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Abstract. Let $G$ be the alternating group on 5letters and let $F$ be a
closed smooth manifold diffeomorphic to the fixed point set of a smooth
$G$-action on a disk. Marek Kaluba proved that if $F$ is even dimensional

then there exists a smooth $G$-action on a closed manifold $X$ being ho-

motopy equivalent to a complex projective space such that the fixed

point set of the $G$-action is diffeomorphic to $F$ . In this paper we dis-

cuss whether series of manifolds diffeomorphic or homotopy equivalent

to complex projective spaces, real projective spaces, or lens spaces, admit

smooth $G$-actions with fixed point set diffeomorphic to $F.$

1. INTRODUCTION

Let $G$ be a finite group throughout this paper. For a smooth manifold $M$ , let

$\mathfrak{F}_{G}(M)$ denote the family of all manifolds $F$ such that $F=M^{G}$ for some smooth

$G$-action on $M$ . For a family $\mathfrak{M}$ of smooth manifolds, let $\mathcal{F}_{G}(\mathfrak{M})$ denote the union

of $\mathfrak{F}_{G}(M)$ with $M\in \mathfrak{M}$ . Let $\mathfrak{D},$
$\mathfrak{S}$ , and $\mathfrak{P}_{\mathbb{C}}$ denote the families of disks, spheres,

and complex projective spaces, respectively. B. Oliver [19] completely determined

the family $\mathfrak{F}_{G}(\mathfrak{D})$ for $G$ not of prime power order. K. Pawa owski and the author

[18, 14] studied $\mathfrak{F}_{G}(\mathfrak{S})$ for various Oliver groups $G.$

In order to quote a part of Oliver’s result on $\mathfrak{F}_{G}(\mathfrak{D})$ , we adopt the notation $\mathcal{G}_{\mathbb{R}},$

$\mathcal{G}_{\mathbb{C}}^{\sigma},$
$\mathcal{G}_{\mathbb{C}}$ and $\mathcal{E}$ for the families of all finite groups satisfying the following properties,

respectively.
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$\bullet$ $G\in \mathcal{G}_{\mathbb{R}}:G$ possesses a subquotient $K/H$ isomorphic to a dihedral group of

order $2pq$ for some distinct primes $p$ and $q$ , where $H\triangleleft K\leq G.$

$\bullet$ $G\in \mathcal{G}_{\mathbb{C}}^{\sigma}:G$ contains an element $g$ being conjugate to its inverse of order $pq$

for some distinct primes $p$ and $q.$

$\bullet$ $G\in \mathcal{G}_{\mathbb{C}}:G$ contains an element $g$ of order $pq$ for some distinct primes $p$ and

$q.$

$\bullet$ $G\in \mathcal{E}$ : A Sylow 2-subgroup of $G$ is not normal in $G$ , and any element of $G$

is of prime power order.

Note that $\mathcal{G}_{\mathbb{R}}\subset \mathcal{G}_{\mathbb{C}}^{\sigma}\subset \mathcal{G}_{\mathbb{C}}$ . Let $A_{5}$ denote the alternating group on 5letters. Then $A_{5}$

belongs to $\mathcal{E}$ . B. Oliver [19] says that for $G\in \mathcal{F}_{\mathbb{C}}\cup \mathcal{E}$ , a closed manifold $F$ belongs

to $\mathfrak{F}_{G}(\mathcal{D})$ if and only if $\chi(F)\equiv 1mod n_{G}$ and

$\bullet$ $G\in \mathcal{G}_{\mathbb{R}}\Rightarrow no$ restrictions on $T(F)$ ,

$\bullet G\in \mathcal{G}_{\mathbb{C}}^{\sigma}\backslash \mathcal{G}_{\mathbb{R}}\Rightarrow c_{\mathbb{R}}([T(F)])\in c_{\mathbb{H}}(\overline{KSp}(F))+Tor(\overline{KU}(F))$ ,

(1.1)
$\bullet G\in \mathcal{G}_{\mathbb{C}}\backslash \mathcal{G}_{\mathbb{C}}^{\sigma}\Rightarrow[T(F)]\in r_{\mathbb{C}}(\overline{KU}(F))+Tor(\overline{KO}(F))$ ,

$\bullet G\in \mathcal{E}\Rightarrow[T(F)]\in Tor(\overline{KO}(F))$ .

If $G\in \mathcal{E}$ and $F\in \mathfrak{F}_{G}(\mathfrak{D})$ then each connected component of $F$ has same dimension.

The Oliver number $n_{G}$ above is equal to 1 whenever $G$ is nonsolvable.

Marek $Ka1_{b1}ba[5]$ obtained the next two theorems concerned with $\mathfrak{F}_{G}(\mathfrak{P}_{\mathbb{C}})$ .

Theorem. [5, Theorem 2.6] Let $G$ be a nontrivial perfect group in the class $\mathcal{G}_{\mathbb{C}}$ and

let $F$ be a closed manifold in $\mathfrak{F}_{G}(\mathcal{D})$ . In the case $G\in \mathcal{G}_{\mathbb{C}}\backslash \mathcal{G}_{\mathbb{R}}$ , suppose that some

connected component of $F$ is even dimensional. Then $F$ belongs to $\mathfrak{F}_{G}(\mathfrak{P}\mathbb{C})$ .

Theorem. [5, Theorem 4.11] Let $G$ be $A_{5}$ and $F$ a closed manifold in $\mathfrak{F}_{G}(\mathfrak{D})$ .

Suppose that $F$ is even dimensional. Then $F$ is diffeomorphic to the fixed point set

of a smooth $G$ -action on a closed manifold $X$ which is homotopy equivalent to some

complex projective space.

Let, $P_{\mathbb{C}}^{k}$ (resp. $P_{\mathbb{R}}^{k}$ ) denote the complex (resp. real) projective space of complex

(resp. real) dimension $k$ , and let $\Gamma$ be a cyclic subgroup of $\mathbb{C}^{\cross}$ of order $\geq 3$ . The

orbit space $L^{2k+1}=S(\mathbb{C}^{k+1})/\Gamma$ is a lens space of dimension $2k+1$ . Let $\mathfrak{L}$ be the
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family of lens spaces $L^{2k+1},$ $k=2$ , 3, 4, . . .. By examining and improving the proof

of [5, Theorem 4.11] by M. Kaluba, we obtain the next result.

Theorem 1.1. Let $G$ be $A_{5}$ and $F$ a closed manifold in $\mathfrak{F}_{G}(\mathfrak{D})$ . Then there exists

an integer $N>0$ possessing the property that for any $k\geq N,$

(1) $F\in \mathfrak{F}_{G}(D^{k})$ ,

(2) $F\in \mathfrak{F}_{G}(S^{k})$ ,

(3) if $\dim F\equiv 0$ mod2 then $F\in \mathfrak{F}_{G}(P_{\mathbb{C}}^{k})$ ,

(4) $F\in \mathfrak{F}_{G}(X_{k})$ such that $X_{k}$ is a smooth closed manifold homotopy equivalent

to $P_{\mathbb{R}}^{k},$

(5) if $\dim F\equiv 1$ mod2 then $F\in \mathfrak{F}_{G}(Y_{k})$ such that $Y_{k}$ is a smooth closed

manifold homotopy equivalent to $L^{2k+1}.$

This result follows from Theorem 3.4. In Theorem 1.1, one may conjecture that
$P_{\mathbb{R}}^{k}$ and $L^{2k+1}$ can be chosen as $X_{k}$ and $Y_{k}$ respectively, but the author cannot prove

the conjecture so far.

Acknowledgment. The author would like to express his gratitude to Marek Kaluba

and Krzysztof Pawa owski for their information related to this research.

2. DIMENSION CONDITIONS OF FIXED POINT SETS

Let $G$ be a finite group. Let $U$ be a $G$-manifold and $(H, K)$ a pair of subgroups

$H<K\leq G$ . We say that $U$ satisfies the gap condition, cobordism gap condition, or

strong gap cond.tion for $(H, K)$ if the inequality

(2.1) $2 \dim(U_{i}^{H})^{K}<\dim U_{i}^{H},$

(2.2) $2 (\dim\{(U_{i}^{H})^{K}\backslash (U_{i}^{H})^{N_{G}(H)}\}+1)\leq\dim U_{i}^{H},$

or

(2.3) $2\{\dim(U_{i}^{H})^{K}+1\}<\dim U_{i}^{H},$

holds, respectively, for any connected component $U^{H_{i}}$ of $U^{H}.$
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Proposition 2.1. Let $G$ be a perfect group having a cyclic subgroup $C_{2}$ of order 2,

$Y$ the complex projective space associated with the complex $G$ -module

$V=\mathbb{C}^{\oplus m+1}\oplus(\mathbb{C}[G]-\mathbb{C})^{\oplus n},$

where $m\geq 0$ and $n\geq 1$ , and $U$ the $G$ -tubular neighborhood of $Y^{G}.$

(1) $Y$ satisfies the gap condition for $(\{e\}, C_{2})$ if and only if $m+1=n.$

(2) $U$ satisfies the gap condition for $(\{e\}, C_{2})$ if and only if $m+1\leq n.$

(3) If $m+1\leq n$ then $U$ satisfies the strong gap condition for $(H, K)$ such that

$\{e\}\neq H<K\leq G$ and $|K:H|\geq 3.$

Proof. We readily see that $Y^{G}=P_{\mathbb{C}}(\mathbb{C}^{m+1})=P_{\mathbb{C}}^{m}$ and $Y^{C_{2}}$ has two connected

components

$Y_{a}^{C_{2}}=P_{\mathbb{C}}(\mathbb{C}^{m+1}\oplus((\mathbb{C}[G]-\mathbb{C})^{C_{2}})^{\oplus n})=P_{\mathbb{C}}^{m+n(|G|/2-1)}$ and

$Y_{b}^{C_{2}}=P_{\mathbb{C}}(((\mathbb{C}[G]-\mathbb{C})_{C_{2}})^{\oplus n})=P_{\mathbb{C}}^{n|G|/2-1}$

Thus we have $\dim Y=2m-2n+2n|G|,$ $\dim Y_{a}^{C_{2}}=2m-2n+n|G|$ and $\dim Y_{b}^{C_{2}}=$

$n|G|-2$ . Note the equivalences

$\bullet 2(2m-2n+n|G|)<2m-2n+2n|G|\Leftrightarrow m<n$

$\bullet 2(n|G|-2)<2m-2n+2n|G|\Leftrightarrow n-2<m.$

Thus $Y$ satisfies the gap condition for $(\{e\}, C_{2})$ if and only if $n-2<m<n$ , namely

$m+1=n$ . Since $\dim U^{C_{2}}=\dim Y_{a}^{C_{2}},$ $U$ satisfies the gap condition for $(\{e\}, C_{2})$ if

and only if $m<n$ , namely $m+1\leq n.$

For any $H\leq G,$ $U^{H}$ is connected. Let $y$ denote the point $[1, 0, . . . , 0]$ in $Y=$

$P_{\mathbb{C}}(\mathbb{C}\oplus \mathbb{C}^{\oplus m}\oplus(\mathbb{C}[G]-\mathbb{C})^{\oplus n})$ . The tangential representation $T_{y}(Y)$ is isomorphic to

$\mathbb{C}^{\oplus m}\oplus(\mathbb{C}[G]-\mathbb{C})^{\oplus n}$ as complex $G$-modules. Since $\dim U^{H}=\dim T_{y}(Y)^{H}$ , we get

$\dim U^{H}=2\{m+n(|G|/|H|-1)\}=2m-2n+2n|G|/|H|$

and

$\dim U^{H}-2(\dim U^{K}+1)=2\{n-(m+1)\}+2n|G|\{|K|-2|H|\}/(|H||K|)$ .

In the case $n\geq m+1$ and $|K|\geq 3|H|$ , we conclude $2(\dim U^{K}+1)<\dim U^{H}.$ $\square$

Theorem 2.2 (Disk Theorem). Let $G$ be a nontrivial perfect group, $F\in \mathfrak{F}(\mathfrak{D})$ , $F_{0}$

a connected component of $F$ with $x_{0}\in F_{0},$ $m=\dim F_{0}$ , and $W$ a real $G$ -module
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with $\dim W^{G}=m$ . Then there exists a smooth $G$ -action on the disk $D$ of dimension

$\dim W+N(|G|-1)$ for some integer $N\geq 0$ satisfying the following $condition\mathcal{S}.$

(1) $D^{G}=F.$

(2) $T_{x_{0}}(D)$ is isomorphic to $W\oplus(\mathbb{R}[G]-\mathbb{R})^{\oplus N}$ as real $G$-modules.

(3) $D$ satisfies the strong gap condition for arbitrary pair $(H, K)$ such that $H<$

$K\leq G.$

Corollary 2.3. Let $G,$ $F\in \mathfrak{F}(\mathfrak{D})$ , $F_{0},$ $x_{0}\in F_{0},$ $m=\dim F_{0},$ $W,$ $D$ and $N$ be as

in Theorem 2.2. Let $n$ be an arbitrary integer $\geq N.$ Then there exists a smooth

$G$ -action on the disk $S$ of dimension $\dim W+n(|G|-1)$ satisfying the following

conditions.

(1) $S^{G}=FDF’$ and $F’$ is diffeomorphic to $F.$

(2) $T_{x0}(S)$ is isomorphic to $W\oplus(\mathbb{R}[G]-\mathbb{R})^{\oplus n}$ as real $G$ -modules.

(3) $S$ satisfies the strong gap condition for arbitrary pair $(H, K)$ such that $H<$

$K\leq G.$

Proof. We set $X=D\cross D((\mathbb{R}[G]-\mathbb{R})^{\oplus(n-N)})$ . Let $S$ be the double of $X$ . Then $S$

satisfies the desired conditions. $\square$

3. DELETING THEOREM AND REALIZATION THEOREM

In this section we will give a deleting theorem and a realization theorem. The

latter is obtained from the formar and Corollary 2.3. Our main result Theorem 1.1

follows from the realization theorem.

Let $A_{5}$ denote the alternating group on $5$ letters 1 $,2$ , 3, 4, 5, and let $A_{4}$ denote

the alternating group on $4$ letters 1 $,2$ , 3, 4. Unless otherwise stated, we use the

notation:

$\bullet C_{2}=\langle(1,2)(3,4)\rangle$

$\bullet$ $D_{4}=\langle(1,2)(3,4)$ , $(1,3)(2,4)\rangle$

$\bullet C_{3}=\langle(1,2,5)\rangle$

$\bullet$ $D_{6}=\langle(1,2,5)$ , $(1,2)(3,4)\rangle$

$\bullet C_{5}=\langle(1,3,4,2,5)\rangle$

$\bullet$ $D_{10}=$ $\langle(1,3,4,2,5)$ , $(1,2)(3,4$
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These groups and $A_{4}$ are regarded as subgroups of $A_{5}.$

Throughout this section, let $G$ be $A_{5}$ . Then $N_{G}(C_{2})=D_{4},$ $N_{G}(D_{4})=A_{4},$

$N_{G}(C_{3})=D_{6},$ $N_{G}(C_{5})=D_{10}$ , and any maximal proper subgroup of $G$ is conju-

gate to one of $A_{4},$ $D_{10},$ $D_{6}$ . We can readily show

Proposition 3.1. Let $H$ be a maximal proper subgroup of G. Then any two sub-

groups of $H$ are conjugate in $G$ if and only if they are conjugate in $H.$

Proposition 3.2. Let $\alpha$ be the element of the Burnside ring $\Omega(G)$ given by

$\alpha=[G/A_{4}]+[G/D_{10}]+[G/D_{6}]-[G/C_{3}]-2[G/C_{2}]+[G/\{e\}].$

Then for any proper subgroup $H<G,$ $res_{H}^{G}\alpha$ coincides with $[H/H]$ in $\Omega(H)$ .

Theorem 3.3 (Deleting Theorem). $($Let $G=A_{5}.)$ Let $Y$ be a compact connected

smooth $G$ -manifold of dimension $\geq 5$ , with $|\pi_{1}(Y)|<\infty_{f}$ and with a decomposition

$Y^{G}=Y_{0}^{G}DY_{1}^{G}$ such that $\partial Y_{0}^{G}=\emptyset$ . Let $U$ be the $G$ -tubular neighborhood of $Y_{0}^{G}.$

Suppose $U$ satisfies the gap condition for $(\{e\}, C_{2})$ , $(\{e\}, C_{3})$ and $(\{e\}, C_{5})$ , and the

cobordism gap condition for $(C_{2}, D_{6})$ , $(C_{2}, D_{10})$ and $(C_{3}, A_{4})$ . Then there exists a

smooth $G$ -manifold $X$ possessing the following properties.

(1) $X^{G}=Y_{1}^{G}.$

(2) $X$ is homotopy equivalent to $Y.$

(3) $X^{H}$ is diffeomorphic to $Y^{H}$ for any $H$ such that $\{e\}\neq H<G.$

(4) In the case that $\dim Y\equiv 0$ mod2 and $\pi_{1}(Y)=1,$ $X$ is diffeomorphic to $Y.$

Guideline for Proof. There exists a compact connected smooth $G$-submanifold $U_{1}$

of $Y\backslash \partial Y$ with $U\subset U_{1}$ such that $G$ freely acts on $U_{1}\backslash U$ and the inclusion induced

homomorphism $\pi_{1}(U_{1})arrow\pi_{1}(Y)$ is an isomorphism. First, we construct a $G$-framed

map $f_{1}:X_{1}arrow Y$ rel. $Y\backslash \mathring{U}_{1}$ (i.e., $X_{1}\supset Y\backslash \mathring{U}_{1},$

$f_{1}|_{Y\backslash U_{1}^{\circ}}:Y\backslash \mathring{U}_{1}arrow Y\backslash \mathring{U}_{1}$

is the identity map, and $f_{1}(X_{2})\subset U_{1}$ , where

$X_{2}=X_{1}\backslash (Y\backslash \mathring{U}_{1})^{o}\backslash \partial Y)$ .

Next we convert $f_{2}=f_{1}|_{X_{2}}$ : $X_{2}arrow U_{1}$ , to a $G$-framed map $f_{3}$ : $X_{3}arrow U_{1}$ such

that $f_{3}$ is a homotopy equivalence by $G$-surgeries rel. $\partial U_{1}$ of isotropy types (H)
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for $H<G$ . The construction of a $G$-framed map is discussed in Section 4. We

perform the $G$-surgeries of isotropy types (H) with $\{e\}<H<G$ by means of the

reflection method in [8]. We do the $G$-surgeries of isotropy type $(\{e\})$ by showing

triviality of the algebraic $G$-surgery obstruction in the relevant Bak group described

in [9] with the $G$-cobordism invariance property given in [10] and the induction-

restriction property presented in [13, 4]. $\square$

Theorem 3.4 (Realization Theorem). $($Let $G=A_{5}.)$ Let $W$ a real $G$-module with

$\dim W^{G}=m,$ $N$ an integer possessing the property described in Theorem 2.2, and

$Z$ a compact connected smooth $G$ -manifold of dimension $\geq 5$ such that $\partial Z^{G}=\emptyset,$ $V$

the $G$ -tubular neighborhood of $Z^{G},$
$z_{0}$ a point in $Z^{G}$ , and $n$ an integer $\geq N$ . Suppose

$|\pi_{1}(Z)|<\infty$ and $T_{z_{0}}(Z)$ is isomorphic to $W\oplus(\mathbb{R}[G]-\mathbb{R})^{\oplus n}$ . Further suppose $V$

satisfies the gap condition for $(\{e\}, C_{2})$ , $(\{e\}, C_{3})$ and $(\{e\}, C_{5})$ , and the cobordism

gap condition for $(C_{2}, D_{6})$ , $(C_{2}, D_{10})$ , and $(C_{3}, A_{4})$ . Let $F,$ $F_{0},$ $x_{0}\in F_{0}$ be as in

Theorem 2.2. Then there exists a compact $G$ -manifold $X$ satisfying the following

conditions.

(1) $X^{G}$ is diffeomorphic to $F.$

(2) $X$ is homotopy equivalent to $Z.$

(3) In the case that $\dim Z\equiv 0$ mod2 and $\pi_{1}(Z)=0,$ $X$ is diffeomorphic to $Z.$

Proof. Take the smooth $G$-action on the sphere $S$ described in Corollary 2.3 with

$x_{0}\in F_{0}\subset F$ and $S^{G}=FUF’$ such that $T_{x_{0}}(S)\cong W\oplus(\mathbb{R}[G]-\mathbb{R})^{\oplus n}$ and

$F\cong F’$ . Let $Y$ be the connected sum of $S$ and $Z$ at points $x_{0}$ and $z_{0}$ . By setting

$Y_{0}^{G}=F\# Z^{G}$ and $Y_{1}^{G}=F’$ we have $Y^{G}=Y_{0^{G}}\coprod Y_{1}^{G}$ . Note $Y_{0^{G}}$ is without boundary.

The tubular neighborhood $U$ of $Y_{0^{G}}$ satisfies the gap condition for $(\{e\}, C_{2})$ , $(\{e\}, C_{3})$

and $(\{e\}, C_{5})$ , and the cobordism gap condition for $(C_{2}, D_{6})$ , $(C_{2}, D_{10})$ , and $(C_{3}, A_{4})$ .

Deleting the fixed point submanifold $F_{0}^{G}$ from $Y$ by means of Theorem 3.3, there

exists a $G$-manifold $X$ satisfying the desired conditions in the theorem, where $X^{G}=$

$F’\cong F.$ $\square$

4. EQUIVARIANT COHOMOLOGY THEORY $\omega(\bullet)_{G}^{*}$ AND $G$-FRAMED MAPS

Equivariant surgeries are operated on smooth $G$-manifolds, but more precisely

on $G$-framed maps. T. Petrie gave an idea to construct $G$-framed maps by using
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the equivariant cohomology theory $\omega_{G}^{*}$ and the Burnside ring $\Omega(G)$ . In order to

construct our $G$-framed maps, we employ a modification given in [11] of Petrie’s

construction.

Let $\Omega(G)$ denote the Burnside ring, i.e.

$\Omega(G)=$ { $[X]|X$ is a finite G-CW complex},

where $[X]=[Y]$ if and only if $\chi(X^{H})=\chi(Y^{H})$ for all $H\leq G$ . The next proposition

is well known, see [2, 20, 1].

Proposition 4.1. Let $G$ be a nontrivial perfect group. Then there exists an idem-

potnent $\beta$ in the $Burn\mathcal{S}ide$ ring $\Omega(G)$ such that $\chi_{G}(\beta)=1$ and $\chi_{H}(\beta)=0$ for all

$H\neq G.$

Let $S(G)$ and $S(G)_{\max}$ denote the set of all subgroups and all maximal proper

subgroups of $G$ , respectively. For a subgroup $H$ of $G$ , (H) stands for the $G$-conjugacy

class containing $H$ , i.e.

$(H)=\{gHg^{-1}|g\in G\}.$

The $\beta$ in Proposition 4.1 has the form

(4.1)
$\beta=[G/G]-\sum_{(K)\subset S(G)_{\max}}[G/K]-\sum_{(H)\subset \mathcal{F}}a_{H}[G/H],$

for some $G$-invariant lower closed $\mathcal{F}\subset S(G)\backslash (S(G)_{\max}\cup(G))$ and $a_{H}\in \mathbb{Z}.$

Proposition 4.2. Let $G=A_{5}$ and let $\alpha$ be the element of the Burnside ring $\Omega(G)$

given by

$\alpha=[G/A_{4}]+[G/D_{10}]+[G/D_{6}]-[G/C_{3}]-2[G/C_{2}]+[G/\{e\}].$

Then for any proper subgroup $H<G,$ $res_{H}^{G}a$ coincides with $[H/H]$ in $\Omega(H)$ .

Proposition 4.3. Let $G$ be $A_{5}$ . Then there exists a finite G-CW complex $Z$ fulfilling

the following conditions.

(1) $Z^{G}=\{z_{0}, z_{1}\}.$

(2)
$\bigcup_{H\in S(G)_{\max}}Z^{H}=\{z_{0}, z_{1}\}*S(G)_{\max}$

, where each subgroup in $S(G)_{\max}$ is re-

garded as a point. Thus $Z^{H}$ is homeomorphic to the 1-dimensional disk

[-1, 1] for each $H\in S(G)_{\max}.$
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(3) $Z^{D_{4}}=Z^{A_{4}}$ and $Z^{C_{5}}=Z^{D_{10}}.$

(4) $Z^{H}$ is contractible for any subgroup $H<G.$

The G-CW complex $Z$ in this lemma is constructed using Oliver-Petrie’s G-CW-

surgery theory [21] and the wedge sum technique [16].

Let $M_{n}=\mathbb{C}[G]^{\oplus n}$ and let $M_{n}^{\cdot}$ be the one-point compactification of $M_{n}$ , hence we

write $M_{n}^{\cdot}=M_{n}\cup\{\infty\}$ . For a finite G-CW complex $X$ with base point in $X^{G},$

$\overline{\omega}_{G}^{0}(X)=\lim_{narrow\infty}[X\wedge M^{\cdot}, M^{\cdot}]_{0}^{G},$

where $-]_{0}^{G}$ stands for the set of all homotopy classes of maps in the category of

pointed $G$-spaces. For a finite G-CW complex $Z,$ $\omega_{G}^{0}(Z)$ is defined to be $\overline{\omega}_{G}^{0}(Z^{+})$ ,

where

$Z^{+}=ZD(G/G)$

and $G/G$ is regarded as the base point of $Z^{+}.$

For the set $S$ of all powers $\beta^{k},$ $k\in \mathbb{N}$ , the restriction $j^{*}:S^{-1}\omega_{G}^{0}(Z)arrow S^{-1}\omega_{G}^{0}(Z^{G})$

induced by the inclusion map $j:Z^{G}arrow Z$ is an isomorphism. It is obvious that for

any element $\gamma\in\omega_{H}^{0}(Z)$ and any proper subgroup $H$ of $G,$ $res_{H}^{G}\beta\cdot\gamma=0_{Z}$ in $\omega_{H}^{0}(Z)$ .

Lemma 4.4. Let $G$ be a nontrivial perfect group, $\beta$ the element in Proposition 4.1,

and $Z$ a finite G-CW complex with

(4.2) $Z^{G}=\{z_{0}, z_{1}\}.$

Then there exists an element $\gamma\in\omega_{G}^{0}(Z)$ such that $\gamma|_{z\mathfrak{o}}=\beta$ and $\gamma|_{z_{1}}=0_{z_{1}}$ in $\Omega(G)$

and $\beta\gamma=\gamma$ . In addition, for any proper subgroup $H<G$ , there exists a ‘homotopy’

$\Gamma_{H}\in\omega_{H}^{0}(Z\cross I)$ from $res_{H}^{G}\gamma$ to $0_{Z},$ $rel.$ $z_{1}\cross I,$ $i.e.$ $\Gamma_{H}|_{Z\cross\{0\}}=res_{H}^{G}\gamma,$ $\Gamma_{H}|_{Z\cross\{1\}}=0_{Z},$

and $\Gamma_{H}|_{z_{1}\cross I}=0_{z_{1}xI}$ , such that $res_{H}^{G}\beta\cdot\Gamma_{H}=\Gamma_{H}$ . Moreover, for any pair of distinct
proper subgroups $H$ and $K$ of $G$ , there exists a ‘homotopy’ $\overline{\Gamma}_{H,K}\in\omega_{H\cap K}^{0}(Z\cross I\cross I)$

from $res_{H\cap K}^{H}\Gamma_{H}$ to $res_{H\cap K}^{K}\Gamma_{K_{Z}}rel.$ $z_{1}\cross I\cross I$ and $Z\cross\partial I\cross I.$

As a next step, consider the elements $1_{Z}-\gamma\in\omega_{G}^{0}(Z)_{\}}1_{Z\cross I}-\Gamma_{H}\in\omega_{H}^{0}(Z\cross I)$ , and

$1_{Z\cross I\cross I}-\overline{\Gamma}_{H,K}\in\omega_{H\cap K}^{0}(Z\cross I\cross I)$ . Recall that an element $\alpha\in\omega_{G}^{0}(Z)$ is represented

by a $G$-map
$Z^{+}\wedge M^{\cdot}arrow M^{\cdot}$

preserving the base point $\infty$ , where $M=\mathbb{C}[G]^{\oplus n}$ for some $n.$
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Lemma 4.5. Let $G$ be a nontrivial perfect group, $\beta$ the element in Proposition 4.1,

and $Z$ a finite G-CW complex with $Z^{G}=\{z_{0}, z_{1}\}$ . Then there exist maps $\alpha,$
$A_{H}$ , and

$\overline{A}_{H,K}$ satisfying the following conditions (1)$-(3)$ , where $H$ and $K$ range all proper

subgroups of $G$ such that $H\neq K.$

(1) $\alpha$ is a map of pointed $G$ -spaces $Z^{+}\cross M^{\cdot}arrow M^{\cdot}$ such that $[\alpha]=1-\gamma$ for
the $\gamma$ above, and $\alpha|_{\{z_{1}\}^{+}\wedge M}\cdot=id_{\{z_{1}\}\wedge M}+\cdot\cdot$

(2) $A_{H}$ is a homotopy of pointed $H$ -spaces $(Z\cross I)^{+}\wedge M^{\cdot}arrow M^{\cdot}$ from $\alpha$ to $1_{Z},$

where $1_{Z}$ : $Z^{+}\wedge M^{\cdot}arrow M$ and $1_{Z}(z, v)=v$ for all $z\in Z$ and $v\in M,$ $rel.$

$\{z_{1}\}^{+}\wedge M^{\cdot}$

(3) $\overline{A}_{H,K}$ is a homotopy of pointed $H\cap K$ -spaces $((Z\cross I)\cross I)^{+}\wedge Marrow M^{\cdot}$

from $A_{H}$ to $A_{j}rel.$ $(z_{1}\cross I)^{+}\wedge M$ and $(Z\cross\partial)^{+}\wedge M^{\cdot}$

Proposition 4.6. Let $G=A_{5}$ and $\mathcal{K}=(A_{4})\cup(D_{10})\cup(D_{6})\cup(D_{4})\cup(C_{5})$ . Let $Z$

be the finite G-CW complex in Proposition 4.3. Then there exist maps $\alpha,$
$A_{H}$ , and

$\overline{A}_{H,K}$ of Lemma 4.5 satisfying the additional conditions:

(1) $\alpha|_{z0}^{-1}(0)^{G}=\emptyset$ and $|(\alpha|_{z0}^{-1}(0))^{H}|=1$ for $H\in \mathcal{K}.$

(2) For each $H\in \mathcal{K}$ , there exists a connected component $X(H)$ of $\alpha^{-1}(0)$ con-

taining both $(\alpha|_{z0}^{-1}(0))^{H}$ and $(z_{1},0)$ such that $\alpha$ is transversal on $X(H)$ to

$0\subset M$ , the normal derivative of $\alpha$ on $X(H)$ is the identity, and the projec-

tion $Z\cross Marrow Z$ diffeomorphically maps $X(H)$ to $Z^{H}.$

(3) For each pair of $H\in S(G)_{\max}$ and $L\in \mathcal{K}$ with $L\leq H$ , there exists a

connected component $W(H, L)$ of $A_{H}^{-1}(O)$ containing $X(H)^{L}\cross\{0\}(\subset Z\cross$

$M\cross I)$ and $Z^{L}\cross 0\cross\{1\}(\subset Z\cross M\cross I)$ such that $A_{H}$ is transversal on

$W(H, L)$ to $0\subset M$ , the normal derivative of $A_{H}$ on $W(H, L)$ is the identity,

and the projection $Z\cross I\cross Marrow Z\cross I$ diffeomorphically maps $W(H, L)$ to
$Z^{L}\cross I.$

A $G$ -framed map $f=(f, b)$ consists of a $G$-map $f$ : $Xarrow Y$ such that $X$ and

$Y$ are compact smooth $G$-manifold and $f(\partial X)\subset\partial Y$ , and an isomorphism $b$ :

$T(X)\oplus\epsilon_{X}(\mathbb{R}^{m})arrow f^{*}T(Y)\oplus\epsilon_{X}(\mathbb{R}^{m})$ of real $G$-vector bundles for some integer

$m\geq$ O. In the following we suppose $Y$ is connected and $f$ : $(X, \partial X)arrow(Y, \partial Y)$ is

of degree 1,
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Lemma 4.7. Let $Y$ be a compact smooth $G$ -manifold with a decomposition $Y^{G}=$

$Y_{0^{G}}DY_{1}^{G}$ such that $\partial Y_{0^{G}}=\emptyset$ . Let $U$ be the $G$ -tubular neighborhood of $Y_{0^{G}}$ . Then there

exist a $G$ -framed map $f=(f, b)$ , $H$ -framed cobordisms $F_{H}=(F_{H}, B_{H})$ : $f\sim id_{Y},$

$rel.$ $Y\backslash U$ for $H<G$ , and $H\cap K$-framed cobordisms $\overline{F}_{H,K}=(\overline{F}_{H,K}, \overline{B}_{H,K})$ :

$F_{H}\sim F_{K}rel.$
$((Y\backslash \mathring{U})\cross I)\cup(Y\cross\partial I)$ , for $H,$ $K<G$ such that $H\neq K$ , where

$f:Xarrow Y,$

$b:T(X)\oplus\epsilon_{X}(\mathbb{R}^{m})arrow f^{*}(Y)\oplus\epsilon_{X}(\mathbb{R}^{m}))$

$F_{H}:W_{H}arrow Y\cross I,$

$B_{H}$ : $T(W_{H})\oplus\epsilon_{W_{H}}(\mathbb{R}^{m})arrow F_{H}^{*}T(Y\cross I)\oplus\epsilon_{W_{H}}(\mathbb{R}^{m})$ ,

$\overline{F}_{H,K}:\overline{W}_{H,K}arrow Y\cross I\cross I,$

$\overline{B}_{H,K}:T(\overline{W}_{H,K})\oplus\epsilon_{\overline{W}_{H,K}}(\mathbb{R}^{m})arrow\overline{F}_{H}^{*},{}_{K}T(Y\cross I\cross I)\oplus\epsilon_{\overline{W}_{H,K}}(\mathbb{R}^{m})$ ,

for some integer $m>0.$

This lemma is obtained by the arguments in [11].

Lemma 4.8. Let $G=A_{5}$ and $\mathcal{K}=(A_{4})\cup(D_{10})\cup(D_{6})\cup(D_{4})\cup(C_{5})$ . Then the

framed maps $f,$ $F_{H}$ and $\overline{F}_{H,K}$ in Lemma 4.7 can be chosen so that $X^{L}$ and $W_{H}^{L}$

are $N_{H}(L)$ -diffeomorphic to $Y^{L}$ and $Y^{L}\cross I$ , respectively, for all $H_{f}K\in S(G)_{m}$

and all $L\in \mathcal{K}$ with $L\leq H.$

This modification is achieved by using Proposition 4.6 and the reflection method

in [8].
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