Spaces of equivariant maps to toric varieties

山口耕平 (Kohhei Yamaguchi)
電気通信大学 情報理工学研究科
(Department of Math., Univ. of Electro-Communications)

Abstract

The main purpose of this note is to announce the recent result in [13] concerning the homotopy type of spaces of algebraic maps from a real projective space to a compact smooth real toric variety. This note is also based on the joint work with Andrzej Kozlowski and Masahiro Ohno [8].

Toric varieties. An irreducible normal algebraic variety X (over \mathbb{C}) is called a toric variety if it has an algebraic action of the complex algebraic torus $\mathbb{T}_{\mathbb{C}} = (\mathbb{C}^*)^r$, such that the orbit $\mathbb{T}_{\mathbb{C}} \cdot *$ of some point $* \in X$ is dense in X and isomorphic to $\mathbb{T}_{\mathbb{C}}$.

A strong convex rational polyhedral cone σ in \mathbb{R}^n is a subset of \mathbb{R}^n of the form $\sigma = \{ \sum_{k=1}^{s} a_k n_k | a_k \geq 0 \}$, such that the set $\{ n_k \}_{k=1}^{s} \subset \mathbb{Z}^n$ does not contain any line.

A finite collection Σ of strongly convex rational polyhedral cones in \mathbb{R}^n is called a fan if every face of element of Σ belongs to Σ and the intersection of any two elements of Σ is a face of each other. It is well-known that a toric variety X is completely characterized up to isomorphism by the fan Σ. We denote by X_{Σ} the corresponding toric variety associated to Σ. A cone σ in \mathbb{R}^n is called smooth (resp. simplicial) if it is generated by a subset of a basis of \mathbb{Z}^n (resp. a subset of a basis of \mathbb{R}^n). A fan Σ is called complete if $\bigcup_{\sigma \in \Sigma} \sigma = \mathbb{R}^n$. It is known that X_{Σ} is compact iff Σ is complete, and that X_{Σ} is smooth iff every $\sigma \in \Sigma$ is smooth [4, Theorem 1.3.12]. It is also known that $\pi_1(X_{\Sigma})$ is isomorphic to the quotient of \mathbb{Z}^n by the subgroup generated by $\bigcup_{\sigma \in \Sigma} \sigma \cap \mathbb{Z}^n$. [4, Theorem 12.1.10]. In particular, X_{Σ} is simply connected if it is compact.

Real toric varieties. For a fan Σ, let $X_{\Sigma, \mathbb{R}}$ denote the subspace of X_{Σ} consisting of all real points of X_{Σ}. Alternatively the space $X_{\Sigma, \mathbb{R}}$ is given by replacing the complex numbers \mathbb{C} by the real numbers \mathbb{R} everywhere in the given definitions of a toric variety X_{Σ} [18, Def. 6.1], and it is called a real toric variety. Note that $X_{\Sigma, \mathbb{R}}$ with the intersection $X_{\Sigma, \mathbb{R}} = X_{\Sigma} \cap \mathbb{R}P^N$ when X_{Σ} is a toric variety embedded in $\mathbb{C}P^N$.

Homogenous coordinates of $X_{\Sigma, \mathbb{K}}$. We shall use the symbols $\{ z_k \}_{k=1}^{s}$ to denote variables of polynomials, and we assume that $\mathbb{K} = \mathbb{R}$ or \mathbb{C}. For polynomials $f_1, \cdots, f_s \in $
\[V_{\mathbb{K}}(f_{1}, \ldots, f_{s}) = \{ x \in \mathbb{K}^{r} \mid f_{k}(x) = 0 \text{ for each } 1 \leq k \leq s \}. \]

Let \(\Sigma(1) = \{ \rho_{1}, \ldots, \rho_{r} \} \) denote the set of all one dimensional cones in a fan \(\Sigma \), and let \(n_{k} \in \mathbb{Z}^{n} \) denote the generator of \(\rho_{k} \cap \mathbb{Z}^{n} \) such that \(\rho_{k} \cap \mathbb{Z}^{n} = \mathbb{Z}_{\geq 0} \cdot n_{k} \) (called the \textit{primitive element} of \(\rho_{k} \)) for each \(1 \leq k \leq r \). Define the affine variety \(Z_{\Sigma, \mathbb{K}} \subset \mathbb{K}^{r} \) by

\[Z_{\Sigma, \mathbb{K}} = V_{\mathbb{K}}(z^{\hat{\sigma}} \mid \sigma \in \Sigma), \]

where \(z^{\hat{\sigma}} \) denotes the monomial \(z^{\hat{\sigma}} = \prod_{1 \leq k \leq r, n_{k} \not\in \sigma} z_{k} \in \mathbb{Z}[z_{1}, \ldots, z_{r}] \). Let \(T_{\mathbb{K}}^{r} = (\mathbb{K}^{*})^{r} \) and define the subgroup \(G_{\Sigma, \mathbb{K}} \subset T_{\mathbb{K}}^{r} \) by

\[G_{\Sigma, \mathbb{K}} = \{ (\mu_{1}, \ldots, \mu_{r}) \in T_{\mathbb{K}}^{r} \mid \prod_{k=1}^{r} \mu_{k}(m, n_{k}) = 1 \text{ for all } m \in \mathbb{Z}^{n} \}. \]

It is known that there is an isomorphism \(X_{\Sigma, \mathbb{K}} \cong (\mathbb{K}^{r} \setminus Z_{\Sigma, \mathbb{K}})/G_{\Sigma, \mathbb{K}} \) for \(\mathbb{K} = \mathbb{C} \) if the set \(\{ n_{1}, \ldots, n_{r} \} \) spans \(\mathbb{R}^{n} \), where the group \(G_{\Sigma, \mathbb{K}} \) acts on the complement \(\mathbb{K}^{r} \setminus Z_{\Sigma, \mathbb{K}} \) by the coordinate-wise multiplications and the space \((\mathbb{K}^{r} \setminus Z_{\Sigma, \mathbb{K}})/G_{\Sigma, \mathbb{K}} \) denotes its orbit space.

It is known that \(G_{\Sigma, \mathbb{K}} \) acts freely on the complement \(\mathbb{K}^{r} \setminus Z_{\Sigma, \mathbb{K}} \) if \(\Sigma \) is smooth and \(\mathbb{K} = \mathbb{C} \). In this case, for \(\mathbb{K} = \mathbb{C} \) there are isomorphisms

\[X_{\Sigma, \mathbb{K}} \cong (\mathbb{K}^{r} \setminus Z_{\Sigma, \mathbb{K}})/G_{\Sigma, \mathbb{K}} \quad \text{and} \quad G_{\Sigma, \mathbb{K}} \cong T_{\mathbb{K}}^{r-n}. \]

Note that (1.4) also holds for \(\mathbb{K} = \mathbb{R} \) if \(\Sigma \) is smooth and complete [19, Lemma 7.3].

We say that a set of primitive elements \(\{ n_{i_{1}}, \ldots, n_{i_{k}} \} \) is \textit{primitive} if they do not lie in any cone in \(\Sigma \) but every proper subset does. It is known that

\[Z_{\Sigma, \mathbb{K}} = \bigcup_{\{ n_{i_{1}}, \ldots, n_{i_{k}} \}: \text{primitive}} V_{\mathbb{K}}(z_{i_{1}}, \ldots, z_{i_{k}}). \]

So \(Z_{\Sigma, \mathbb{K}} \) is a closed variety with real dimension \((r - r_{\min}) \dim_{\mathbb{R}} \mathbb{K} \), where we set

\[r_{\min} = \min \{ k \in \mathbb{Z}_{\geq 1} \mid \{ n_{i_{1}}, \ldots, n_{i_{k}} \} \text{ is primitive} \}. \]

Spaces of continuous maps. For connected spaces \(X \) and \(Y \), let \(\text{Map}(X, Y) \) be the space of all continuous maps \(f : X \to Y \) and \(\text{Map}^{*}(X, Y) \) the corresponding subspace of all based continuous maps. If \(m \geq 2 \) and \(g \in \text{Map}^{*}(\mathbb{R}P^{m-1}, X) \), let \(F(\mathbb{R}P^{m}, X; g) \) denote the subspace of \(\text{Map}^{*}(\mathbb{R}P^{m}, X) \) given by

\[F(\mathbb{R}P^{m}, X; g) = \{ f \in \text{Map}^{*}(\mathbb{R}P^{m}, X) : f|_{\mathbb{R}P^{m-1}} = g \}, \]

where we identify \(\mathbb{R}P^{m-1} \subset \mathbb{R}P^{m} \) by putting \(x_{m} = 0 \). It is known that there is a homotopy equivalence \(F(\mathbb{R}P^{m}, X; g) \simeq \Omega^{m}X \) if it is not an empty set.
Assumptions. From now on, we assume that the following two conditions are satisfied:

(1.7.1) Let Σ be a complete smooth fan in \mathbb{R}^{n}, $\Sigma(1) = \{ \rho_1, \cdots, \rho_r \}$ be the set of all one-dimension cones in Σ, and all primitive elements $\{ n_1, \cdots, n_r \}$ of the fan Σ spans \mathbb{R}^{n}, where $n_k \in \mathbb{Z}^{n}$ denotes the primitive element of ρ_k for $1 \leq k \leq r$.

(1.7.2) Let $D = (d_1, \cdots, d_r)$ be an r-tuple of positive integers such that $\sum_{k=1}^{r} d_k n_k = 0$.

Then we can identify $X_{\Sigma,K} = (\mathbb{K}^r \setminus Z_{\Sigma,K})/G_{\Sigma,K}$ and we denote by $[a_1, \cdots, a_r]$ the corresponding element of $X_{\Sigma,K}$ for each $(a_1, \cdots, a_r) \in \mathbb{K}^r \setminus Z_{\Sigma,K}$.

Spaces of polynomials representing algebraic maps. Let $H_{d_1,m}^{\mathbb{K}} \subset \mathbb{K}[z_0, \cdots, z_m]$ denote the \mathbb{K}-vector subspace consisting of all homogeneous polynomials of degree d. Let $A_D(m)$ denote the space $A_D^{K}(m) = H_{d_1,m}^{\mathbb{K}} \times H_{d_2,m}^{\mathbb{K}} \times \cdots \times H_{d_r,m}^{\mathbb{K}}$ and let $A_{D,\Sigma}^{K}(m) \subset A_{D}^{K}(m)$ denote the subspace

\[
A_{D,\Sigma}^{K}(m) = \{(f_1, \cdots, f_r) \in A_{D}^{K}(m) | (f_{1}(e_{1}), \cdots, f_{r}(e_{1})) = (1,1, \cdots 1)\},
\]

where we set $F(x) = (f_1(x), \cdots, f_r(x))$. Because $(1,1, \cdots, 1) \in \mathbb{K}^r \setminus Z_{\Sigma,K}$, we choose $x_0 = [1, \cdots, 1] \in X_{\Sigma,K}$ as the base-point of $X_{\Sigma,K}$. Define the subspace $A_D(m, X_{\Sigma,K}) \subset A_{D,\Sigma}^{K}(m)$ by

\[
A_D(m, X_{\Sigma,K}) = \{(f_1, \cdots, f_r) \in A_{D,\Sigma}^{K}(m) | (f_1(x_1), \cdots, f_r(x_1)) = (1,1, \cdots 1)\},
\]

where $x_1 = (1,0, \cdots, 0) \in \mathbb{R}^{m+1}$, and let us choose $[e_1] = [1:0: \cdots : 0]$ as the base-point of $\mathbb{R}P^m$. Define the natural map $j_{D,K} : A_{D,\Sigma}^{K}(m) \to \text{Map}(\mathbb{R}P^m, X_{\Sigma,K})$ by

\[
j_{D,K}(f_1, \cdots, f_r)([x]) = [f_1(x), \cdots, f_r(x)] \quad \text{for} \quad x = (x_0, \cdots, x_m) \in \mathbb{R}^{m+1} \setminus \{0\}.
\]

Since the space $A_{D,\Sigma}^{K}(m)$ is connected, the image of $j_{D,K}$ lies in a connected component of $\text{Map}(\mathbb{R}P^m, X_{\Sigma,K})$, which is denoted by $\text{Map}_D(\mathbb{R}P^m, X_{\Sigma,K})$. This gives the natural map

\[
j_{D,K} : A_{D,\Sigma}^{K}(m) \to \text{Map}_D(\mathbb{R}P^m, X_{\Sigma,K}).
\]

Note that $j_{D,K}(f_1, \cdots, f_r) \in \text{Map}^*(\mathbb{R}P^m, X_{\Sigma,K})$ if $(f_1, \cdots, f_r) \in A_{D}^{K}(m, X_{\Sigma})$. Hence, if we set $\text{Map}^*_D(\mathbb{R}P^m, X_{\Sigma,K}) = \text{Map}^*(\mathbb{R}P^m, X_{\Sigma,K}) \cap \text{Map}_D(\mathbb{R}P^m, X_{\Sigma,K})$, we have the natural map

\[
i_{D,K} = j_{D,K} \mid A_D(m, X_{\Sigma,K}) : A_D(m, X_{\Sigma,K}) \to \text{Map}^*_D(\mathbb{R}P^m, X_{\Sigma,K}).
\]

Suppose that $m \geq 2$ and let us choose a fixed element $(g_1, \cdots, g_r) \in A_{D}(m-1, X_{\Sigma,K})$. For each $1 \leq k \leq r$, let $B_k^{K} = \{ g_k + z_m h : h \in H_{d_k-1,m}^{K} \}$. Then define the subspace $A_D(m, X_{\Sigma,K}; g) \subset A_D(m, X_{\Sigma,K})$ by

\[
A_D(m, X_{\Sigma,K}; g) = A_D(m, X_{\Sigma,K}) \cap (B_1^{K} \times B_2^{K} \times \cdots \times B_r^{K}).
\]
It is easy to see that $i_{D,K}(f_{1}, \cdots, f_{r})|\mathbb{RP}^{m-1} = g$ if $(f_{1}, \cdots, f_{r}) \in A_{D}(m, X_{\Sigma,K}; g)$, where g denotes the map in $Map^{*}_{D}(\mathbb{RP}^{m-1}, X_{\Sigma,K})$ given by

(1.14) $g([x_{0} : \cdots : x_{m-1}]) = [g_{1}(x), \cdots, g_{r}(x)]$ for $x = (x_{0}, \cdots, x_{m-1}) \in \mathbb{R}^{m} \setminus \{0\}$.

Then, one can define the map $i'_{D,K} : A_{D}(m, X_{\Sigma,K}; g) \to F(\mathbb{RP}^{m}, X_{\Sigma,K}; g) \simeq \Omega^{m}X_{\Sigma,K}$ by

(1.15) $i'_{D,K} = i_{D,K}|A_{D}(m, X_{\Sigma,K}; g) : A_{D}(m, X_{\Sigma,K}; g) \to F(\mathbb{RP}^{m}, X_{\Sigma,K}; g) \simeq \Omega^{m}X_{\Sigma,K}$.

Now consider the action of $G_{\Sigma,K}$ on the space $A_{D}^{K}(m)$ given by the coordinate-wise multiplication and define the space $\overline{A}_{D}(m, X_{\Sigma,K})$ by the quotient space

(1.16) $\overline{A}_{D}(m, X_{\Sigma,K}) = A_{D}^{K}(m)/G_{\Sigma,K}$.

It is easy to see that one can define the map $j_{D,K} : \overline{A}_{D}(m, X_{\Sigma,K}) \to Map_{D}(\mathbb{RP}^{m}, X_{\Sigma,K})$ by

(1.17) $j_{D,K}([f_{1}, \cdots, f_{r}])([x_{0}, \cdots, x_{r}]) = [f_{1}(x), \cdots, f_{r}(x)]$ for $x \in \mathbb{R}^{m+1} \setminus \{0\}$.

Let d_{\min} and $D_{\pi}(d_{1}, \cdots, d_{r}; m, r)$ be the positive integer defined by

(1.18) $d_{\min} = \min\{d_{1}, d_{2}, \cdots, d_{r}\}, \quad D(d_{1}, \cdots, d_{r}; m) = (r_{\min} - m - 1)d_{\min} - 2$.

From now on we write $(X_{\Sigma,K}, Z_{\Sigma,K}, G_{\Sigma,K}) = (X_{\Sigma}, Z_{\Sigma}, G_{\Sigma})$ if $K = \mathbb{C}$.

The main results. The main results of this note are stated as follows.

Theorem 1.1 ([13]). Let Σ be a complete smooth fan in \mathbb{R}^{n}, let $\{d_{k} : 1 \leq k \leq r\}$ be the set of positive integers satisfying the conditions (1.7.1), (1.7.2), and let $X_{\Sigma,R}$ be a smooth compact real toric variety associated to the fan Σ. Then if $1 \leq m \leq r_{\min} - 2$ and $D = (d_{1}, \cdots, d_{r}) \in (\mathbb{Z}_{\geq 1})^{r}$, the map

$$i'_{D,R} : A_{D}(m, X_{\Sigma,R}; g) \to F(\mathbb{RP}^{m}, X_{\Sigma,R}; g) \simeq \Omega^{m}X_{\Sigma,R}$$

is a homology equivalence through dimension $D(d_{1}, \cdots, d_{r}; m)$.

Theorem 1.2 ([13]). Under the same assumptions as Theorem 1.1, if $1 \leq m \leq r_{\min} - 2$ and $D = (d_{1}, \cdots, d_{r}) \in (\mathbb{Z}_{\geq 1})^{r}$, the maps

$$\begin{align*}
&j_{D,R} : \overline{A}_{D}(m, X_{\Sigma,R}) \to Map_{D}(\mathbb{RP}^{m}, X_{\Sigma,R}) \\
i_{D,R} : A_{D}(m, X_{\Sigma,R}) \to Map^{*}_{D}(\mathbb{RP}^{m}, X_{\Sigma,R})
\end{align*}$$

are homology equivalences through dimension $D(d_{1}, \cdots, d_{r}; m)$.
Remark 1.3. (i) A map $f : X \rightarrow Y$ is called a homology equivalence through dimension D if $f_* : H_k(X, \mathbb{Z}) \xrightarrow{\cong} H_k(Y, \mathbb{Z})$ is an isomorphism for any $k \leq D$.

(ii) Let G be a finite group and let $f : X \rightarrow Y$ be a G-equivariant map between G-spaces X and Y. Then the map $f : X \rightarrow Y$ is called a G-equivariant homology equivalence through dimension D if $f^H : H_k(X^H, \mathbb{Z}) \xrightarrow{\cong} H_k(Y^H, \mathbb{Z})$ is an isomorphism for any $k \leq D$ and any subgroup $H \subset G$, where $W^H = \{ x \in W \mid g \cdot x = x \text{ for any } g \in H \}$ for a G-space W and f^H denotes the restriction map $f^H = f|X^H$.

(iii) Note that the complex conjugation on \mathbb{C} naturally induces the $\mathbb{Z}/2$-action on the space X_Σ, and it is easy to see that $(X_\Sigma)^{\mathbb{Z}/2} = X_{\Sigma, R}$. Similarly, it also induces the $\mathbb{Z}/2$-actions on the space $A_D(m, X_\Sigma)$, $\tilde{A}_D(m, X_\Sigma)$, $A_D(m, X_\Sigma; g)$. Moreover, if we consider the space $\mathbb{R}P^m$ as a $\mathbb{Z}/2$-space of the trivial action, the $\mathbb{Z}/2$-action X_Σ also induces the $\mathbb{Z}/2$-actions on the spaces $\text{Map}^*_D(\mathbb{R}P^m, X_\Sigma)$, $\text{Map}_D(\mathbb{R}P^m, X_\Sigma)$, $F(\mathbb{R}P^m, X_\Sigma; g)$.

Corollary 1.4 ([8], [13]). Under the same assumptions as Theorem 1.1, if $2 \leq m \leq r_{\min} - 2$ and $D = (d_1, \cdots, d_r) \in (\mathbb{Z}_2)^r$, the maps

\[
\left\{\begin{array}{l}
i_D'D_C : A_D(m, X_\Sigma; g) \rightarrow F(\mathbb{R}P^m, X_\Sigma; g) \simeq \Omega^m X_\Sigma \\
j_D'D_C : A_D(m, X_\Sigma) \rightarrow \text{Map}^*_D(\mathbb{R}P^m, X_\Sigma) \\
i_D'D_C : A_D(m, X_\Sigma) \rightarrow \text{Map}^*_D(\mathbb{R}P^m, X_\Sigma)
\end{array}\right.
\]

are $\mathbb{Z}/2$-equivariant homology equivalences through dimension $D(d_1, \cdots, d_r; m)$. \hfill \Box

References

Department of Mathematics, University of Electro-Communications
1-5-1 Chufugaoka, Chofu, Tokyo 182-8585, Japan
E-mail: kohheil@im.uec.ac.jp