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Abstract

A new asymptotic perturbation theory for linear operators (A. Arai, Ann. Henri
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1 Introduction

In a recent paper [3], the author presented a new asymptotic perturbation theory for linear

operators and, as an application of it, derived asymptotic expansions, in the coupling

constant, of the ground state energy of the generalized spin-boson model [4]. The purpose

of the present article is to review some basic results in [3]. In this introduction we briefly

describe some backgrounds and motivations behind the work [3].

As is well known, the Hamiltonian of a quantum system may have a parameter $\lambda\in$

$\mathbb{R}$ , called the coupling constant, which denotes the strength among microscopic objects

constituting the quantum system (the case $\lambda=0$ corresponds to the non-coupling case).

Let us consider such a quantum system and $H(\lambda)$ be its Hamiltonian. Assume that $H(\lambda)$

is bounded below. Then one of the interesting quantities of the quantum system is the

lowest energy $E_{\min}(\lambda)$ defined by

$E_{\min}( \lambda) :=\inf\sigma(H(\lambda))$ , (1.1)

*Supported by Grant-in-Aid 21540206 for Scientific Research from JSPS.

数理解析研究所講究録

第 1921巻 2014年 28-40 28



where, for a linear operator $A$ on a Hilbert space, $\sigma(A)$ denotes the spectrum of it. Basic
problems on the lowest energy are as follows:

(P.1) Is $E_{\min}(\lambda)$ an eigenvalue of $H(\lambda)$ ? In that case, $H(\lambda)$ is said to have a ground

state and $E_{\min}(\lambda)$ is called the ground state energy of $H(\lambda)^{1}$ The non-zero vector
in $ker(H(\lambda)-E_{\min}(\lambda)$ is called a ground state of $H(\lambda)$ .

(P.2) Properties of $E_{\min}(\lambda)$ as a function of $\lambda$ . For example:

(i) Is it analytic in $\lambda$ in a neighborhood of the origin?

(ii) Does it have asymptotic expansions in $\lambda$ as $\lambdaarrow 0$ ?

(P.3) To identify the spectra of $H(\lambda)$

Problems (P.1) and (P.2) have been part of the subjects of perturbation theories for
linear operators $(e.g., [15, 18])^{}$ Problems $(P1.)-(P.3)$ are non-trivial and difficult in

general. In particular, in the case where the lowest energy $E_{\min}(O)$ of the unperturbed

Hamiltonian $H_{0}:=H(O)$ is a non-isolated eigenvalue. This situation typically appears in

models of massless quantum fields where $\sigma(H_{0})=[E_{\min}(0), \infty$ ).

In the case where $E_{\min}(O)$ is a non-isolated eigenvalue of $H_{0}$ , one can not use the

standard perturbation theories where the discreteness of the eigenvalue of $H_{0}$ to be con-
sidered is assumed [15, 18]. The perturbation problem in that case is a special case of the
so-called embedded eigenvalue problems to which the standard perturbation theories can
not be applied.

In the case where $H(\lambda)$ is a finite dimensional many-body Schr\"odinger operator, di-

lation analytic methods have been developed to solve the embedded eigenvalue problems

(e.g., [18, \S XII.6]). Okamoto and Yajima [16] extended the dilation analytic methods to
the case of a massive quantum field Hamiltonian. But, the method has not been valid in
the case of massless quantum fields.

In the second half of $1990’ s$ , however, some breakthroughs were made in treating

embedded eigenvalue problems concerning Hamiltonians with a massless quantum field [4,

7, 8]. As for asymptotic expansions of embedded eigenvalues, Bach, Fr\"ohlich and Sigal [7,

8] developed renormalization group methods and applied it to a model in non-relativistic
quantum electrodynamics (QED) to prove the existence of a ground state and resonant
states with second order asymptotic expansions in the coupling constant. Hainzl and
Seiringer [13] derived the second order asymptotic expansion, in the coupling constant, of
the ground state energy of a model in non-relativistic QED. Bach, Fr\"ohlich and Pizzo [5, 6]

discussed an “asymptotic-like” expansion up to any order in a model of non-relativistic

1In the case where one does not require the strict distinction for concepts, $E_{\min}$ also is called the
ground state energy even if it is not an eigenvalue of $H(\lambda)$

2 (P.2) also applies to every eigenvalue of $H(\lambda)$ .

29



QED. Recently Faupin, $M\phi 1ler$ and Skibsted [11] presented a general perturbation theory,

up to the second order in the coupling constant, for embedded eigenvalues.

Some authors have obtained a stronger result that $E_{\min}(\lambda)$ is analytic in $\lambda$ : Griesemer

and Hasler [12] (a model in non-relativistic QED); Abdesselam [1] (the massless spin-boson

model); Hasler and Herbst [14](the spin-boson model); Abdesselam and Hasler [2](the

massless Nelson model).

The methods used in these studies, however, seem to be model-dependent. One of

the motivations for the present work comes from seeking general structures (if any) of

asymptotic perturbation theories for $E_{\min}(\lambda)$ , keeping in mind the case where $E_{\min}(O)$ is

a non-isolated eigenvalue of $H_{0}$ . To be concrete, a basic question is: To what extent is

it possible to develop a general asymptotic or analytic perturbation theory which can be

applied to massless quantum field models including those mentioned above? Of course, to

develop such an asymptotic perturbation theory, a new idea is necessary. We find it in the

so-called Brillouin-Wigner perturbation theory [9, 20, 21], which seems to be not so noted

in the literature. An advantage of this perturbation theory lies in that the unperturbed

eigenvalue under consideration is not necessarily isolated, although the multiplicity of it

should be finite. On the other hand, in the standard perturbation theory (analytic or

asymptotic) developed by T. Kato, Rellich and other people, which comes from heuristic

perturbation theories by Rayleigh [17] and Schr\"odinger [19], the unperturbed eigenvalue

under consideration must be isolated with a finite multiplicity. Then a natural question

is: What is the mathematically rigorous form (X in the Table 1) of the Brillouin-Wigner

perturbation theory? The paper [3] gives a first step towards a complete answer to this

question.

Table 1: Comparison of two perturbation theories

2 Simultaneous Equations for an Eigenvalue and an
Eigenvector

Let $\mathcal{H}$ be a complex Hilbert space with inner product $\rangle$ (anti-linear in the first variable

and linear in the second) and norm $\Vert$ . As an unperturbed operator we take a symmetric
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(not necessarily self-adjoint) operator $H_{0}$ on $\mathcal{H}$ which obeys the following condition:

(H.1) $H_{0}$ has a simple eigenvalue $E_{0}\in \mathbb{R}.$

We remark that $E_{0}$ is not necessarily an isolated eigenvalue. It may be allowed to be an
embedded eigenvalue. This is a new point.

We fix a normalized eigenvector $\Psi_{0}$ of $H_{0}$ with eigenvalue $E_{0}$ :

$H_{0}\Psi_{0}=E_{0}\Psi_{0}, \Vert\Psi_{0}\Vert=1.$

We denote by $P_{0}$ the orthogonal projection onto the eigenspace

$\mathcal{H}_{0}:=\{\alpha\Psi_{0}|\alpha\in \mathbb{C}\}.$

Then

$Q_{0}:=I-P_{0},$

is the orthogonal projection onto the $\mathcal{H}_{0}^{\perp}$ , the orthogonal complement of $\mathcal{H}_{0}$ . Since $H_{0}$ is

symmetric, it is reduced by $\mathcal{H}_{0}$ and $\mathcal{H}_{0}^{\perp}$ . We denote by $H_{0}’$ the reduced part of $H_{0}$ to $\mathcal{H}_{0}^{\perp}.$

A perturbation of $H_{0}$ is given by a linear operator $H_{I}$ on $\mathcal{H}(H_{I}$ is not necessarily

symmetric). Hence the perturbed operator (the total Hamiltonian) is defined by

$H(\lambda):=H_{0}+\lambda H_{I} (\lambda\in \mathbb{R})$

For a linear operator $A$ on $\mathcal{H}$ , we denote by $D(A)$ and $\sigma_{p}(A)$ the domain and the point

spectrum (the set of eigenvalues) of $A$ respectively.

Definition 2.1 (1) A vector $\Psi\in \mathcal{H}$ overlaps with a vector $\Phi\in \mathcal{H}$ if $\langle\Psi,$ $\Phi\rangle\neq 0.$

(2) A vector $\Psi\in \mathcal{H}$ overlaps with a subset $\mathcal{D}\subset \mathcal{H}$ if there exists a vector $\Phi\in \mathcal{D}$ which
overlaps with $\Psi.$

The next proposition describes basic structures for a new perturbation theory:

Proposition 2.2 Assume (H.1). Let $\lambda\in \mathbb{R}\backslash \{O\}$ be fixed and $E$ be a complex number
with $E\not\in\sigma_{p}(H_{0}’)$ . Then:

(i) If $E\in\sigma_{p}(H(\lambda))$ and $\Psi_{0}$ overlaps with $ker(H(\lambda)-E)$ , then there exists a vector
$\Psi\in ker(H(\lambda)-E)$ such that $Q_{0}H_{I}\Psi\in D((E-H_{0}’)^{-1})$ and

$E=E_{0}+\lambda\langle\Psi_{0}, H_{I}\Psi\rangle$ , (2.1)

$\Psi=\Psi_{0}+\lambda(E-H_{0}’)^{-1}Q_{0}H_{I}\Psi$ . (2.2)

(ii) (Converse of (i) ) If $E$ and $\Psi\in D(H(\lambda))\cap D(((E-H_{0}’)^{-1}Q_{0}H_{I})$ satisfy (2. 1) and
(2.2), then $E\in\sigma_{p}(H(\lambda))$ and $\Psi\in ker(H(\lambda)-E)\backslash \{O\}$ , overlapping with $\Psi_{0}.$
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Proof. See [3, Proposition 2.1]. 1

Note that (2.1) and (2.2) can be viewed as a simultaneous equation for the pair $(E, \Psi)$ .

Under some additional conditions, (2.1) and (2.2) can be iterated to give an expression

which suggests a form of asymptotic expansions of $E$ and $\Psi$ :

Corollary 2.3 Assume (H.1). Let $E\not\in\sigma_{p}(H\’{o})$ and suppose that $E\in\sigma_{p}(H(\lambda))$ and $\Psi_{0}$

overlaps with $ker(H(\lambda)-E)$ . Let $\Psi$ be as in Proposition $2.2-(i)$ . Suppose that, for some
$n\geq 1,$

$\Psi_{0}\in D([(E-H_{0}’)^{-1}Q_{0}H_{I}]^{n})$ .

Then $\Psi\in D([(E-H_{0}’)^{-1}Q_{0}H_{I}]^{n+1})$ and

$\Psi=\Psi_{0}+\sum_{k=1}^{n}\lambda^{k}[(E-H_{0}’)^{-1}Q_{0}H_{I}]^{k}\Psi_{0}+\lambda^{n+1}[(E-H_{0}’)^{-1}Q_{0}H_{I}]^{n+1}\Psi.$

$E = E_{0}+ \lambda\langle\Psi_{0}, H_{I}\Psi_{0}\rangle+\sum_{k=1}^{n}\lambda^{k+1}\langle\Psi_{0}, H_{I}[(E-H_{0}’)^{-1}Q_{0}H_{I}]^{k}\Psi_{0}\rangle$

$+\lambda^{n+2}\langle\Psi_{0)}H_{I}[(E-H_{0}’)^{-1}Q_{0}H_{I}]^{n+1}\Psi\rangle.$

Proof. An easy exercise. I

In applications to quantum field models, the following situation may occur:

(H.2) (i) $H_{I}$ is symmetric and $\Psi_{0}\in D(H(\lambda))=D(H_{0})\cap D(H_{I})$ .

(ii) There exists a constant $r>0$ such that, for all $\lambda\in \mathbb{I}_{r}^{\cross}:=(-r, 0)U(0, r)$ , $H(\lambda)$

has an eigenvalue $E(\lambda)$ with the following properties:

(a) $E(\lambda)\not\in\sigma_{p}(H_{0}’)$ .

(b) $\Psi_{0}$ overlaps with $ker(H(\lambda)-E(\lambda))$ .

The next proposition immediately follows from Proposition 2.2:

Proposition 2.4 Assume (H.1) and (H.2). Then, for each $\lambda\in \mathbb{I}_{r}^{x}$ , there exists a vector

$\Psi(\lambda)\in ker(H(\lambda)-E)$ such that $Q_{0}H_{I}\Psi\in D((E(\lambda)-H_{0}’)^{-1})$ and

$E(\lambda)=E_{0}+\lambda\langle\Psi_{0}, H_{I}\Psi(\lambda)\rangle,$

$\Psi(\lambda)=\Psi_{0}+\lambda(E(\lambda)-H_{0}’)^{arrow 1}Q_{0}H_{I}\Psi(\lambda)$ .
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3Upper Bound for the Lowest Energy

In the case where $H_{I}$ is symmetric, $H(\lambda)$ is Hermitian3. Hence one can define

$\mathcal{E}_{0}(\lambda):=\inf_{\Psi\in D(H(\lambda)),\Vert\Psi\Vert=1}\langle\Psi, H(\lambda)\Psi\rangle,$

the infimum of the numerical range of $H(\lambda)$ .

We remark that, if $H(\lambda)$ is self-adjoint, then $\mathcal{E}_{0}(\lambda)=E_{\min}(\lambda)$ (see (1.1)).

A stronger condition for $H_{0}$ and $E_{0}$ is stated as follows:

(H.3) $H_{0}$ is self-adjoint and $E_{0}= \inf\sigma(H_{0})$ .

Theorem 3.1 (An upper bound for $\mathcal{E}_{0}(\lambda)$ ) Assume (H.1) and (H.3). Suppose that $H_{I}$

is symmetric and
$\Psi_{0}\in D(H_{I}(H_{0}’-E_{0})^{-1}Q_{0}H_{I})$ .

Let

$N_{0}:=\Vert(H_{0}’-E_{0})^{-1}Q_{0}H_{I}\Psi_{0}\Vert^{2},$

$a:=\langle Q_{0}H_{I}\Psi_{0}, (H_{0}’-E_{0})^{-1}Q_{0}H_{I}\Psi_{0}\rangle,$

$b :=\langle(H_{0}’-E_{0})^{-1}Q_{0}H_{I}\Psi_{0}, H_{I}(H_{0}’-E_{0})^{-1}Q_{0}H_{I}\Psi_{0}\rangle.$

Then, for all $\lambda\in \mathbb{R},$

$\mathcal{E}_{0}(\lambda)\leq E_{0}+\frac{1}{1+N_{0}\lambda^{2}}(\langle\Psi_{0)}H_{I}\Psi_{0}\rangle\lambda-a\lambda^{2}+b\lambda^{3})$ .

Proof. Take as a trial vector $\Psi_{1}$ $:=\Psi_{0}-\lambda(H_{0}’-E_{0})^{-1}Q_{0}H_{I}\Psi_{0}$ which may be an “ap-

proximate ground state”’ of $H(\lambda)$ . Then $\mathcal{E}_{0}(\lambda)\leq\langle\Psi_{1},$ $H(\lambda)\Psi_{1}\rangle/\Vert\Psi_{1}\Vert^{2}$ . The calculation

of the right hand side yields the desired result. 1

Remark 3.2 One may improve the upper bound by taking as a trial vector $\Psi_{N}:=$

$\Psi_{0}+\sum_{n=1}^{N}\lambda^{n}((E_{0}-H_{0}’)^{-1}Q_{0}H_{I})^{n}\Psi_{0}.$

Corollary 3.3 Under the same assumption as in Theorem 3.1, consider the case where

$|\langle\Psi_{0}, H_{I}\Psi_{0}\rangle|<|\lambda|(a-b\lambda)$ .

Then
$\mathcal{E}_{0}(\lambda)<E_{0}.$

In particular, $\mathcal{E}_{0}(\lambda)\in\rho(H_{0})$ (the resolvent set of $H_{0}$).

3Here we mean by “a linear operator $A$ on $\mathcal{H}$ (not necessarily densely defined) is Hermitian” that
$\langle\psi,$ $A\phi\rangle=\langle A\psi,$ $\phi\rangle$ for all $\psi,$ $\phi\in D(A)$ $($hence $\langle\psi, A\psi\rangle is a$ real number $for all \psi\in D(A)$ ).
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4Asymptotic Expansion to the Second Order in $\lambda$

For the reader’s convenience, we first state a result on the asymptotic expansion to the

second order in $\lambda$ . For this purpose, we need additional conditions:

(H.4) (i) $\lim_{\lambdaarrow 0}\Vert\Psi(\lambda)\Vert=1$ . (ii) $E(\lambda)<E_{0},$ $\forall\lambda\in \mathbb{I}_{r}^{\cross}.$

In what follows we assume $(H.1)-(H.4)$ . We introduce operator-valued functions of $\lambda$ :

$K(\lambda):=(E(\lambda)-H_{0})^{-1}Q_{0}H_{I},$

$G(\lambda):=H_{I}(E(\lambda)-H_{0})^{-1}Q_{0}.$

Theorem 4.1 Assume $(H.l)-(H.4)$ . Suppose that

$\Psi_{0}\in D(G(\lambda)H_{I})\cap D((H_{0}’-E_{0})^{-1/2}Q_{0}H_{I})$

for all $\lambda\in \mathbb{I}_{r}^{\cross}$ with $\sup_{\lambda\in I_{r}^{x}}\Vert G(\lambda)H_{I}\Psi_{0}\Vert<\infty$ . Then

$E(\lambda)=E_{0}+\lambda\langle\Psi_{0}, H_{I}\Psi_{0}\rangle-\lambda^{2}\Vert(H_{0}’-E_{0})^{-1/2}Q_{0}H_{I}\Psi_{0}\Vert^{2}+o(\lambda^{2}) (\lambdaarrow 0)$ .

Proof. See [3, Theorem 3.5]. 1

5 Asymptotic Expansion up to Any Finite Order in
$\lambda$

Let
$K_{0}:=(E_{0}-H_{0}’)^{-1}Q_{0}H_{I}.$

For each $l\in \mathbb{N}$ , we define an operator valued function $K_{\ell}$ on $\mathbb{R}^{\ell}$ by

$K_{\ell}(x_{1}, \ldots, x_{\ell}) :=\sum_{r=1}^{\ell}(-1)^{r}, \sum_{-,j_{1j_{1}^{+.\cdot.\cdot.\cdot+j_{r-}}}\ell j_{r}\geq 1}x_{j_{1}}\cdots x_{j_{f}}(E_{0}-H_{0}’)^{-(r+1)}Q_{0}H_{I},$

$(x_{1}, \ldots, x_{\ell})\in \mathbb{R}^{\ell}.$

For a natural number $N\geq 2$ , we define a sequence $\{a_{n}\}_{n=1}^{N}$ as follows:

$a_{1}:=\langle\Psi_{0}, H_{I}\Psi_{0}\rangle,$

$a_{n}= \sum$

$q, \ell\geq 1l_{1},..,l_{q}\geq 0\sum_{q+\ell_{--n\ell_{1}+\cdots.+\ell_{q}--\ell-1}}\langle H_{I}\Psi_{0}, K_{l_{1}}(a_{1}, \ldots, a_{\ell_{1}})\cdots K_{l_{q}}(a_{1}, \ldots, a_{\ell_{q}})\Psi_{0}\rangle,$

$n=2$ , . . . , $N,$
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provided that

$\Psi_{0}\in n_{n=2}^{N}n_{q+\ell_{--n}}n_{l_{1+\cdot+\ell_{q}=\ell-1}}n_{r_{1}=0}^{p_{1}}\cdots\bigcap_{r_{q}=0}^{\ell_{q}}Dq,\ell\geq 1\ell_{1}.,\cdot\ldots,\ell_{q}\geq 0(\prod_{j=1}^{q}(E_{0}-H_{0}’)^{-(r_{j}+1)}Q_{0}H_{I})$ . (5.1)

We have

$a_{2}=-\langle H_{I}\Psi_{0}, (H_{0}’-E_{0})^{-1}Q_{0}H_{I}\Psi_{0}\rangle\leq 0,$

$a_{3}=\langle(H_{0}’-E_{0})^{-1}H_{I}\Psi_{0}, H_{I}(H_{0}’-E_{0})^{-1}Q_{0}H_{I}\Psi_{0}\rangle$

$-\langle\Psi_{0}, H_{I}\Psi_{0}\rangle\Vert(H_{0}’-E_{0})^{-1}Q_{0}H_{I}\Psi_{0}\Vert^{2}.$

One of the main results in [3] is as follows:

Theorem 5.1 Let $N\geq 2$ be a natural number. Assume $(H.l)-(H.4)$ . Suppose that (5.1)

holds and $\Psi_{0}\in\bigcap_{n=1}^{N-1}D(G(\lambda)^{n}H_{I})$ with $\sup_{r\in \mathbb{I}_{r}^{\cross}}\Vert G(\lambda)^{n}H_{I}\Psi_{0}\Vert<\infty,$ $n=1$ , . . . , $N-1.$

Then

$E( \lambda)=E_{0}+\sum_{n=1}^{N}a_{n}\lambda^{n}+o(\lambda^{N}) (\lambdaarrow 0)$ .

Proof. See [3, Theorem 4.1]. 1

6 The Generalized Spin-Boson Model

6.1 Definitions

The generalized spin-boson (GSB) model [4] describes a model of a general quantum

system interacting with a Bose field. Let $J($ be the Hilbert space of a general quantum

system $S$ and

$\mathcal{F}:=\oplus_{n=0}^{\infty}\otimes_{s}^{n}L^{2}(\mathbb{R}^{\nu})=\{\psi=\{\psi^{(n)}\}_{n=0}^{\infty}|\psi^{(n)}\in\otimes_{s}^{n}L^{2}(\mathbb{R}^{v})$ , $n\geq 0,$ $\sum_{n=0}^{\infty}\Vert\psi^{(n)}\Vert^{2}<\infty\}$

be the boson Fock space over $L^{2}(\mathbb{R}^{v})(v\in \mathbb{N})$ , where $\otimes_{s}^{n}$ denotes $n$-fold symmetric tensor‘
product with $\otimes_{s}^{0}L^{2}(\mathbb{R}^{\nu})$ $:=\mathbb{C}$ . Then Hilbert space of the composite system of $S$ and the

Bose field is given by
$\mathcal{H}=\mathfrak{X}\otimes \mathcal{F}.$

We take a bounded below self-adjoint operator $A$ on {JC as the Hamiltonian of the

system S.
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We denote by $\omega$ : $\mathbb{R}^{\nu}arrow[0, \infty$ ) the one-boson energy function, which is assumed to
satisfy $0<\omega(k)<\infty$ a.e. (almost everywhere) $k\in \mathbb{R}^{\nu}$ . For each $n\geq 1$ , we define the

function $\omega^{(n)}$ on $(\mathbb{R}^{\nu})^{n}$ by

$\omega^{(n)}(k_{1}, \ldots, k_{n}):=\sum_{j=1}^{n}\omega(k_{j}) , a.e.(k_{1}, \ldots, k_{n})\in(\mathbb{R}^{\nu})^{n}.$

We denote the multiplication operator by the function $\omega^{(n)}$ by the same symbol. We set
$\omega^{(0)}$ $:=0$ . Then the operator

$d\Gamma(\omega):=\oplus_{n=0}^{\infty}\omega^{(n)}$

on $\mathcal{F}$ , the second quantization of $\omega$ , describes the free Hamiltonian of the Bose field.

The annihilation operator $a(f)(f\in L^{2}(\mathbb{R}^{\nu}))$ is the densely defined closed operator on
$\mathcal{F}$ such that its adjoint $a(f)^{*}$ is of the form

$(a(f)^{*}\psi)^{(0)}=0, (a(f)^{*}\psi)^{(n)}=\sqrt{n}S_{n}(f\otimes\psi^{(n-1)}) , n\geq 1, \psi\in D(a(f)^{*})$ ,

where $S_{n}$ is the symmetrization operator $on\otimes^{n}L^{2}(\mathbb{R}^{\nu})$ . The Segal field operator $\phi(f)$ is

defined by

$\phi(f):=\frac{1}{\sqrt{2}}(a(f)^{*}+a(f))$ .

The total Hamiltonian of the GSB model is of the form

$H_{GSB}( \lambda)=A\otimes I+I\otimes d\Gamma(\omega)+\lambda\sum_{j=1}^{J}B_{j}\otimes\phi(g_{j}) (\lambda\in \mathbb{R})$ ,

where $J\in \mathbb{N}$ and, for $j=1$ , . . . , $J,$ $B_{j}$ is a symmetric operator on X and $g_{j}\in L^{2}(\mathbb{R}^{\nu})$ .

The unperturbed Hamiltonian is

$H_{0} :=H_{GSB}(0)=A\otimes I+I\otimes d\Gamma(\omega)$ .

One says that, if $\omega_{0}:=ess.\inf_{k\in \mathbb{R}^{\nu}}\omega(k)$ (the essential infimum of $\omega$ ) is strictly positive

(resp. equal to zero), then the boson is massive (resp. massless).

If the boson is massless and $\omega(\mathbb{R}^{\nu})=[0, \infty$ ), then

$\sigma(H_{0})=[E_{0}, \infty) (E_{0}=\inf\sigma(H_{0})=\inf\sigma(A))$

Hence, in this case, all the eigenvalues of $H_{0}$ (if exist) are embedded eigenvalues. In

particular, $E_{0}$ can not be an isolated eigenvalue of $H_{0}$ . Thus the standard perturbation

theory can not be applied to $E_{0}$ in the present case.
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6.2 Some properties of the GSB model

Let
$\Lambda$

$:=$ { $\lambda\in \mathbb{R}|H_{GSB}(\lambda)$ is self-adjoint and bounded below}

and, for each $\lambda\in\Lambda,$

$E( \lambda) :=\inf spec(H_{GSB}(\lambda))$ ,

the lowest energy of the GSB model. The next theorem tells us that the lowest energy
$E(\lambda)$ is an even function of $\lambda.$

Theorem 6.1 The set $\Lambda$ is reflection symmetric with respect to the origin of $\mathbb{R}(i.e.,$

$\lambda\in\Lambda\Leftrightarrow-\lambda\in\Lambda)$ and $E$ is an even function on $\Lambda:E(\lambda)=E(-\lambda)$ , $\lambda\in\Lambda.$

Proof. See [3, Theorem 5.1]. 1

In what follows, we assume the following conditions:

(A.1) The operator $A$ has compact resolvent. We set $\tilde{A}:=A-E_{0}\geq 0.$

(A.2) Each $B_{j}(j=1, \ldots, J)$ is $\tilde{A}^{1/2}$-bounded.

(A.3) $g_{j},$
$g_{j}/\omega\in L^{2}(\mathbb{R}^{v})$ , $j=1$ , . . . , $J.$

(A.4) The function $\omega$ is continuous on $\mathbb{R}^{v}$ with $\lim_{|k|arrow\infty}\omega(k)=\infty$ and there exist con-

stants $\gamma>0$ and $C>0$ such that

$|\omega(k)-\omega(k’)|\leq C|k-k’|^{\gamma}(1+\omega(k)+\omega(k’)) , k, k’\in \mathbb{R}^{\nu}.$

Assumption (A.1) implies that $A$ has a normalized ground state. We denote it by $\psi_{0}$ :

$A\psi_{0}=E_{0}\psi_{0}, \Vert\psi_{0}\Vert=1.$

The vector $\Omega_{0}$ $:=\{1, 0, 0, . . .\}$ $\in \mathcal{F}$ is called the Fock vacuum. We denote by $P_{\Omega_{0}}$

the orthogonal projection onto $\{\alpha\Omega_{0}|\alpha\in \mathbb{C}\}$ . The orthogonal projection onto $ker\tilde{A}=$

$ker(A-E_{0})$ is denoted by $p\psi_{0}.$

Theorem 6.2 [4] Assume $(A. 1)-(A.4)$ . Then there exists a constant $r>0$ independent

of $\lambda$ such that the following hold:

(i) $(-r, r)\subset\Lambda.$

(ii) For all $\lambda\in(-r, r)$ , $H_{GSB}(\lambda)$ has a ground state $\Psi_{0}(\lambda)$ and there exists a constant

$M>0$ independent of $\lambda\in(-r, r)$ such that, for all $|\lambda|<r_{f}\Vert\Psi_{0}(\lambda)\Vert\leq 1$ and

$\langle\Psi_{0}(\lambda),p_{\psi_{0}}\otimes P_{\Omega_{0}}\Psi_{0}(\lambda)\rangle\geq 1-\lambda^{2}M^{2}>0$
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6.3 Second order asymptotic expansion of $E(\lambda)$ in $\lambda$

We need additional assumptions:

(A.5) The eigenvalue $E_{0}$ of $A$ is simple and there exists a $j_{0}\in\{1, . . . , J\}$ such that
$B_{j_{0}}\psi_{0}\neq 0.$

(A.6) The set $\{g_{1}, . . . , g_{J}\}\subset L^{2}(\mathbb{R}^{\nu})$ is linearly independent.

Theorem 6.3 (Second order asymptotics) Assume $(A.l)-(A.6)$ and let

$a_{GSB} := \frac{1}{2}\sum_{j,\ell=1}^{J}\int_{\omega(k)>0}\langle B_{j}\psi_{0}, (\tilde{A}+\omega(k))^{-1}B_{\ell}\psi_{0}\rangle g_{j}(k)_{9\ell}^{*}(k)dk.$

Then $a_{GSB}>0$ and
$E(\lambda)=E_{0}-a_{GSB}\lambda^{2}+o(\lambda^{2}) (\lambdaarrow 0)$ .

Proof. See [3, Theorem 5.13]. 1

Remark 6.4 A similar asymptotic expansion is obtained for a massless Derezi\’{n}ski-G\’erard

model [10] by $Faupin-M\phi 1ler$-Skibsted [11] and for the Pauli-Fierz model in nonrelativistic

QED by Hainzl-Seiringer [13]. But the methods are quite different from our method.

6.4 Higher order asymptotics

In this section we use the following notation:

$H_{I}:= \sum_{j=1}^{J}B_{j}\otimes\phi(g_{j}) , Q_{0}:=I-p_{\psi 0}\otimes P_{\Omega_{0}},$

$H_{0}’$ $:=Q_{0}H_{0}Q_{0}$ (the reduced part of $H_{0}$ to $[ker(H_{0}-E_{0})]^{\perp}$ ),

$K_{\ell}(x_{1}, \ldots, x_{\ell}):=\sum_{r=1}^{\ell}(-1)^{r}\sum_{j_{1}+.\cdot.\cdot.\cdot+j_{r}=\ell j_{1},,j_{t}\geq 1}x_{j_{1}}\cdots x_{j_{r}}(E_{0}-H_{0}’)^{-(r+1)}Q_{0}H_{I},$

$(x_{1}, \ldots, x_{\ell})\in \mathbb{R}^{\ell}.$

Theorem 6.5 (Asymptotic expansion up to any finite order) Assume $(A. 1)-(A.6)$ and

$g_{j},$
$\frac{9j}{\omega^{N-1}}\in L^{2}(\mathbb{R}^{\nu})$ , $j=1$ , . . . , $J$

with $N\geq 4$ even. Let $b_{1}=0$ and

$b_{n}= \sum$

$q, \ell\geq 1\ell_{1,)}\ell_{q}\geq 0\sum_{q+\ell_{--n\ell_{1+\cdots.+\ell_{q}=\ell-1}}}\langle H_{I}\psi_{0}\otimes\Omega_{0}, K_{l_{1}}(b_{1}, . . . , b_{\ell_{1}})$

. . . $K_{l_{q}}(b_{1}, \ldots, b_{\ell_{q}})\psi_{0}\otimes\Omega_{0}\rangle,$

$n=2$ , . . . , $N.$
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Then

and

$b_{2n-1}=0,$ $n=1$ , . . . , $\frac{N}{2}$

$E( \lambda)=E_{0}+\sum_{n=1}^{N/2}b_{2n}\lambda^{2n}+o(\lambda^{N})$ $(\lambdaarrow 0)$ .

Proof. See [3, Theorem 5.17]. I
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