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Abstract

Let $G$ be a definably compact definable group and $X$ a definable
$G$ set. We prove that there exists a definable slice at every point of $X$

and $X$ is covered by finitely many definable $G$ tubes.

1 Introduction

In this paper we consider definable slices in an $0$-minimal expansion $\mathcal{N}=$

$(R,$ $+,$
$\cdot,$

$<$ , of a real closed field $R$ . It is known that there exist uncount-
ably many $0$-minimal expansions of the field $\mathbb{R}$ of real numbers([ll]).

Definable set and definable maps are studied in [2], [3], and see also
[12]. Everything is considered in $\mathcal{N}=(R,$ $+,$ $\cdot,$

$<$ , and definable maps are
assumed to be continuous unless otherwise stated.

In this paper we prove the existence of a slice in the definable category.

Theorem 1.1. Let $G$ be a definably compact definable group and $X$ a defin-
able $G$ set.

(1) For every point $x\in X$ , there exists a definable slice $S$ at $x.$

(2) $X$ is covered by finitely many definable $G$ tubes.

Theorem 1.1 is a generalization of [5].
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2 Preliminaries

Let $G$ be a topological group, $X$ a $G$ space and $x\in X.$ A slice at $x$ is a subset
$S$ of $X$ containing $x$ such that $G_{x}S=S$ and the map $\phi$ : $G\cross c_{x}Sarrow X$ defined
by $\phi([g, s])=gs$ is a $G$ imbedding onto a $G$ invariant open neighborhood
$GS$ of $G(x)$ in $X$ , and $GS$ is called a $G$ tube. It is known that there exists a
slice when $G$ is a compact Lie group and $X$ is a completely regular $G$ space
([4], [8], [9]).

A subset $X$ of $R^{n}$ is definable (in $\mathcal{N}$) if it is defined by a formula
(with parameters). Namely, there exist a formula $\phi(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m})$

and elements $b_{1}$ , . . . , $b_{m}$ $\in$ $R$ such that $X$ $=$ $\{(a_{1)}\ldots, a_{n})$ $\in$

$R^{n}|\phi(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m})$ is true in $\mathcal{N}$}.
For any $-\infty\leqq a<b\leqq\infty$ , an open interval $(a, b)_{R}$ means $\{x\in R|a<$

$x<b\}$ , for any $a,$ $b\in R$ with $a<b$ , a closed interval $[a, b]_{R}$ means $\{x\in R|a\leqq$

$x\leqq b\}$ . We call $\mathcal{N}$
$0$ -minimal (order-minimal) if every definable subset of $R$

is a finite union of points and open intervals.
A real closed field $(R, +, \cdot, <)$ is an $0$-minimal structure and every defin-

able set is a semialgebraic set [13], and a definable map is a semialgebraic

map [13]. In particular, the semialgebraic category is a special case of a
definable one.

The topology of $R$ is the interval topology and the topology of $R^{n}$ is the

product topology. Note that $R^{n}$ is a Hausdorff space.
The field $\mathbb{R}$ of real nubmers, $\mathbb{R}_{al_{9}}=$ { $x\in \mathbb{R}|x$ is algeraic over $\mathbb{Q}$ } are

Archimedean real closed fields.
The Puiseux series $\mathbb{R}[X]^{\wedge}$ , namely $\sum_{i=k}^{\infty}a_{i}X^{\frac{i}{q}},$

$k\in \mathbb{Z},$ $q\in \mathbb{N},$ $a_{i}\in \mathbb{R}$ is a
non-Archimedean real closed field.

Fact 2.1. (1) The characteristic of a real closed field is O.
(2) For any cardinality $\kappa\geqq\aleph_{0}$ , there exist $2^{\kappa}$ many non-isomorphic real

closed fields whose cardinality are $\kappa.$

(3) In a general real closed field, even for a $C^{\infty}$ function, the interme-

diate value theorem, existence theorem of maximum and minimum, Rolle’s
theorem, the mean value theorem do not hold. Even for a $C^{\infty}$function f in

one varianble, the result that $f’>0$ implies $f$ is increasing does not hold.

Definition 2.2. Let $X\subset R^{n},$ $Y\subset R^{m}$ be definable sets.
(1) A continuous map $f$ : $Xarrow Y$ is a definable map if the graph of $f$

$(\subset R^{n}\cross R^{m})$ is definable.
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(2) A definable map $f$ : $Xarrow Y$ is a definable homeomorphism if there
exists a definable map $f’$ : $Yarrow X$ such that $fof’=id_{Y},$ $f’ of=id_{X}.$

Definition 2.3. A group $G$ is a definable group if $G$ is definable and the
group operations $G\cross Garrow G,$ $Garrow G$ are definable.

Let $G$ be a definable group. A pair $(X, \phi)$ consisting a definable set $X$

and a $G$ action $\phi$ : $G\cross Xarrow X$ is a definable $G$ set if $\phi$ is definable. We
simply write $X$ instead of $(X, \phi)$ .

Definition 2.4. Let $X,$ $Y$ be definable $G$ sets.
(1) A definable map $f$ : $Xarrow Y$ is a definable $G$ map if for any $x\in$

$X,$ $g\in G,$ $f(gx)=gf(x)$ .

(2) A definable $G$ map $f:Xarrow Y$ is a definable $G$ homeomorphism if
there exists a definable $G$ map $h$ : $Yarrow X$ such that $foh=id_{Y},$ $hof=id_{X}.$

Definition 2.5. (1) A definable set $X$ $\subset$ $R^{n}$ is definably compact
if for any definable map $f$ : $(a, b)_{R}$ $arrow$ $X$ , there exist the limits
$\lim_{xarrow a+0}f(x)$ , $\lim_{xarrow b-0}f(x)$ in $X.$

(2) A definable set $X\subset R^{n}$ is definably connected if there exist no
definable open subsets $U,$ $V$ of $X$ such that $X=U\cup V,$ $U\cap V=\emptyset,$ $U\neq$

$\emptyset,$ $V\neq\emptyset.$

A compact (resp. A connected) definable set is definably compact (resp.
definably connected). But a definably compact (resp. a definably connected)

definable set is not always compact (resp. connected). For example, if $R=$

$\mathbb{R}_{al_{9}}$ , then $[0, 1]_{\mathbb{R}_{alg}}=\{x\in \mathbb{R}_{alg}|0\leqq x\leqq 1\}$ is definably compact and
definably connected, but it is neither compact nor connected.

Theorem 2.6 ([10]). For a definable set $X\subset R^{n},$ $X$ is definably compact if
and only if $X$ is closed and bounded.

The following is a definable version of the fact that the image of a compact
(resp. a connected) set by a continuous map is compact (resp. connected).

Proposition 2.7. Let $X\subset R^{n},$ $Y\subset R^{m}$ be definable set, $f$ : $Xarrow Y$ a

definable map. If $X$ is definably compact (resp. definably connected), then
$f(X)$ is definably compact (resp. definably connected).
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Theorem 2.8. (1) (The intermediate value theorem) For a definable function
$f$ on a definably connected set $X$ , if $a,$ $b\in X,$ $f(a)\neq f(b)$ then $f$ takes all
values between $f(a)$ and $f(b)$ .

(2) (Existence theorem of maximum and minimum) Every definable func-
tion on a definably compact definable set attains maximum and minimum.

(3) (Rolle’s theorem) Let $f$ : $[a, b]_{R}arrow R$ be a definable junction such that
$f$ is differentiable on $(a, b)_{R}$ and $f(a)=f(b)$ . Then there exists $c$ between a
and $c$ with $f’(c)=0.$

(4) (The mean value theorem) Let $f$ : $[a, b]_{R}arrow R$ be a definable junction
which is differentiable on $(a, b)_{R}$ . Then there exists $c$ between $a$ and $c$ with
$f’(c)= \frac{f(b)-f(a)}{b-a}.$

(5) Let $f$ : $(a, b)_{R}arrow R$ be a differentiable definable function. If $f’>0$
on $(a, b)_{R}$ , then $f$ is increasing.

Example 2.9. (1) Let $\mathcal{N}$ be $(\mathbb{R}_{atg}, +, \cdot, <)$ . Then $f:\mathbb{R}_{alg}arrow \mathbb{R}_{alg},$ $f(x)=2^{x}$

is not defined([14])$\circ$

(2) Let $\mathcal{N}$ be $(\mathbb{R}, +, \cdot, <)$ . Then $f$ : $\mathbb{R}arrow \mathbb{R},$ $f(x)=2^{x}$ is defined but not

$\mathcal{N}de.fi$

nable in $\mathcal{N}$ , and $h:\mathbb{R}arrow \mathbb{R},$ $h(x)=\sin x$ is defined but not definable in

3 Idea of proof of Theorem 1.1

We say that two homogeneous definable $G$ sets are equivalent if they are
definably $G$ homeomorphic. Let $(G/H)$ be the equivalence class of $G/H.$

The set of equivalence classes of homogeneous definable $G$ sets has an defined
$(X)\geqq(Y)$ if there exists a definable $G$ map $Xarrow Y$ . Then the reflexivity

and the transitivity hold and the anti-symmetry is true.

Theorem 3.1 ([6]). Let $G$ be a definably compact definable group. Then

every definable $G$ set has only finitely many orbit types.

Theorem 3.2 ([6]). Let $G$ be a definably compact definable group, $X$ a de-

finable Gset with transitive action and $x\in X$ . Then the map $f$ : $G/G_{x}arrow X$

defined by $f(gG_{x})=gx$ is a definable $Ghomeomorphi_{\mathcal{S}}m.$

The following is a fundamental facts of $0$-minimal structures.

Theorem 3.3. (1) (Monotonicity theorem (e.g. 3.1.2, 3.1.6. [2])). Let
$f$ : $(a, b)_{R}arrow R$ be a function with the definable graph. Then there exist
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finitely many points $a=a_{0}<a_{1}<\cdots<a_{k}=b$ such that on each subinterval
$(a_{j}, a_{j+1})_{R}$ , the function is either constant, or strictly monotone and contin-
uous. Moreover for any $c\in(a, b)_{R}$ , the limits $\lim_{xarrow c+0}f(x)$ , $\lim_{xarrow c-0}f(x)$

exist in $R\cup\{\infty\}\cup\{-\infty\}.$

(2) (Cell decomposition theorem ($e.g$ . 3.2.11. [2])). For any definable
subsets $A_{1}$ , . . . , $A_{k}$ of $R^{n}$ , there exists a cell decomposition of $R^{n}$ partitioning
each $A_{1}$ , . . . $A_{k}.$

Let $A$ be a definable subset of $R^{n}$ and $f$ : $Aarrow R$ a function with the

definable graph. Then there exists a cell decomposition $\mathcal{D}$ of $R^{n}$ partitioning
$A$ such that each $B\subset A,$ $B\in \mathcal{D},$ $f|B$ : $Barrow R$ is continuous.

(3) (Triangulation theorem $(e.g.$ $8.2.9.$ $[2])$). Let $S\subset R^{n}$ be a definable
set and let $S_{1},$ $S_{2}$ , . . . , $S_{k}$ be definable subsets of S. Then $S$ has a triangulation
in $R^{n}$ compatible with $S_{1}$ , . . . , $S_{k}.$

(4) (Piecewise trivialization theorem $(e.g.$ $8.2.9.$ $[2])$). Let $f$ : $Sarrow A$ be a

definable map between definable sets $S$ and A. Then there is a finite partition
$A_{1}$ , . . . , $A_{k}$ of $A$ into definable sets such that each $f|f^{-1}(A_{i}):f^{-1}(A_{i})arrow A_{i}$

is definably trivial.
(5) (Existence of definable quotients ($e.g$ . 10.2.18 [2])). Let $G$ be a defin-

ably compact definable group and $X$ a definable $G$ set. Then the orbit space
$X/G$ exists as a definable set and the orbit map $\pi$ : $Xarrow X/G$ is surjective,

definable and definably proper.

Let $G$ be a definably compact definable group, $X$ a definable $G$ set and
$x\in X.$ A definable slice at $x$ is a definable subset $S$ of $X$ containing $x$ such
that $G_{x}S=S$ and the map $\phi$ : $G\cross G_{x}Sarrow X$ defined by $\phi([g, s])=gs$ is a
definable $G$ imbedding onto a $G$ invariant definable open neighborhood $GS$

of $G(x)$ in $X$ , and $GS$ is called a definable $G$ tube. Remark that $G\cross G_{x}S$

exists a definable set because $G_{x}$ is definably compact and Theorem 3.3, and
the natural $G$ action $G\cross G\cross c_{x}Sarrow G\cross G_{x}S,$ $(g, [g’, x])\mapsto[gg’, x]$ induced
by $G\cross G\cross Sarrow G\cross S,$ $(g, (g’, x))\mapsto(gg’, x)$ is definable.

Proposition 3.4 (e.g. II. 4.2 [1]). Let $G$ be a compact Lie group, $X$ a $G$

set, $S$ a $\mathcal{S}ubset$ of $X$ and $x\in S.$ Then the following three conditions are
equivalent.

(1) There exists a $G$ imbedding $\phi$ : $G\cross c_{x}^{A}arrow X$ onto a $G$ invariant
open neighborhood of $G(x)$ with $\phi([e, A])=S$ , where $A$ is a $G_{x}$ space.

(2) $S$ is a slice at $x.$

(3) $GS$ is a $G$ invariant open neighborhood of $G(x)$ and there exists a $G$

retraction $f:GSarrow G(x)$ such that $f^{-1}(x)=S.$
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By a way similar to the proof of Proposition 3.1, we have the following
proposition.

Proposition 3.5 ([6]). Let $G$ be a definably compact definable group, $X$ a
definable $G$ set, $S$ a definable subset of $X$ and $x\in S.$ Then the following
three conditions are equivalent.

(1) There exists a definable $G$ imbedding $\phi$ : $G\cross G_{x}Aarrow X$ onto a $G$

invariant definable open neighborhood of $G(x)$ with $\phi([e, A])=S$ , where $A$ is
a definable $G_{x}$ set.

(2) $S$ is a definable slice at $x.$

(3) $GS$ is a $G$ invariant definable open neighborhood of $G(x)$ and there
exists a definable $G$ retraction $f:GSarrow G(x)$ such that $f^{-1}(x)=S.$

By a way similar to the proof of 2.5 [7], we have the following theorem.

Theorem 3.6 ([6]). Let $G$ be a definably compact definable $group_{f}X$ a de-

finable $G$ set, $Y$ a definable set and $f$ : $Xarrow Y$ a $G$ invariant surjective

definable map. Then there exists a finite partition $\{C_{i}\}_{i}$ of $Y$ into definable
sets such that each $f|f^{-1}(C_{i})$ : $f^{-1}(C_{i})arrow C_{i}$ is definably $G$ trivial.

Proposition 3.7 ([6]). Let $X$ be a definable set and $A$ a definable closed
subset of X. Suppose that $A$ is a definable strong deformation retract of $X.$

Then for any definable open neighborhood $U$ of $A$ in $X$ , there exist a definable
closed neighborhood $N$ of $A$ in $U$ and a definable map $\rho$ : $Xarrow U$ such that
$\rho|N=id$ and $\rho(X-N)\subset U-N.$

Idea of Proof of Theorem 1.1.
We prove the condition (3) in Proposition 3.5.
To do so, we use finiteness of orbit types, piecewise trivialization of re-

strictions of orbit map, triangulation, Proposition 3.7. 1
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