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Abstract

A new asymptotic perturbation theory for linear operators (A. Arai, Ann. Henri
Poincaré, Online First, 2013, DOI 10.1007/s00023-013-0271-7) and its application
to asymptotic expansions, in the coupling constant, of the ground state energy of a
quantum system interacting with a massless quantum field are reviewed.
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1 Introduction

In a recent paper (3], the author presented a new asymptotic perturbation theory for linear
operators and, as an application of it, derived asymptotic expansions, in the coupling
constant, of the ground state energy of the generalized spin-boson model [4]. The purpose
of the present article is to review some basic results in [3]. In this introduction we briefly
describe some backgrounds and motivations behind the work [3].

As is well known, the Hamiltonian of a quantum system may have a parameter \ €
R, called the coupling constant, which denotes the strength among microscopic objects
constituting the quantum system (the case A = 0 corresponds to the non-coupling case).
Let us consider such a quantum system and H () be its Hamiltonian. Assume that H(\)
is bounded below. Then one of the interesting quantities of the quantum system is the
lowest energy Epin(A) defined by

Emin()) := inf o(H()\)), (1.1)
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where, for a linear operator A on a Hilbert space, o(A) denotes the spectrum of it. Basic

problems on the lowest energy are as follows:

(P.1) Is Emin(\) an eigenvalue of H(A\) ? In that case, H()) is said to have a ground
state and Epin(A) is called the ground state energy of H()).! The non-zero vector
in ker(H(\) — Emin()) is called a ground state of H(}\).

(P.2) Properties of Epin()) as a function of X. For example:
(i) Is it analytic in X in a neighborhood of the origin ?
(ii) Does it have asymptotic expansions in A as A — 0 ?

(P.3) To identify the spectra of H())

Problems (P.1) and (P.2) have been part of the subjects of perturbation theories for
linear operators (e.g., [15, 18]).2 Problems (P1.)-(P.3) are non-trivial and difficult in
general. In particular, in the case where the lowest energy Fp,,(0) of the unperturbed
Hamiltonian Hy := H(0) is a non-isolated eigenvalue. This situation typically appears in
models of massless quantum fields where o(Hp) = [Emin(0), 00).

In the case where Ey;,(0) is a non-isolated eigenvalue of Hp, one can not use the
standard perturbation theories where the discreteness of the eigenvalue of Hy to be con-
sidered is assumed [15, 18]. The perturbation problem in that case is a special case of the
so-called embedded eigenvalue problems to which the standard perturbation theories can
not be applied.

In the case where H () is a finite dimensional many-body Schrédinger operator, di-
lation analytic methods have been developed to solve the embedded eigenvalue problems
(e.g., [18, §XII.6]). Okamoto and Yajima [16] extended the dilation analytic methods to
the case of a massive quantum field Hamiltonian. But, the method has not been valid in
the case of massless quantum fields.

In the second half of 1990’s, however, some breakthroughs were made in treating
embedded eigenvalue problems concerning Hamiltonians with a massless quantum field [4,
7, 8]. As for asymptotic expansions of embedded eigenvalues, Bach, Frohlich and Sigal [7,
8] developed renormalization group methods and applied it to a model in non-relativistic
quantum electrodynamics (QED) to prove the existence of a ground state and resonant
states with second order asymptotic expansions in the coupling constant. Hainzl and
Seiringer [13] derived the second order asymptotic expansion, in the coupling constant, of
the ground state energy of a model in non-relativistic QED. Bach, Frohlich and Pizzo [5, 6]
discussed an “asymptotic-like” expansion up to any order in a model of non-relativistic

'In the case where one does not require the strict distinction for concepts, Eni, also is called the
‘ground state energy even if it is not an eigenvalue of H())
2(P.2) also applies to every eigenvalue of H()).
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QED. Recently Faupin, M¢ller and Skibsted [11] presented a general perturbation theory,
up to the second order in the coupling constant, for embedded eigenvalues.

Some authors have obtained a stronger result that Ey;,()) is analytic in A: Griesemer
and Hasler [12](a model in non-relativistic QED); Abdesselam [1](the massless spin-boson
model); Hasler and Herbst [14](the spin-boson model); Abdesselam and Hasler [2](the
massless Nelson model).

The methods used in these studies, however, seem to be model-dependent. One of
the motivations for the present work comes from seeking general structures (if any) of
asymptotic perturbation theories for Epyin(A), keeping in mind the case where Epyin(0) is
a non-isolated eigenvalue of Hy. To be concrete, a basic question is: To what extent is
it possible to develop a general asymptotic or analytic perturbation theory which can be
applied to massless quantum field models including those mentioned above 7 Of course, to
develop such an asymptotic perturbation theory, a new idea is necessary. We find it in the
so-called Brillouin—-Wigner perturbation theory [9, 20, 21], which seems to be not so noted
in the literature. An advantage of this perturbation theory lies in that the unperturbed
eigenvalue under consideration is not necessarily isolated, although the multiplicity of it
should be finite. On the other hand, in the standard perturbation theory (analytic or
asymptotic) developed by T. Kato, Rellich and other people, which comes from heuristic
perturbation theories by Rayleigh [17] and Schrodinger [19], the unperturbed eigenvalue
under consideration must be isolated with a finite multiplicity. Then a natural question
is: What is the mathematically rigorous form (X in the Table 1) of the Brillouin-Wigner
perturbation theory ? The paper [3] gives a first step towards a complete answer to this

question.

Heuristic perturbation theories | Unperturbed eigenvalue | Forms of rigorous theories
(finite multiplicity)

Rayleigh, Schrodinger isolated T. Kato, Rellich, ---

Brillouin, Wigner not necessarily isolated X

Table 1: Comparison of two perturbation theories

2 Simultaneous Equations for an Eigenvalue and an
Eigenvector

Let H be a complex Hilbert space with inner product (-, ) (anti-linear in the first variable
and linear in the second) and norm ||-||. As an unperturbed operator we take a symmetric
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(not necessarily self-adjoint) operator Hy on H which obeys the following condition:
(H.1) H, has a simple eigenvalue Ey € R.

We remark that Ej is not necessarily an isolated eigenvalue. It may be allowed to be an

embedded eigenvalue. This is a new point.
We fix a normalized eigenvector ¥y of Hy with eigenvalue Ey:

HoWo = Eg¥y, [Pl =1.
We denote by P, the orthogonal projection onto the eigenspace
Ho == {a¥p|a € C}.

Then
Qo:=1- P,

is the orthogonal projection onto the 3, the orthogonal complement of J{y. Since Hy is

symmetric, it is reduced by Hp and Hg. We denote by H}, the reduced part of Hy to Hz.
A perturbation of Hy is given by a linear operator Hy on H (Hj is not necessarily

symmetric). Hence the perturbed operator (the total Hamiltonian) is defined by

H(\) :=Ho+ ) H; (A€R)

For a linear operator A on J{, we denote by D(A) and op,(A) the domain and the point
spectrum (the set of eigenvalues) of A respectively.

Definition 2.1 (1) A vector ¥ € H overlaps with a vector ® € H if (¥, ®) # 0.
(2) A vector ¥ € H overlaps with a subset D C J if there exists a vector ® € D which
overlaps with ¥ .

The next proposition describes basic structures for a new perturbation theory:

Proposition 2.2 Assume (H.1). Let A € R\ {0} be fized and E be a complex number
with E & op(Hy). Then:

(i) If E € 0p,(H()\)) and ¥y overlaps with ker(H(\) — E), then there exists a vector
VU € ker(H(X) — E) such that QoH1¥ € D((E — Hj)™) and

E = Ey + A (Yo, H1¥), (2.1)
U =Ty + ANE — Hy) 'QoH V. (2.2)

(if) (Converse of (i)) If E and ¥ € D(H(X))ND(((E — H})*QoH,) satisfy (2.1) and
(2.2), then E € op,(H()\)) and ¥ € ker(H()\) — E) \ {0}, overlapping with ¥,.
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Proof. See [3, Proposition 2.1]. n

Note that (2.1) and (2.2) can be viewed as a simultaneous equation for the pair (E, ¥).
Under some additional conditions, (2.1) and (2.2) can be iterated to give an expression
which suggests a form of asymptotic expansions of F and ¥:

Corollary 2.3 Assume (H.1). Let E & o,(H}) and suppose that E € op(H()\)) and ¥y
overlaps with ker(H(\) — E). Let U be as in Proposition 2.2-(i). Suppose that, for some
n2>1,

Uo € D([(E — Ho)™'QoHy").

Then ¥ € D(((E — H})™'QoHi]"*!) and

U =Uo+ Y N[(E - Hy) ' QoHil*To + \"*'[(E — Hp) ™' QoHi" ' L.

k=1

E = Eo+X (o, H¥o) + > A+ (Wo, Hi[(E — H)™ QoHy)*To)
k=1
+A"2 (U, Hi[(E — Hp) "' QoHy"t'¥) .
Proof. An easy exercise. 1
In applications to quantum field models, the following situation may occur:
(H.2) (i) H;is symmetric and Yo € D(H())) = D(Hy) N D(Hy).
(i) There exists a constant 7 > 0 such that, for all A € I := (—r,0)U (0,7), H(X)
has an eigenvalue F()\) with the following properties:
(a) E(X) & op(Hp).
(b) ¥y overlaps with ker(H(\) — E())).

The next proposition immediately follows from Proposition 2.2:

Proposition 2.4 Assume (H.1) and (H.2). Then, for each A € 1}, there exists a vector

r

U(\) € ker(H(A) — E) such that QoHi¥ € D((E(X\) — H})™!) and

E(X) = Eo + A (Yo, HY(N)),
(A = To + AME(X) — Hy)"'QoHr¥(N).



3 Upper Bound for the Lowest Energy

In the case where Hj is symmetric, H()\) is Hermitian®. Hence one can define

= i v v
80()‘) \IIED(HI(I;\l)f),H\II|]=1< 7H()‘) >a

the infimum of the numerical range of H()\).
We remark that, if H(A) is self-adjoint, then Eq(A) = Enin(A) (see (1.1)).
A stronger condition for Hy and Ej is stated as follows:

(H.3) Hy is self-adjoint and Ey = inf o(H,).

Theorem 3.1 ( An upper bound for E¢(\)) Assume (H.1) and (H.3). Suppose that Hy
s symmetric and
\I’O & D(HI(Hé — EO)—IQOHI).

Let

No = [|[(Hy — Eo) "' QoH1%oll?,
= (QoH1 Yy, (Hy — Eo) " QoH1¥o),

a:
b:= ((Hy — Eo) ' QoH1%o, Hi(Hy — Eo) ™' QoH1¥y) .

I

Then, for all A € R,

1
80()\) S Eo + 1 ((‘Ifo, HI\II()> A— CL)\2 + b/\s) .

+ NoA?

Proof. Take as a trial vector ¥, := Uy — A\(H} — Ep) 'QoH; ¥ which may be an “ap-
proximate ground state” of H()). Then &y(\) < (U1, H(A)¥,)/||¥;]|2. The calculation
of the right hand side yields the desired result. |

Remark 3.2 One may improve the upper bound by taking as a trial vector ¥y :=
\I’o + Z'fz\[:l )\n((Eo —_ H(I))—IQQHI)n‘I/o.

Corollary 3.3 Under the same assumption as in Theorem 8.1, consider the case where
[ (To, H1¥o) | < |Al(a— bA).

Then
80(/\) < Ey.

In particular, E¢(X) € p(Hp) (the resolvent set of Hy).

3Here we mean by “a linear operator A on H (not necessarily densely defined) is Hermitian” that
(¢, Ad) = (A, ¢) for all o, ¢ € D(A) (hence (¢, Ayp) is a real number for all ¥ € D(A4)).

33
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4 Asymptotic Expansion to the Second Order in A

For the reader’s convenience, we first state a result on the asymptotic expansion to the
second order in A. For this purpose, we need additional conditions:

(H.4) (i) limy_o [[¥N)|| = 1. (ii) E(X) < Ep, VA € IX.
In what follows we assume (H.1)-(H.4). We introduce operator-valued functions of A:

(E(X) — Ho) " 'QoH1,
Hi(E(X\) — Ho) ™' Qo.

QX
> >
[

Theorem 4.1 Assume (H.1)-(H.4). Suppose that
Uy € D(G(A\)Hi) N D((Hy — Eo)™?QoHy)
for all X € IX with supy¢px |G(A)Hi¥o|| < co. Then
E(\) = Ey + A (Uo, H¥o) — A2||(H} — Eo) " Y2QoHy¥o||2 + 0o(X?) (A — 0).

Proof. See [3, Theorem 3.5]. ]

5 Asymptotic Expansion up to Any Finite Order in
A

Let
KO = (E() - H(l))—lQoHI.

For each ¢ € N, we define an operator-valued function K, on R by

I4
Ko(ay,...,ee) = D (-1 D o w;(EBo— Hy) "™ DQoHy,

r=1 Jutetie=t
J1yedr>1

(z1,...,20) € R
For a natural number N > 2, we define a sequence {a,}_; as follows:

a; .= (qlo,H[\I/()),
ap = Z Z <H1\110,Kll(a1,...,agl)-~-Klq(a1,...,aeq)\llo>,

q+e=n Oy +-+lg=E—1
0,21 4y,...43>0

n=2,...,N,
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provided that

q
Uy € NIL; Ngst=n Neys o=t Mg+ Ny 2o (H Ey — Hy) ™t Q, HI) (5.1)
j=1

q,¢>1 £1,...,€4>0
We have

ay = — (H1%o, (Hy — Eo) ' QoH1 %) <0,

as = ((Hy — Eo) " Hi1%o, Hi(H} — Eo) ' QoH¥o)
~ (o, Hr¥o) ||(Hg — Eo) ™ QoHr¥o|1*.

One of the main results in [3] is as follows:

Theorem 5.1 Let N > 2 be a natural number. Assume (H.1)-(H.4). Suppose that (5.1)
holds and Wy € NYZLD(G(N)"Hy) with sup,epx [|GOA)"H1¥l| < 00, n=1,...,N—1.
Then

E(\) =Ey+ Y _and"+0o(AY) (A= 0).

n=1

Proof. See [3, Theorem 4.1]. |

6 The Generalized Spin-Boson Model

6.1 Definitions

The generalized spin-boson (GSB) model [4] describes a model of a general quantum
system interacting with a Bose field. Let: X be the Hilbert space of a general quantum

system S and
F =@l ®F L*(R") = {%0 = (Pl € @ LA(R),n 20, [[p™|* < 00}5
n=0

be the boson Fock space over L%(R”) (v € N), where ®” denotes n-fold symmetric tensor’
product with ®°L%(R¥) := C. Then Hilbert space of the composite system of S and the
Bose field is given by

H=K®3F.

We take a bounded below self-adjoint operator A on X as the Hamiltonian of the
system S.
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We denote by w : R” — [0,00) the one-boson energy function, which is assumed to
satisfy 0 < w(k) < oo a.e. (almost everywhere) k € R”. For each n > 1, we define the
function w™ on (R¥)" by

n

WM (ky, k) =Y w(ky), ae(k,... k) € (R)"

j=1

We denote the multiplication operator by the function w(™ by the same symbol. We set
w©® := 0. Then the operator
dM(w) = @2 w™
on F, the second quantization of w, describes the free Hamiltonian of the Bose field.
The annihilation operator a(f) (f € L?(RY)) is the densely defined closed operator on
F such that its adjoint a(f)* is of the form

@)D =0, (alf) )™ = VnS,(f @9 Y), n>1, ¢ € D(a(f)"),

where S, is the symmetrization operator on ®"L%(R"). The Segal field operator ¢(f) is
defined by .

= —(a(f)* + a(f)).

1) = s(alf)" + al1)

The total Hamiltonian of the GSB model is of the form
J
Hesp(\) =A®T+1®dl(w)+AY_ B;®¢(g;) (AER),
j=1

where J € N and, for j = 1,...,J, B; is a symmetric operator on X and g; € L?(RY).

The unperturbed Hamiltonian is
Ho = HGSB(O) =A ® I+1 ® dP(OJ)

One says that, if wp := ess.infyerew(k) (the essential infimum of w) is strictly positive
(resp. equal to zero), then the boson is massive (resp. massless).
If the boson is massless and w(RY) = [0, 00), then

o(Hp) = [Ep,0) (Eo =info(Hp) = inf o(A))

Hence, in this case, all the eigenvalues of Hy (if exist) are embedded eigenvalues. In
particular, Ey can not be an isolated eigenvalue of Hy. Thus the standard perturbation
theory can not be applied to Fy in the present case.
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6.2 Some properties of the GSB model

Let
A :={) € R|Hggsp(]) is self-adjoint and bounded below}

and, for each A\ € A,
E()) = infspec(Hass())),

the lowest energy of the GSB model. The next theorem tells us that the lowest energy
E(]) is an even function of A.

Theorem 6.1 The set A is reflection symmetric with respect to the origin of R (i.e.,
AeAN<< —)€A)and E(*) is an even function on A: E(A) = E(=X), A€A.

Proof. See [3, Theorem 5.1]. ]
In what follows, we assume the following conditions:

(A.1) The operator A has compact resolvent. We set A=A-E, >0.

(A.2) Each B; (j=1,...,J) is AY2-bounded.

(A.3) gj,9;/weE L*(RY),j=1,...,J.

(A.4) The function w is continuous on R with limjx_.w(k) = oo and there exist con-
stants v > 0 and C' > 0 such that

lw(k) — w(k)| < Clk — K['(1 + w(k) + w(k)), kK €R".

Assumption (A.1) implies that A has a normalized ground state. We denote it by o:

Atpo = Eotbo, |ltho]l = 1.

The vector Q := {1,0,0,...} € F is called the Fock vacuum. We denote by Py,
the orthogonal projection onto {af2|a € €}. The orthogonal projection onto ker A =
ker(A — Ey) is denoted by py,-

Theorem 6.2 [4] Assume (A.1)-(A.4). Then there ezists a constant r > 0 independent
of A such that the following hold:

(i) (-r,7r) CA.

(ii) For all A € (—r,7), Hgsg(\) has a ground state Uo()) and there exists a constant
M > 0 independent of X € (=, 1) such that, for all |\| <7, ||To(N)]| <1 and

(To(N), Pygo ® P To(N)) > 1 —AM? >0
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6.3 Second order asymptotic expansion of E()) in A

We need additional assumptions:

(A.5) The eigenvalue Ey of A is simple and there exists a j, € {1,...,J} such that
Bj, 1o # 0.

(A.6) The set {g1,...,9s} C L%(R") is linearly independent.

Theorem 6.3 (Second order asymptotics) Assume (A.1)-(A.6) and let

J
1 ~ — *
Gese = 5 > / <Bﬂ/lo7 (A+w(k)) 1Bel/)o> 9;(k)*ge(k)dk.
je=1 w(k)>0
Then agg, > 0 and
E(\) = By —agz A2 +0(X%) (A= 0).
Proof. See [3, Theorem 5.13]. ]

Remark 6.4 A similar asymptotic expansion is obtained for a massless Dereziriski-Gérard
model [10] by Faupin-Mgller-Skibsted [11] and for the Pauli-Fierz model in nonrelativistic
QED by Hainzl-Seiringer [13]. But the methods are quite different from our method.

6.4 Higher order asymptotics

In this section we use the following notation:

J
HI :ZBJ ®¢(gj)7 QO ::I_p'l,bg)@PQm
j=1

Hj := QoHoQo (the reduced part of Hy to [ker(Hp — Ep)]*t),
¢

Kg(xl, N ,(E[) = Z(—l)r Z le .. ‘ij(EO - Hé)_(T-H)QoHI,
r=1 Jite+jr=L
jly"'vjf‘zl

(z1,...,10) € RS
Theorem 6.5 (Asymptotic expansion up to any finite order) Assume (A.1)—-(A.6) and
9 % € L*RY), j=1,...,J
with N > 4 even. Let by =0 and

b=, > (Hth®,Ky(bs,. .. by)

gHé=nl1+-+Lg=C—1
9,021 £3,..,84>0

s Ky (b« - e, )0 ® Qo)
n=2,...,N.



Then N
bzn_1=0, nzl,...,;
and «
N/2
E(\) =Eo+ Y _buA™+0(\) (A —0).
n=1
Proof. See [3, Theorem 5.17]. 1
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