

(5.1) The normalized tension $\mathcal{T}/y_{0}$ is understood as a truncated normal function by
$(\mathcal{T}/y_{0})s^{0}$ . This extends as a truncated $\log$ normal function over the puncture. Then
it lifts uniquely to a $\log$ normal function $Sarrow J_{L_{Q}}$ so that the corresponding exact
sequence $0arrow \mathcal{H}arrow Harrow Zarrow 0$ of $\log$ mixed Hodge structures over $S$ is given
by the liftings $1_{Z}$ and $1_{F}$ in $H$ of $1\in Z\simeq(gr^{W})_{Z}$ respecting the lattice and the
Hodge filtration, respectively, which are defined as follows: $1_{Z}$ $:=1-(\mathcal{T}/y_{0})s^{0}$ with
$(\mathcal{T}/y_{0})s^{0}\in \mathcal{H}_{\mathcal{O}^{\log}}=(gr_{3}^{W})_{\mathcal{O}^{\log}}$ , and $1_{F}-1_{Z}:=-(\theta(\mathcal{T}/y_{0}))e^{1}+(\mathcal{T}/y_{0})e^{0}.$

(5.2) A splitting of the weight filtration $W$ of the local system $H_{Z}$ , i.e., a splitting
compatible with the monodromy of the local system $H_{Z}$ , is given by $1_{Z}^{sp1}=1_{Z}+s^{1}/2,$

and the $\log$ normal function over it is given by $1_{F}^{sp1}-1_{Z}^{sp1}=-(\theta(\mathcal{T}/y_{0}))e^{1}+(\mathcal{T}/y_{0})e^{0}.$

(5.3) (4) says that the inverse of the truncated normal function in (5.1) from its image
is given by $16\pi^{2}/15$ times the Picard-Fuchs differential operator $\mathcal{L}.$

Some geometric backgrounds of (5) are explained in Section 3.
We treat Tate twists case by case in this article.

Acknowledgments. The author thanks to Kazuya Kato and Chikara Nakayama for
series of joint works on $\log$ Hodge theory, from which he learns a lot and enjoys exciting
studies. He thanks to Hiroshi Iritani for pointing out insufficient parts in the previous
paper [U14]. He also thanks Yukiko Konishi and Satoshi Minabe, together with Iritani,
for a stimulating seminar on the present topic from which Section 3 grew up.

1. ${\rm Log}$ mixed Hodge theory

In this section, we recall some notions and results of $\log$ mixed Hodge theory from
[KU09], [KNU13] and [KNU14] adapting to the present context.

1.1. Category $\mathcal{B}(\log)$

Let $S$ be a subset of an analytic space $Z$ . The strong topology of $S$ in $Z$ is the
strongest one among those topologies on $S$ in which, for any analytic space $A$ and any
morphism $f$ : $Aarrow Z$ with $f(A)\subset S$ as sets, $f$ : $Aarrow S$ is continuous. $S$ is regarded as
a local ringed space by the pullback sheaf of $\mathcal{O}_{Z}.$

Let $\mathcal{B}$ be the category of local ringed spaces $S$ over $C$ which have an open covering
$(U_{\lambda})_{\lambda}$ satisfying the following condition: For each $\lambda$ , there exist an analytic space $Z_{\lambda},$

and a subset $S_{\lambda}$ of $Z_{\lambda}$ such that, as local ringed space over $C,$ $U_{\lambda}$ is isomorphic to $S_{\lambda}$

which is endowed with the strong topology in $Z_{\lambda}$ and the inverse image of $\mathcal{O}_{Z_{\lambda}}.$

A $log$ structure on a local ringed space $S$ is a sheaf of monoids $M$ on $S$ together
with a homomorphisim $\alpha$ : $Marrow \mathcal{O}_{S}$ such that $\alpha^{-1}\mathcal{O}_{S}^{\cross}arrow\sim \mathcal{O}_{S}^{\cross}.$ $fs\log$ structure means,
locally on the underlying space, the $\log$ structure has a chart which is finitely generated,
integral and saturated.
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Let $\mathcal{B}(\log)$ be the category of objects of $\mathcal{B}$ endowed with an fs $\log$ structure (more
precisely, cf. [KU09]).

1.2. Ringed space $(S^{\log}, \mathcal{O}_{S}^{\log})$

Let $S\in \mathcal{B}(\log)$ . As a set define
$S^{\log}:=$ { $(\mathcal{S}, h)|\mathcal{S}\in S,$ $h:M_{s}^{gp}arrow S^{1}$ homomorphism s.t. $h(u)=u/|u|(u\in \mathcal{O}_{S,s}^{\cross})$ }.

Endow $S^{\log}$ with the weakest topology such that the following two maps are continuous.
(1) $\tau:S^{\log}arrow S,$ $(s, h)\mapsto s.$

(2) For any open set $U\subset S$ and any $f\in\Gamma(U, M^{gp})$ , $\dagger^{--1}(U)arrow S^{1},$ $(s, h)\mapsto h(f_{s})$ .

Then, $\tau$ is proper and surjective with fiber $\tau^{-1}(s)=(S^{1})^{r(s)}$ , where $r(s)$ is the rank
of $(M^{gp}/\mathcal{O}_{S}^{\cross})_{s}$ which varies with $s\in S.$

For $s\in S$ and $t\in S^{\log}$ lying over $s$ , let $q_{j}\in M_{s}^{gp}(1\leq j\leq r(s))$ be elements such
that their images in $(M^{gp}/\mathcal{O}_{S}^{\cross})_{s}$ form a basis. Let $t_{j}$ $:=\log(q_{j})$ and define $\mathcal{O}_{S,t}^{\log}$ to be
a polynomial ring $\mathcal{O}_{S_{\mathcal{S}}},[t_{j}(1\leq j\leq r(s)$ ] over $\mathcal{O}_{S,s}$ . Thus $\tau$ : $(S^{\log}, \mathcal{O}_{S}^{\log})arrow(S, \mathcal{O}_{S})$ is a
morphism of ringed spaces over $C$ (more precisely, cf. [KU09]).

1.3. Graded polarized $\log$ mixed Hodge structure

Let $S\in \mathcal{B}(\log).$ A pre-graded polarized $log$ mixed Hodge structure on $S$ is a tuple
$H=(H_{Z}, W, (\langle, \rangle_{w})_{w}, H_{\mathcal{O}})$ consisting of a local system of $Z$-free modules $H_{Z}$ of finite
rank on $S^{\log}$ , an increasing filtration $W$ of $H_{Q}$ $:=Q\otimes H_{Z}$ , a nondegenerate $(-1)^{w_{-}}$

symmetric $Q$-bilinear form $\langle,$ $\rangle_{w}$ on $gr_{w}^{W}$ , a locally free $\mathcal{O}_{S}$-module $H_{\mathcal{O}}$ on $S$ , a specified
isomorphism $\mathcal{O}_{S}^{\log}\otimes_{Z}H_{Z}\simeq \mathcal{O}_{\mathring{S}}^{1g}\otimes_{\mathcal{O}_{S}}H_{\mathcal{O}}$ ( $log$ Riemann-Hilbert correspondence), and a
specified decreasing filtration $FH_{O}$ of $H_{\mathcal{O}}$ such that $F^{p}H_{\mathcal{O}}$ and $H_{\mathcal{O}}/F^{p}H_{\mathcal{O}}$ are locally
free. Put $F^{p}$ $:=\mathcal{O}_{S}^{\log}\otimes o_{S}F^{p}H_{\mathcal{O}}$ . Then $\tau_{*}F^{p}=F^{p}H_{\mathcal{O}}$ . For each integer $w$ , the
orthogonality condition $\langle F^{p}(gr_{w}^{W})$ , $F^{q}(gr_{w}^{W})\rangle_{w}=0(p+q>w)$ is imposed.

A pre-graded polarized $\log$ mixed Hodge structure on $S$ is a graded polarized $log$

mixed Hodge structure on $S$ if its pullback to each $s\in S$ is a graded polarized $\log$ mixed
Hodge structure on $s$ in the following sense.

Let $(H_{Z}, W, (\langle, \rangle_{w})_{w}, H_{\mathcal{O}})$ be a pre-graded polarized $\log$ mixed Hodge structure on a
$\log$ point $s$ . It is a graded polarized $log$ mixed Hodge structure if it satisfies the following
three conditions.

(1) (Admissibility). For each logarithm $N$ of the local monodromy of the local system
$(H_{R}, W, (\langle, \rangle_{w})_{w})$ , there exists a $W$-relative N-filtration $M(N, W)$ .

(2) (Griffiths transversality). For any integer $p,$ $\nabla F^{p}\subset\omega_{s}^{1,\log}\otimes F^{p-1}$ is satisfied,
where $\omega_{s}^{1,\log}$ is the sheaf of $\mathcal{O}^{\log}$-module of $\log$ differential 1-forms on $(s^{\log}, \mathcal{O}_{s}^{\log})$ , and
$\nabla=d\otimes 1_{H_{Z}}$ : $\mathcal{O}_{s}^{\log}\otimes H_{Z}arrow\omega_{s}^{1,\log}\otimes H_{Z}$ is the $\log$ Gauss-Manin connection.

(3) (Positivity). For a point $t\in s^{\log}$ and a $C$-algebra homomorphism $a:\mathcal{O}_{s,t}^{\log}arrow C,$

define a filtration $F(a)$
$:=C\otimes_{\mathcal{O}_{s,t}^{1\circ g}}F_{t}$ on $H_{C,t}$ . Then, $(H_{Z,t}(gr_{w}^{W}), \langle, \rangle_{w}, F(a))$ is a

polarized Hodge structure of weight $w$ in the usual sense if $a$ is sufficiently twisted, i.e.,
for $(q_{j})_{1\leq j\leq n}\subset M_{s}$ inducing generators of $M_{s}/\mathcal{O}_{s}^{\cross},$ $|$ exp(a(log $q_{j}$

$\ll 1$ for any $j.$

1.4. N\’eron model for admissible normal function
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We review some results from [KNU14, Theorem 1.3], [KNU13, III, Section 6.1] and
[KNU10, Section 8] adapted to the situation (5) in Introduction.

For a pure case $h^{p,q}=1(p+q=3, p, q\geq 0)$ and $h^{p,q}=0$ otherwise, a complete fan
is constructed in [KU09, Section 12.3]. For a mixed case $h^{p,q}=1$ $(the$ above $(p, q)$ , plus
$(p, q)=(2,2))$ and $h^{p,q}=0$ otherwise, over the above fan, a weak fan of N\’eron model
for given admissible normal function is constructed in [KNU14, Theorem 3.1], and we
have a N\’eron model in the following sense.

Let $S\in \mathcal{B}(\log)$ , $U$ $:=S_{triv}\subset S$ (consisting of those points with trivial $\log$ structure),
$H_{(-1)}$ be a polarized variation of Hodge structure of weight $-1$ (Tate-twisted by 2 from
$\mathcal{H}$ in Introduction (5)) on $U$ and $L_{Q}$ be a local system of $Q$-vector spaces which is an
extension of $Q$ by $H_{(-1),Q}$ . An admissible normal function over $U$ for $H_{(-1)}$ underlain
by the local system $L_{Q}$ can be regarded as an admissible variation of mixed Hodge
structure which is an extension of $Z$ by $H_{(-1)}$ and lies over local system $L_{Q}.$

For any given unipotent admissible normal function over $U$ as above, $H_{(-1)}$ and
$L_{Q}$ extend to a polarized $\log$ mixed Hodge structure on $S$ and a local system on $S^{\log},$

respectively, denoted by the same symbols, and there is a relative $\log$ manifold $J_{L_{Q}}$

over $S$ (cf. [KU09]) which is strict over $S$ (i.e., endowed with the pullback $\log$ structure
from $S$ ) and which represents the following functor on $\mathcal{B}/S^{o}(S^{o}\in \mathcal{B}$ is the underlying
space of $S$ ):

$S’\mapsto$ {$LMHH$ on $S’$ satisfying $H(gr_{w}^{W})=H_{(w)}|_{S’}(w=-1,0)$ and $(*)$ below}/isom.
$(*)$ Locally on $S’$ , there is an isomorphism $H_{Q}\simeq L_{Q}$ on $(S’)^{\log}$ preserving $W.$

Here $H_{(w)}|_{S’}$ is the pullback of $H_{(w)}$ by the structure morphism $S’arrow S^{o}$ , and $S’$ is
endowed with the pullback $\log$ structure from $S.$

Put $H’$ $:=H_{(-1)}$ . In the present case, we have $J_{L_{Q}}=\mathcal{E}xt_{LMH/S}^{1}(Z, H’)$ by [KNU13,

Corollary 6.1.6]. This is the subgroup of $\tau_{*}$ $(H_{\mathcal{O}^{\log}}’/(F^{0}+H_{Z}’))$ restricted by admissibility
condition and log-point-wise Griffiths transversality condition ([KNU10, Section 8], cf.
1.3). Define $\overline{J}_{L_{Q}}$ as the image of the composite map $J_{L_{Q}}arrow\tau_{*}(H_{\mathcal{O}^{\log}}’/(F^{0}+H_{Z}’))arrow$

$\tau_{*}(H_{\mathcal{O}^{\log}}’/(F^{-1}+\mathcal{H}_{Z})$ . By using the polarization, we have a commutative diagram:

$J_{L_{Q}}$ $=$ $\mathcal{E}xt_{LMH/S}^{1}(Z, H’)$ $\subset$ $\tau_{*}(H_{\mathcal{O}^{\log}}’/(F^{0}+H_{Z}’))$ $arrow^{po1\sim}$ $\tau_{*}((F^{0})^{*}/H_{Z}’)$

$\downarrow$ $\downarrow$ $\downarrow$

$\overline{J}_{L_{Q}}$ $\subset$ $\tau_{*}(H_{\mathcal{O}^{\log}}’/(F^{-1}+\mathcal{H}_{Z})$ $arrow^{po1\sim}$ $\tau_{*}((F^{1})^{*}/H_{Z}’)$ .

2. Quintic threefolds

In this section, we give a correspondence table of $A$-model for quintic threefold and
$B$-model for its mirror. This is a correction of our previous [U14, 3] by using $\hat{\Gamma}$-integral
structure of Iritani [Ill].

2.1. Quintic threefold and its mirror

Let $V$ be a general quintic threefold in $P^{4}.$
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Let $V_{\psi}$ : $f$ $:= \frac{1}{5}\sum_{j=1}^{5}x_{j}^{5}-\psi\prod_{j=1}^{5}x_{j}=0(\psi\in P^{1})$ be a pencil of quintics in $P^{4}.$

Let $\mu_{5}$ be the group consisting of the fifth roots of the unity in C. Then the group
$G$ $:=\{(a_{j})\in(\mu_{5})^{5}|a_{1}\ldots a_{5}=1\}$ acts on $V_{\psi}$ by $x_{j}\mapsto a_{j}x_{j}$ . Let $V_{\psi^{o}}$ be a crepant
resolution of quotient singularity of $V_{\psi}/G$ (cf. [MW09]). Divide further by the action
$(x_{1}, \ldots, x_{5})\mapsto(a^{-1}x_{1}, x_{2}, \ldots, x_{5})(a\in\mu_{5})$ .

2.2. Picard-Fuchs equation on the mirror $V^{o}$

Let $\Omega$ be a 3-form on $V_{\psi^{o}}$ with a $\log$ pole over $\psi=\infty$ induced from

$( \frac{5}{2\pi i})^{3}{\rm Res}_{V_{\psi}}(\frac{\psi}{f}\sum_{j=1}^{5}(-1)^{j-1}x_{j}dx_{1}\wedge\cdots\wedge\hat{dx_{j}}\wedge\wedge\cdots\wedge dx_{5})$ .

Let $z:=1/(5\psi)^{5}$ and $\theta$ $:=zd/dz$ . Let

$\mathcal{L}:=\theta^{4}-5z(5\theta+1)(5\theta+2)(5\theta+3)(5\theta+4)$

be the Picard-Fuchs differential operator for $\Omega$ , i.e., $\mathcal{L}\Omega=0$ via the Gauss-Manin
connection $\nabla.$

At $z=0$ , the Picard-Fuchs differential equation $\mathcal{L}y=0$ has the indicial equation
$\rho^{4}=0$ ( $\rho$ is indeterminate), i.e., maximally unipotent. By the Frobenius method, we
have a basis of solutions $y_{j}(z)(0\leq j\leq 3)$ as follows. Let

$\tilde{y}(-z;\rho):=\sum_{n=0}^{\infty}\frac{\prod_{rn=1}^{5n}(5\rho+m)}{\prod_{m=1}^{n}(\rho+m)^{5}}(-z)^{n+\rho}$

be a solution of $\mathcal{L}(\tilde{y}(-z;\rho))=\rho^{4}(-z)^{\rho}$ , and let

$\tilde{y}(-z;\rho)=y_{0}(z)+y_{1}(z)\rho+y_{2}(z)\rho^{2}+y_{3}(z)\rho^{3}+\cdots,$ $y_{j}(z):= \frac{1}{j!}\frac{\partial^{i}\tilde{y}(-z;\rho)}{\partial\rho^{j}}|_{\rho=0}$

be the Taylor expansion at $\rho=0$ . Then, $y_{j}(0\leq j\leq 3)$ form a basis of solutions for
the equation $\mathcal{L}y=0$ . We have

$y_{0}= \sum_{n=0}^{\infty}\frac{(5n)!}{(n!)^{5}}z^{n},$

$y_{1}=y_{0} \log z+5\sum_{n=1}^{\infty}\frac{(5n)!}{(n!)^{5}}(\sum_{j=n+1}^{5n}\frac{1}{j})z^{n}.$

Define the canonical parameters by $t:=y_{1}/y_{0},$ $u:=t/2\pi i$ , and the canonical coordi-
nate by $q:=e^{t}=e^{2\pi iu}$ which is a specific chart of the $\log$ structure given by the divisor
$(z=0)$ of $P^{1}$ and gives a mirror map.
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$y_{0}$ is holomorphic in $z$ and invertible at $z=0$ . Write $z=z(q)$ which is holomorphic
in $q$ . Then we have

$\log z=2\pi iu-\frac{5}{y_{0}(z(q))}\sum_{n=1}^{\infty}\frac{(5n)!}{(n!)^{5}}(\sum_{j=n+1}^{5n}\frac{1}{j})z(q)^{n}.$

The Gauss-Manin potential of $V_{z}^{O}$ is

$\Phi_{GM}^{V^{\circ}}=\frac{5}{2}(\frac{y_{1}}{y_{0}}\frac{y_{2}}{y_{0}}-\frac{y_{3}}{y_{0}})$ .

Let $\tilde{\Omega}$

$:=\Omega/y_{0}$ . Then, the Yukawa coupling at $z=0$ is

$Y:=- \int_{V^{\circ}}\tilde{\Omega}\wedge\nabla_{\theta}\nabla_{\theta}\nabla_{\theta}\tilde{\Omega}=\frac{5}{(1+5^{5}z)y_{0}(z)^{2}}.$

2.3. $A$-model of quintic $V$

Let $V$ be a general quintic hypersurface in $P^{4}$ . Let $T^{2}=H$ be the cohomology class
of a hyperplane section of $V$ in $P^{4},$ $K(V)=R_{>0}T^{2}$ be the K\"ahler cone of $V$ , and $u$ be
the coordinate of $CT^{2}$ . Put $t:=2\pi iu$ . A complexified K\"ahler moduli is defined as

$\mathcal{K}\mathcal{M}(V):=(H^{2}(V, R)+iK(V))/H^{2}(V, Z)arrow\Delta^{*}\sim, uT^{2}\mapsto q:=e^{2\pi iu}.$

Let $C\in H_{2}(V, Z)$ be the homology class of a line on $V$ , and $T^{1}\in H^{4}(V, Z)$ be the
cohomology class Poincar\’e duality isomorphic to $C.$

For $\beta=dC\in H_{2}(V, Z)$ , define $q^{\beta}$ $:=q^{\int_{\beta}T^{1}}=q^{d}$ . The Gromov-Witten potential of
$V$ is defined as

$\Phi_{GW}^{V}:=\frac{1}{6}\int_{V}(tT^{2})^{3}+\sum_{0\neq\beta\in H_{2}(V,Z)}N_{d}q^{\beta}=\frac{5t^{3}}{6}+\sum_{d>0}N_{d}q^{d}.$

Here the Gromov-Witten invariant $N_{d}$ is

$\overline{M}_{0,0}(P^{4}, d)arrow^{\pi_{1}}\overline{M}_{0,1}(P^{4}, d)arrow e_{1}P^{4},$

$N_{d}:= \int_{\overline{M}_{0,0}(P^{4},d)}c_{5d+1}(\pi_{1*}e_{1}^{*}\mathcal{O}_{P^{4}}(5))$ .

Note that $N_{d}=0$ if $d\leq 0$ . Let $N_{d}= \sum_{k|d}n_{d/k}k^{-3}$ . Then $n_{d/k}$ is the instanton number.

2.4. Integral structure

Let $S^{*}$ be $\mathcal{K}\mathcal{M}(V)$ for $A$-model of $V$ and $\mathcal{M}(V^{o})$ for $B$-model for $V^{o}$ , and let $S$ be
$\overline{\mathcal{K}\mathcal{M}}(V)$ for $A$-model and $\overline{\mathcal{M}}(V^{o})$ for $B$-model (see 2.2, 2.3). Endow $S$ with the $\log$

structure associated to the divisor $S\backslash S^{*}$
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The $B$-model variation of Hodge structure $\mathcal{H}^{V^{o}}$ is the usual variation of Hodge struc-
ture arising from the smooth projective family $f$ : $Xarrow S^{*}$ of the quintic mirrors over a
punctured neighborhood of the maximally unipotent monodromy point $p_{0}$ . Its integral
structure is the usual one $\mathcal{H}_{Z}^{V^{o}}=R^{3}f_{*}$ Z. This is compatible with the monodromy
weight filtration $M$ around $p_{0}$ . Define $M_{k,Z}$ $:=M_{k}\cap \mathcal{H}_{z}^{V^{o}}$ for all $k.$

For the $A$-model $\mathcal{H}^{V}$ on $S^{*}$ , the locally free sheaf on $S^{*}$ , the Hodge filtration, and
the monodromy weight filtration $M$ around the large radius point $q_{0}$ are given by
$\mathcal{H}_{\mathcal{O}}^{V}$

$:=\mathcal{O}_{S^{*}}\otimes(\oplus_{0\leq p\leq 3}H^{2p}(V))$ , $F^{p}:=\mathcal{O}_{S^{*}}\otimes H^{\leq 2(3-p)}(V)$ , and $M_{2p}:=H^{\geq 2(3-p)}(V)$ ,

respectively. Iritani defined $\hat{\Gamma}$-integral structure in more general setting in [Ill, Def-
inition 3.6]. In the present case, it is characterized as follows. Let $H$ and $C$ be a
hyperplane section and a line on $V$ , respectively. Then, in the present case, a basis of
the $\hat{\Gamma}$-integral structure is given by $\{\mathcal{S}(\mathcal{E})|\mathcal{E} is \mathcal{O}_{V}, \mathcal{O}_{H}, \mathcal{O}_{C}, \mathcal{O}_{pt}\}$ [ibid, Example 6.18],
where $s(\mathcal{E})$ is a unique $\nabla^{even}$-flat section satisfying

$s(\mathcal{E})\sim(2\pi i)^{-3}e^{-2\pi iuH}\cdot\hat{\Gamma}(T_{V})\cdot(2\pi i)^{\deg/2}ch(\mathcal{E})$

at the large radius point $q_{0}$ . Here, for the Chern roots $c(T_{V})= \prod_{j=1}^{3}(1+\delta_{j})$ , the

Gamma class $\hat{\Gamma}(T_{V})$ is defined by

$\hat{\Gamma}(T_{V}) :=\prod_{j=1}^{3}\Gamma(1+\delta_{j})=\exp(-\gamma c_{1}(V)+\sum_{k\geq 2}(-1)^{k}(k-1)!\zeta(k)ch_{k}(T_{V})$

$=\exp(\zeta(2)ch_{2}(T_{V})-2\zeta(3)ch_{3}(T_{V}))$

where $\gamma$ is the Euler constant, and $\deg|_{H^{2p}(V)}$ $:=2p$ . The important point is that
this class $\hat{\Gamma}(T_{V})$ plays the role of a square root” of the Todd class in Hirzebruch-
Riemann-Roch ([I09, 1], [Ill, 1, (13)]). Denote this $\hat{\Gamma}$-integral structure by $\mathcal{H}_{Z}^{V}$ . This is
compatible with the monodromy weight filtration $M$ and we define $M_{k,Z}:=M_{k}\cap \mathcal{H}_{Z}^{V}$

for all $k$ . For a direct definition of $\hat{\Gamma}$-integral structure, see [Ill, Definition 3.6].
In both $A$-model case and $B$-model case, the integral structures $\mathcal{H}_{Z}^{V}$ and $\mathcal{H}_{Z}^{V^{o}}$ on $S^{*}$

extend to the local systems of $Z$-modules over $S^{\log}$ ([O03], [KU09, Proposition 2.3.5]),
still denoted $\mathcal{H}_{Z}^{V}$ and $\mathcal{H}_{Z}^{V^{o}}$ , respectively.

Consider a diagram:

$\tilde{S}^{\log} :=(R\cross i(0, \infty])^{r}\supset\tilde{S}^{*}:=(R\cross i(0, \infty))^{r}$

$\downarrow$ $\downarrow$

$S^{\log} \supset s*$

$\tau\downarrow$

$S$

The coordinate $u$ of $\tilde{S}^{*}$ extends over $\tilde{S}^{\log}$ . Fix base points as $u_{0}=0+i\infty\in\tilde{S}^{\log}\mapsto$

$b:=\overline{0}+i\infty\in S^{\log}\mapsto q=0\in S$ , where $q=0$ corresponds to $q_{0}$ for $A$-model and $p_{0}$
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for $B$-model. Note that fixing a base point $u=u_{0}$ on $\tilde{S}^{\log}$ is equivalent to fixing a base
point $b$ on $S^{\log}$ and also a branch of $(2\pi i)^{-1}\log q.$

Let $B:=\mathcal{H}_{Z}^{V}(u_{0})=\mathcal{H}_{Z}^{V}(b)$ for $A$-model and $B:=\mathcal{H}_{z}^{V^{o}}(u_{0})=\mathcal{H}_{z}^{V^{o}}(b)$ for $B$-model.

2.5. Correspondence table

In this section, we complete the approximation in the previous paper [U14]. These
results will be used in Section 3.

We use (1) and (2) in Introduction. Put $\Phi$ $:=\Phi_{GW}^{V}=\Phi_{G\mathring{M}}^{V}.$

(1A) Polarization of $A$ -model of $V.$

$S( \alpha, \beta):=(-1)^{p}\int_{V}\alpha\cup\beta (\alpha\in H^{p,p}(V), \beta\in H^{3-p,3-p}(V))$ .

(1B) Polarization of $B$-model of $V^{o}.$

$Q( \alpha, \beta):=(-1)^{3(3-1)/2}\int_{V^{o}}\alpha\cup\beta=-\int_{V^{o}}\alpha\cup\beta (\alpha, \beta\in H^{3}(V^{o}))$ .

(2A) $Z$ -basis compatible with monodromy weight filtration.
Let $B$ $:=\mathcal{H}_{z}^{V}(u_{0})=\mathcal{H}_{Z}^{V}(b)$ . Then we have a basis $b^{0},$ $b^{1},$ $b^{2},$ $b^{3}$ of $B$ compatible with

the monodromy weight filtration $M$ [Ill, Example 6.18].

(2B) $Z$ -basis compatible with monodromy weight filtration.
Let $B$ $:=\mathcal{H}_{Z}^{V^{o}}(u_{0})=\mathcal{H}_{Z}^{V^{o}}(b)$ . Then we have a basis $b^{0},$ $b^{1},$ $b^{2},$ $b^{3}$ of $B$ compatible

with the monodromy weight filtration $M$ [ibid].

For both cases (2A) and (2B), we regard $B$ as a constant sheaf endowed with $M$ on
$S^{\log}$ and also on $S.$

(3A) Specified sections inducing $Z$ -basis of $gr^{M}$ for $A$ -model of $V.$

$T^{3}:=1\in H^{0}(V, Z) , T^{2}:=H\in H^{2}(V, Z)$ ,

$T^{1}:=C\in H^{4}(V, Z) , T^{0}:=[pt]\in H^{6}(V, Z)$ ,

where $H$ is a hyperplane section of $V$ and $C$ is a line on $V$ . Then $S(T^{3}, T^{0})=1$ and
$S(T^{2}, T^{1})=-1$ . Hence $T^{3},$ $T^{2},$ $-T^{0},$ $T^{1}$ form a symplectic base for $S$ in (1A).

(3B) Specified sections inducing $Z$ -basis of $gr^{M}$ for $B$-model of $V^{o}$

We use Deligne decomposition [D97]. We consider $B$ in (2B) as a constant sheaf
on $S^{\log}$ . We have locally free $\mathcal{O}_{S}$-submodules $\mathcal{M}_{2p}$ $:=\tau_{*}(\mathcal{O}_{S}^{\log}\otimes_{Z}M_{2p}B)$ and $\mathcal{F}^{p}$ of
$\tau_{*}(\mathcal{O}_{S}^{\log}\otimes_{Z}B)=\mathcal{O}_{S}\otimes_{Z}B$ . The mixed Hodge structure of Hodge-Tate type $(\mathcal{M}, \mathcal{F})$ has
decomposition:

$\mathcal{O}_{S}\otimes_{Z}B=\bigoplus_{p}I^{p,p}, I^{p,p}:=\mathcal{M}_{2p}\cap \mathcal{F}^{p}arrow\sim gr_{2p}^{\mathcal{M}}.$
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Transporting the basis $b^{p}(0\leq p\leq 3)$ of $B$ in (2B), regarded as sections of the constant
sheaf $B$ on $S^{\log}$ , via isomorphism

$I^{p,p}arrow\sim \mathcal{O}_{S}\otimes_{Z}gr_{2p}^{M}B$

we define sections $e^{p}\in I^{p,p}(0\leq p\leq 3)$ . Then $e^{3},$ $e^{2},-e^{0},$ $e^{1}$ form a symplectic basis
for $Q$ in (1B).

Note that $e^{3}=\tilde{\Omega}.$

(4A) $A$ -moiel connection $\nabla=\nabla^{even}$ of $V.$

$\nabla_{\theta}T^{0}:=0, \nabla_{\theta}T^{1}:=T^{0},$

$\nabla_{\theta}T^{2}:=\frac{1}{(2\pi i)^{3}}\frac{d^{3}\Phi}{du^{3}}T^{1}=(5+\frac{1}{(2\pi i)^{3}}\frac{d^{3}\Phi_{ho1}}{du^{3}})T^{1},$

$\nabla_{\theta}T^{3}:=T^{2}.$

$\nabla$ is flat, i.e., $\nabla^{2}=0.$

(4B) $B$-model connection $\nabla=\nabla^{GM}$ of $V^{o}$

$\nabla_{\theta}e^{0}=0, \nabla_{\theta}e^{1}=e^{0},$

$\nabla_{\theta}e^{2}=\frac{1}{(2\pi i)^{3}}\frac{d^{3}\Phi}{du^{3}}e^{1}=Ye^{1}=\frac{5}{(1+5^{5})y_{0}(z)^{2}}(\frac{q}{z}\frac{dz}{dq})^{3}e^{1},$

$\nabla_{\theta}e^{3}=e^{2}$

(5A) $\nabla$ -flat $Z$ -basis for $\mathcal{H}_{Z}^{V}.$

$s^{0}:=T^{0},$

$s^{1}:=T^{1}-uT^{0},$

$s^{2}:=T^{2}-( \frac{1}{(2\pi i)^{3}}\frac{\partial^{2}\Phi}{\partial u^{2}}-\frac{11}{2})T^{1}+(\frac{1}{(2\pi i)^{3}}\frac{\partial\Phi}{\partial u}-\frac{11}{2}u-\frac{25}{12})T^{0},$

$s^{3}:=T^{3}-uT^{2}+( \frac{1}{(2\pi i)^{3}}(u\frac{\partial^{2}\Phi}{\partial u^{2}}-\frac{\partial\Phi}{\partial u})-\frac{25}{12})T^{1}$

$-( \frac{1}{(2\pi i)^{3}}(u\frac{\partial\Phi}{\partial u}-2\Phi)-\frac{25}{12}u-\frac{25i}{\pi^{3}}\zeta(3))T^{0}.$

Then $s^{3},$ $s^{2},-s^{0},$ $s^{1}$ form a symplectic basis for $S$ in (1A).

(5B) $\nabla$-flat $Z$ -basis for $\mathcal{H}_{Z}^{V^{O}}$

$s^{0}:=e^{0},$

$s^{1}:=e^{1}-ue^{0},$

$s^{2}:=e^{2}-( \frac{1}{(2\pi i)^{3}}\frac{\partial^{2}\Phi}{\partial u^{2}}-\frac{11}{2})e^{1}+(\frac{1}{(2\pi i)^{3}}\frac{\partial\Phi}{\partial u}-\frac{11}{2}u-\frac{25}{12})e^{0},$

$s^{3}:=e^{3}-ue^{2}+( \frac{1}{(2\pi i)^{3}}(u\frac{\partial^{2}\Phi}{\partial u^{2}}-\frac{\partial\Phi}{\partial u})-\frac{25}{12})e^{1}$

$-( \frac{1}{(2\pi i)^{3}}(u\frac{\partial\Phi}{\partial u}-2\Phi)-\frac{25}{12}u-\frac{25i}{\pi^{8}}\zeta(3))e^{0}.$
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Then $s^{3},$ $s^{2},-s^{0},$ $s^{1}$ form a symplectic basis for $Q$ in (1B).

(6A) Expression of the $T^{p}$ by the $s^{p}.$

It is computed that $T^{p}$ are written by the $\nabla$-flat $Z$-basis $s^{p}$ of $\mathcal{H}_{Z}^{V}$ as follows.

$T^{0}=s^{0},$

$T^{1}=s^{1}+us^{0},$

$T^{2}:=s^{2}+( \frac{1}{(2\pi i)^{3}}\frac{\partial^{2}\Phi}{\partial u^{2}}-\frac{11}{2})s^{1}+(\frac{1}{(2\pi i)^{3}}(u\frac{\partial^{2}\Phi}{\partial u^{2}}-\frac{\partial\Phi}{\partial u})+\frac{25}{12})s^{0},$

$T^{3}=s^{3}+us^{2}+( \frac{1}{(2\pi i)^{3}}\frac{\partial\Phi}{\partial u}-\frac{11}{2}u+\frac{25}{12})s^{1}$

$+( \frac{1}{(2\pi i)^{3}}(u\frac{\partial\Phi}{\partial u}-2\Phi)+\frac{25}{12}u-\frac{25i}{\pi^{3}}\zeta(3))s^{0}.$

Note that the section $1=T^{3}$ varies with respect to the the lattice $\mathcal{H}_{Z}^{V}$ as above while

the section [pt] $=T^{0}=s^{0}$ does not.

(6B) Expression of the $e^{p}$ by the $s^{p}.$

It is computed that $e^{p}$ are written by the $\nabla$-flat $Z$-basis $s^{p}$ of $\mathcal{H}_{Z}^{V^{o}}$ as follows.

$e^{0}=s^{0},$

$e^{1}=s^{1}+us^{0},$

$e^{2}:=s^{2}+( \frac{1}{(2\pi i)^{3}}\frac{\partial^{2}\Phi}{\partial u^{2}}-\frac{11}{2})s^{1}+(\frac{1}{(2\pi i)^{3}}(u\frac{\partial^{2}\Phi}{\partial u^{2}}-\frac{\partial\Phi}{\partial u})+\frac{25}{12})s^{0},$

$e^{3}=s^{3}+us^{2}+( \frac{1}{(2\pi i)^{3}}\frac{\partial\Phi}{\partial u}-\frac{11}{2}u+\frac{25}{12})s^{1}$

$+( \frac{1}{(2\pi i)^{3}}(u\frac{\partial\Phi}{\partial u}-2\Phi)+\frac{25}{12}u-\frac{25i}{\pi^{3}}\zeta(3))s^{0}.$

Note that the normalized holomorphic 3-form $\tilde{\Omega}=\Omega/y_{0}=e^{3}$ varies with respect to the

lattice $\mathcal{H}_{Z}^{V^{o}}$ as above, while the section $e^{0}=s^{0}$ does not.

Idea of proof of $(4A)$ and $(4B)$ . We prove (4B). (4A) follows by mirror symmetry

theorems (1) and (2) in Introduction.
We improve the proof of [$CoK99$ , Prop. 5.6.1] carefully by a $\log$ Hodge theoretic

understanding of the relation among a constant sheaf and a local system on $S^{\log}$ , of the

canonical extension of Deligne on $S$ , and of the Deligne decomposition.

Idea of proofs of $(5A)$ , $(5B)$ , $(6A)$ and $(6B)$ . In [Ill, Introduction] (cf. 2.4), the

asymptotic condition in the large radius limit is stated for the flat integral section cor-
responding to $\mathcal{E}=\mathcal{O}_{V}\in K(V)$ in the situation (5A). Up to Tate twists, this condition

coincides with the one in [CDGP91, (5.5)] stated in the situation (6A). By the mirror

symmetry in [Ill] (cf. (2) in Introduction), this condition is interpreted in the situa-

tion (6B). Our previous results in [U14, Sections 3.5-3.6] are insufficient (see Remark
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below). In order to complete them, we compute here higher approximations in the
situation (6B). The result in the situation (5B) is a linear algebraic solution of this.

Remark. The author was pointed out by Hiroshi Iritani that the definitions and the
descriptions of integral structures in [U14, 3.5, 3.6] are insufficient. Actually, they were
the first approximations of integral structures by means of gr$M$ , and the second proof
in [ibid, 3.9] works well even in this approximation.

3. Discussions on geometries for (5) in Introduction

We discuss here the relation with geometries and local systems considered in [W07]
and [MW09]. Forgetting Hodge structures, we consider only local systems corresponding
to the monodromy of integral periods and tensions.

Let $V_{\psi}$ and $V_{\psi^{o}}$ be a quintic threefold and its mirror from 2.1. Let $S$ be a small
neighborhood in the $z$-plane ( $z$ in 2.2) of the maximal unipotent monodromy point $p_{0}$

endowed with the $\log$ structure associated to the divisor $Po.$

We first consider $B$-model. Let the setting be as in [MW09, 4]. For $z\neq 0$ near
$0$ , i.e., near $p_{0}$ , let $V_{z}^{o}$ be the mirror quintic and $c_{+,z}\cup C_{-)z}$ be the disjoint union of
smooth rational curves on $V_{z}^{o}$ coming from the two conics contained in $V_{\psi}\cap\{x_{1}+x_{2}=$

$x_{3}+x_{4}=0\}\subset P^{4}(C)$ . From the relative homology sequence for $(V_{z}^{o}, (c_{+,z}\cup C_{-,z}))$ ,
we have

(1) $0arrow H_{3}(V_{z}^{o};Z)arrow H_{3}(V_{z}^{O}, (C_{+,z}\cup C_{-,z});Z)arrow\partial Z([C_{+,z}]-[C_{-,z}])arrow 0,$

where $Z([C_{+,z}]-[C_{-,z}])$ is $Ker(H_{2}(C_{+,z}\cup C_{-,z});Z)arrow H_{2}(V_{\mathring{z}});Z$ ). The monodromy
$T_{\infty}$ around $p_{0}$ interchanges $0_{+,z}$ and $C_{-,z}.$

Respecting the sequence (1), we take a family of cycles Poincar\’e duality isomorphic to
the flat integral basis $s^{p}(0\leq p\leq 3)$ in 2.5 (5B) and a family of chains joining from $C_{-,z}$

to $c_{+,z}$ (a choice up to integral cycles and up to half twists), and over them integrate the
family of 3-forms $\Omega(z)$ with $\log$ pole over $z=0$ ( $z$ in the punctured disc in the $z$-plan)
in 2.2, then we have a family of vectors $(\eta_{0}, \eta_{1}, \eta_{2}, \eta_{3}, \mathcal{T})$ consisting of periods and a
tension. This corresponds to the data in [W07], [MW09]. Since $T_{\infty}(\mathcal{T})=-(\mathcal{T}+\eta_{1}+\eta_{0})$

by [W07, (3.14)], we find $\mathcal{T}+\frac{1}{2}\eta_{1}+\frac{1}{4}\eta_{0}==_{\pi}15_{\mathcal{T}}$ is an eigenvector of the monodromy $T_{\infty}$

with eigenvalue $-1.$

The family of sequences (1) $(z\neq 0)$ forms an exact sequence of local systems of
$Z$-modules. To make the monodromy of this system unipotent, we take a double cover
$z^{1/2}\mapsto z$ . Let $S$ be a neighborhood disc of $p_{0}$ in the $z^{1/2}$-plane endowed with $\log$

structure associated to the divisor $p_{0}$ in $S$ , and let $S^{\log}$ be as in 1.2. Let $S^{*}$ be the
punctured disc $S\backslash \{p_{0}\}$ . Pull back the above local system to $S^{*}$ and then extend it
over $S^{\log}.$

Applying Tate twist $(-3)$ and Poincar\’e duality isomorphism to the left and the right
ends of this exact sequence, we have a local system $L’$ over $S^{\log}$ which is an extension
of $Z(-2)$ by $\mathcal{H}_{Z}$ :

(2) $0arrow \mathcal{H}_{Z}arrow L’arrow Z(-2)arrow 0.$
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Let $1\in Z\simeq gr_{4}^{W}Z(-2)$ , take a lifting $1_{Z}$ $:=1-(\mathcal{T}/\eta_{0})s^{0}$ in $L’$ of 1, and extend $\nabla$ on
$\mathcal{H}_{Z}$ over $L’$ by $\nabla(1_{Z})=0$ . We look for a $T_{\infty}^{2}$-invariant $\nabla$-flat element associated to $1_{Z}.$

This is computed as $1_{Z}^{sp1}$ $:=1_{Z}-(\mathcal{S}^{1}/2)$ , and we know that $L’$ coincides with $H_{Z}$ in (5)

in Introduction.
For the relative monodromy weight filtration $M=M(N, W)$ , we see that $1_{Z}\in M_{4}$

and $s^{1}\in M_{2}$ are the smallest filters containing the elements in question. Taking the
graded quotients by $M$ of the sequence (2), we have

(3) $gr_{6}^{M}\mathcal{H}_{Z}arrow\sim gr_{6}^{M}L’,$

$0arrow gr_{4}^{M}\mathcal{H}_{Z}arrow gr_{4}^{M}L’arrow Z(-2)arrow 0,$

$0arrow gr_{2}^{M}\mathcal{H}zarrow gr_{2}^{M}L’arrow(2-$torsion) $arrow 0,$

$gr_{0}^{M}\mathcal{H}_{Z}arrow\sim gr_{0}^{M}L’.$

The 2-torsion in the third sequence of (3) corresponds to a half twist of chains from $C_{-}$

to $c_{+}$ . Standing on a half integral point and looking at the integral points nearby, we
have two orientations. These correspond to the two orientations of a half twist of the
chains, and also correspond to $\tau_{\pm}:=\pm(_{=_{\pi}}^{15}\tau-L^{0}4$ ) $- \frac{\eta_{1}}{2}$ in [W07]. $\mathcal{T}_{-}$ is different from
$-\tau_{+}$ by the complementary half twist, i.e., $\tau_{+}+\mathcal{T}_{-}=-\eta_{1}.$

For $A$-model, we consider the setting in [W07, 2.1]. Let $V=V_{\psi}$ with $\psi=0$ from
2.1 be a Fermat quintic threefold in $P^{4}(C)$ and $Lg$ $:=V\cap P^{4}(R)$ be a Lagrangian

submanifold of its real locus. From the exact sequence of relative homology for $(V, Lg)$ ,

we have

(4) $H_{6}(V;Z)arrow\sim H_{6}(V, Lg;Z)$ ,

$0arrow H_{4}(V;Z)arrow H_{4}(V, Lg;Z)arrow H_{3}(Lg;Z)arrow 0,$

$0arrow H_{2}(V;Z)arrow H_{2}(V, Lg;Z)arrow H_{1}(Lg;Z)arrow 0,$

$H_{0}(V;Z)arrow\sim H_{0}(V, Lg;Z)$ .

Let $H’=H.(V)$ , $H=H.(V, Lg)$ and $H”=H.(Lg)$ , and let

$H_{even}(V)$ $:=$ $\oplus$ $(H’)_{2p},$ $H_{even}(V, Lg)$ $:=$ $\oplus$ $H_{2p},$ $H_{odd}(Lg)$ $:=$ $\oplus$ $(H”)_{2p+1}.$

$0\leq p\leq 3 0\leq p\leq 3 0\leq p\leq 1$

Then we have an exact sequence

(5) $0arrow H_{even}(V)arrow H_{even}(V, Lg)arrow H_{odd}(Lg)arrow 0.$

The weight filtration $W$ is given by $W_{3}H_{even}(V, Lg)$ $:=H_{even}(V)$ , $W_{4}H_{even}(V, Lg)$ $:=$

$H_{even}(V, Lg)$ , and the relative monodromy weight filtration $M=M(N, W)$ is given by
$M_{2p}H_{even}(V, Lg)=H_{\leq 2p}(V, Lg)(0\leq p\leq 3)$ .

In the above setting, the projection from $P^{4}(R)$ to the real hyperplane $\{x_{5}=0\}=$

$P^{3}(R)$ with center $(0,0,0,0,1)$ induces a homeomorphism $Lg\simeq P^{3}(R)$ . Therefore
there are two choices of flat $U(1)$ connections on $Lg$ . Denote $Lg$ endowed with these
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structures by $Lg\pm\cdot$ Morrison-Walcher [MW09, 3] explain the relation between $Lg\pm for$

$A$-model of $V$ and $c_{\pm}$ for $B$-model of $V^{o}.$

After pulling back to the double cover $z^{1/2}\mapsto z(z\neq 0)$ and extending over $S^{\log}$ , the
sequence for $A$-model (5) and the sequence for $B$-model (2), and the set of sequences for
A-model (4) and the set of sequences for $B$-model (3), respectively, seem to correspond
in mirror symmetry. By Poincar\’e duality isomorphisms, $H^{even}(V)=H_{even}(V)(-3)$ and
$H^{even}(Lg)\simeq H_{odd}(Lg)$ .
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