TENTATIVE STUDY ON
EQUIVARIANT SURGERY OBSTRUCTIONS:
FIXED POINT SETS OF SMOOTH A_5-ACTIONS

Masaharu Morimoto

Graduate School of Natural Science and Technology, Okayama University

Abstract. Let G be the alternating group on 5 letters and let F be a closed smooth manifold diffeomorphic to the fixed point set of a smooth G-action on a disk. Marek Kaluba proved that if F is even dimensional then there exists a smooth G-action on a closed manifold X being homotopy equivalent to a complex projective space such that the fixed point set of the G-action is diffeomorphic to F. In this paper we discuss whether series of manifolds diffeomorphic or homotopy equivalent to complex projective spaces, real projective spaces, or lens spaces, admit smooth G-actions with fixed point set diffeomorphic to F.

1. INTRODUCTION

Let G be a finite group throughout this paper. For a smooth manifold M, let $\mathfrak{F}_G(M)$ denote the family of all manifolds F such that $F = M^G$ for some smooth G-action on M. For a family \mathfrak{M} of smooth manifolds, let $\mathcal{F}_G(\mathfrak{M})$ denote the union of $\mathfrak{F}_G(M)$ with $M \in \mathfrak{M}$. Let \mathfrak{D}, \mathfrak{S}, and $\mathfrak{P}_\mathbb{C}$ denote the families of disks, spheres, and complex projective spaces, respectively. B. Oliver [19] completely determined the family $\mathfrak{F}_G(\mathfrak{D})$ for G not of prime power order. K. Pawalowski and the author [18, 14] studied $\mathfrak{F}_G(\mathfrak{S})$ for various Oliver groups G.

In order to quote a part of Oliver's result on $\mathfrak{F}_G(\mathfrak{D})$, we adopt the notation $\mathcal{G}_\mathbb{R}$, $\mathcal{G}_\mathbb{C}^\sigma$, $\mathcal{G}_\mathbb{C}$ and \mathcal{E} for the families of all finite groups satisfying the following properties, respectively.

2010 Mathematics Subject Classification. Primary 57S17; Secondary 20C15.

Key words and phrases. equivariant manifold, equivariant framed map, fixed point set.

This research was partially supported by JSPS KAKENHI Grant Number 26400090.
\begin{itemize}
 \item $G \in \mathcal{G}_\mathbb{R}$: G possesses a subquotient K/H isomorphic to a dihedral group of order $2pq$ for some distinct primes p and q, where $H \triangleleft K \leq G$.
 \item $G \in \mathcal{G}_\mathbb{C}$: G contains an element g being conjugate to its inverse of order pq for some distinct primes p and q.
 \item $G \in \mathcal{G}_\mathbb{C}$: G contains an element g of order pq for some distinct primes p and q.
 \item $G \in \mathcal{E}$: A Sylow 2-subgroup of G is not normal in G, and any element of G is of prime power order.
\end{itemize}

Note that $\mathcal{G}_\mathbb{R} \subset \mathcal{G}_\mathbb{C}^\sigma \subset \mathcal{G}_\mathbb{C}$.

Let A_5 denote the alternating group on 5 letters. Then A_5 belongs to \mathcal{E}. B. Oliver [19] says that for $G \in \mathcal{F}_\mathbb{C} \cup \mathcal{E}$, a closed manifold F belongs to $\mathfrak{F}_G(\mathcal{D})$ if and only if $\chi(F) \equiv 1 \mod n_G$ and

\begin{align}
\bullet & \quad G \in \mathcal{G}_\mathbb{R} \Rightarrow \text{no restrictions on } T(F), \\
\bullet & \quad G \in \mathcal{G}_\mathbb{C} \setminus \mathcal{G}_\mathbb{R} \Rightarrow c_\mathbb{H}(T(F)) \in c_\mathbb{H}\left(\overline{KSp}(F)\right) + \text{Tor}\left(\overline{KU}(F)\right), \\
\bullet & \quad G \in \mathcal{G}_\mathbb{C} \setminus \mathcal{G}_\mathbb{C}^\sigma \Rightarrow [T(F)] \in r_\mathbb{C}\left(\overline{KU}(F)\right) + \text{Tor}\left(\overline{KO}(F)\right), \\
\bullet & \quad G \in \mathcal{E} \Rightarrow [T(F)] \in \text{Tor}\left(\overline{KO}(F)\right).
\end{align}

If $G \in \mathcal{E}$ and $F \in \mathfrak{F}_G(\mathfrak{D})$ then each connected component of F has same dimension. The Oliver number n_G above is equal to 1 whenever G is nonsolvable.

Marek Kaluba [5] obtained the next two theorems concerned with $\mathfrak{F}_G(\mathcal{P}_\mathbb{C})$.

Theorem. [5, Theorem 2.6] Let G be a nontrivial perfect group in the class $\mathcal{G}_\mathbb{C}$ and let F be a closed manifold in $\mathfrak{F}_G(\mathcal{D})$. In the case $G \in \mathcal{G}_\mathbb{C} \setminus \mathcal{G}_\mathbb{R}$, suppose that some connected component of F is even dimensional. Then F belongs to $\mathfrak{F}_G(\mathcal{P}_\mathbb{C})$.

Theorem. [5, Theorem 4.11] Let G be A_5 and F a closed manifold in $\mathfrak{F}_G(\mathcal{D})$. Suppose that F is even dimensional. Then F is diffeomorphic to the fixed point set of a smooth G-action on a closed manifold X which is homotopy equivalent to some complex projective space.

Let $P_\mathbb{C}^k$ (resp. $P_\mathbb{R}^k$) denote the complex (resp. real) projective space of complex (resp. real) dimension k, and let Γ be a cyclic subgroup of \mathbb{C}^\times of order ≥ 3. The orbit space $L^{2k+1} = S(\mathbb{C}^{k+1})/\Gamma$ is a lens space of dimension $2k + 1$. Let \mathfrak{L} be the
family of lens spaces $L^{2k+1}, k = 2, 3, 4, \ldots$. By examining and improving the proof of [5, Theorem 4.11] by M. Kaluba, we obtain the next result.

Theorem 1.1. Let G be A_5 and F a closed manifold in $\mathfrak{F}_G(\mathfrak{D})$. Then there exists an integer $N > 0$ possessing the property that for any $k \geq N,$

1. $F \in \mathfrak{F}_G(D^k),$
2. $F \in \mathfrak{F}_G(S^k),$
3. if $\dim F \equiv 0 \mod 2$ then $F \in \mathfrak{F}_G(P^k),$
4. $F \in \mathfrak{F}_G(X_k)$ such that X_k is a smooth closed manifold homotopy equivalent to P^k,
5. if $\dim F \equiv 1 \mod 2$ then $F \in \mathfrak{F}_G(Y_k)$ such that Y_k is a smooth closed manifold homotopy equivalent to L^{2k+1}.

This result follows from Theorem 3.4. In Theorem 1.1, one may conjecture that P^k and L^{2k+1} can be chosen as X_k and Y_k respectively, but the author cannot prove the conjecture so far.

Acknowledgment. The author would like to express his gratitude to Marek Kaluba and Krzysztof Pawalowski for their information related to this research.

2. **Dimension conditions of fixed point sets**

Let G be a finite group. Let U be a G-manifold and (H, K) a pair of subgroups $H < K \leq G$. We say that U satisfies the gap condition, cobordism gap condition, or strong gap condition for (H, K) if the inequality

\begin{align}
(2.1) & \quad 2\dim(U^H_i)^K < \dim U^H_i, \\
(2.2) & \quad 2(\dim\{(U^H_i)^K \setminus (U^H_i)^{G(H)}\} + 1) \leq \dim U^H_i, \\
\end{align}

or

\begin{align}
(2.3) & \quad 2\dim(U^H_i)^K + 1 < \dim U^H_i,
\end{align}

holds, respectively, for any connected component U^H_i of U^H.

Proposition 2.1. Let G be a perfect group having a cyclic subgroup C_2 of order 2, Y the complex projective space associated with the complex G-module

$$V = \mathbb{C}^{m+1} \oplus (\mathbb{C}[G] - \mathbb{C})^n,$$

where $m \geq 0$ and $n \geq 1$, and U the G-tubular neighborhood of Y^G.

1. Y satisfies the gap condition for $(\{e\}, C_2)$ if and only if $m+1 = n$.
2. U satisfies the gap condition for $(\{e\}, C_2)$ if and only if $m+1 \leq n$.
3. If $m+1 \leq n$ then U satisfies the strong gap condition for (H, K) such that

$$\{e\} \neq H < K \leq G \text{ and } |K : H| \geq 3.$$

Proof. We readily see that $Y^G = P_{\mathbb{C}}(\mathbb{C}^{m+1}) = P_{\mathbb{C}}^m$ and Y^C_2 has two connected components

$$Y_a^C_2 = P_{\mathbb{C}}(\mathbb{C}^{m+1} \oplus ((\mathbb{C}[G] - \mathbb{C})^C)^n) = P_{\mathbb{C}}^{m+n(|G|/2-1)}$$

and

$$Y_b^C_2 = P_{\mathbb{C}}(((\mathbb{C}[G] - \mathbb{C})^C)^n) = P_{\mathbb{C}}^{n|G|/2-1}.$$

Thus we have

$$\dim Y = 2m - 2n + 2n|G|, \quad \dim Y_a^C_2 = 2m - 2n + n|G| \quad \text{and} \quad \dim Y_b^C_2 = n|G| - 2.$$

Note the equivalences

- $2(2m - 2n + n|G|) < 2m - 2n + 2n|G| \iff m < n$
- $2(n|G| - 2) < 2m - 2n + 2n|G| \iff n - 2 < m.$

Thus Y satisfies the gap condition for $(\{e\}, C_2)$ if and only if $n - 2 < m < n$, namely $m + 1 = n$. Since $\dim U^C_2 = \dim Y_a^C_2$, U satisfies the gap condition for $(\{e\}, C_2)$ if and only if $m < n$, namely $m + 1 \leq n$.

For any $H \leq G$, U^H is connected. Let y denote the point $[1, 0, \ldots, 0]$ in $Y = P_{\mathbb{C}}(\mathbb{C} \oplus \mathbb{C}^{m} \oplus (\mathbb{C}[G] - \mathbb{C})^n)$. The tangential representation $T_y(Y)$ is isomorphic to $\mathbb{C}^m \oplus (\mathbb{C}[G] - \mathbb{C})^n$ as complex G-modules. Since $\dim U^H = \dim T_y(Y)^H$, we get

$$\dim U^H = 2\{m + n(|G|/|H| - 1)\} = 2m - 2n + 2n|G|/|H|$$

and

$$\dim U^H - 2(\dim U^K + 1) = 2\{n - (m + 1)\} + 2n|G|(|K| - 2|H|)/(|H||K|).$$

In the case $n \geq m + 1$ and $|K| \geq 3|H|$, we conclude $2(\dim U^K + 1) < \dim U^H.$

Theorem 2.2 (Disk Theorem). Let G be a nontrivial perfect group, $F \in \mathfrak{F}(\mathfrak{D})$, F_0 a connected component of F with $x_0 \in F_0$, $m = \dim F_0$, and W a real G-module
with \(\dim W^G = m \). Then there exists a smooth \(G \)-action on the disk \(D \) of dimension \(\dim W + N(|G| - 1) \) for some integer \(N \geq 0 \) satisfying the following conditions.

1. \(D^G = F \).
2. \(T_{x_0}(D) \) is isomorphic to \(W \oplus (\mathbb{R}[G] - \mathbb{R})^\oplus N \) as real \(G \)-modules.
3. \(D \) satisfies the strong gap condition for arbitrary pair \((H, K)\) such that \(H < K \leq G \).

Corollary 2.3. Let \(G, F \in \mathfrak{F}(\mathfrak{D}) \), \(F_0, x_0 \in F_0 \), \(m = \dim F_0 \), \(W \), \(D \) and \(N \) be as in Theorem 2.2. Let \(n \) be an arbitrary integer \(\geq N \). Then there exists a smooth \(G \)-action on the disk \(S \) of dimension \(\dim W + n(|G| - 1) \) satisfying the following conditions.

1. \(S^G = F' \) and \(F' \) is diffeomorphic to \(F \).
2. \(T_{x_0}(S) \) is isomorphic to \(W \oplus (\mathbb{R}[G] - \mathbb{R})^\oplus n \) as real \(G \)-modules.
3. \(S \) satisfies the strong gap condition for arbitrary pair \((H, K)\) such that \(H < K \leq G \).

Proof. We set \(X = D \times D((\mathbb{R}[G] - \mathbb{R})^\oplus(n-N)) \). Let \(S \) be the double of \(X \). Then \(S \) satisfies the desired conditions. \(\square \)

3. Deleting theorem and realization theorem

In this section we will give a deleting theorem and a realization theorem. The latter is obtained from the former and Corollary 2.3. Our main result Theorem 1.1 follows from the realization theorem.

Let \(A_5 \) denote the alternating group on 5 letters 1, 2, 3, 4, 5, and let \(A_4 \) denote the alternating group on 4 letters 1, 2, 3, 4. Unless otherwise stated, we use the notation:

- \(C_2 = \langle (1,2)(3,4) \rangle \)
- \(D_4 = \langle (1,2)(3,4), (1,3)(2,4) \rangle \)
- \(C_3 = \langle (1,2,5) \rangle \)
- \(D_6 = \langle (1,2,5), (1,2)(3,4) \rangle \)
- \(C_5 = \langle (1,3,4,2,5) \rangle \)
- \(D_{10} = \langle (1,3,4,2,5), (1,2)(3,4) \rangle \).
These groups and A_4 are regarded as subgroups of A_5.

Throughout this section, let G be A_5. Then $N_G(C_2) = D_4$, $N_G(D_4) = A_4$, $N_G(C_3) = D_6$, $N_G(C_5) = D_{10}$, and any maximal proper subgroup of G is conjugate to one of A_4, D_{10}, D_6. We can readily show

Proposition 3.1. Let H be a maximal proper subgroup of G. Then any two subgroups of H are conjugate in G if and only if they are conjugate in H.

Proposition 3.2. Let α be the element of the Burnside ring $\Omega(G)$ given by

Then for any proper subgroup $H < G$, $res_H^G \alpha$ coincides with $[H/H]$ in $\Omega(H)$.

Theorem 3.3 (Deleting Theorem). (Let $G = A_5$.) Let Y be a compact connected smooth G-manifold of dimension ≥ 5, with $|\pi_1(Y)| < \infty$, and with a decomposition $Y^G = Y_0^G \amalg Y_1^G$ such that $\partial Y_0^G = \emptyset$. Let U be the G-tubular neighborhood of Y_0^G. Suppose U satisfies the gap condition for $\{(e), C_2\}$, $\{(e), C_3\}$ and $\{(e), C_5\}$, and the cobordism gap condition for (C_2, D_6), (C_2, D_{10}) and (C_3, A_4). Then there exists a smooth G-manifold X possessing the following properties.

1. $X^G = Y_1^G$.
2. X is homotopy equivalent to Y.
3. X^H is diffeomorphic to Y^H for any H such that $\{e\} \neq H < G$.
4. In the case that $\dim Y \equiv 0 \mod 2$ and $\pi_1(Y) = 1$, X is diffeomorphic to Y.

Guideline for Proof. There exists a compact connected smooth G-submanifold U_1 of $Y \setminus \partial Y$ with $U \subset U_1$ such that G freely acts on $U_1 \setminus U$ and the inclusion induced homomorphism $\pi_1(U_1) \to \pi_1(Y)$ is an isomorphism. First, we construct a G-framed map $f_1 : X_1 \to Y$ rel. $Y \setminus \hat{U}_1$ (i.e., $X_1 \supset Y \setminus \hat{U}_1$,

$$f_1|_{Y \setminus \hat{U}_1} : Y \setminus \hat{U}_1 \to Y \setminus \hat{U}_1$$

is the identity map, and $f_1(X_2) \subset U_1$, where

$$X_2 = X_1 \setminus (Y \setminus \hat{U}_1)^C \setminus \partial Y).$$

Next we convert $f_2 = f_1|_{X_2} : X_2 \to U_1$, to a G-framed map $f_3 : X_3 \to U_1$ such that f_3 is a homotopy equivalence by G-surgeries rel. ∂U_1 of isotropy types (H).
for $H < G$. The construction of a G-framed map is discussed in Section 4. We perform the G-surgeries of isotropy types (H) with $\{e\} < H < G$ by means of the reflection method in [8]. We do the G-surgeries of isotropy type $(\{e\})$ by showing triviality of the algebraic G-surgery obstruction in the relevant Bak group described in [9] with the G-cobordism invariance property given in [10] and the induction-restriction property presented in [13, 4].

Theorem 3.4 (Realization Theorem). *(Let $G = A_5$.)* Let W a real G-module with $\dim W_G = m$, N an integer possessing the property described in Theorem 2.2, and Z a compact connected smooth G-manifold of dimension ≥ 5 such that $\partial Z^G = \emptyset$, V the G-tubular neighborhood of Z^G, z_0 a point in Z^G, and n an integer $\geq N$. Suppose $|\pi_1(Z)| < \infty$ and $T_{x_0}(Z)$ is isomorphic to $W \oplus (\mathbb{R}[G] - \mathbb{R})^\oplus n$. Further suppose V satisfies the gap condition for $(\{e\}, C_2)$, $(\{e\}, C_3)$ and $(\{e\}, C_5)$, and the cobordism gap condition for (C_2, D_6), (C_2, D_{10}), and (C_3, A_4). Let $F, F_0, x_0 \in F_0$ be as in Theorem 2.2. Then there exists a compact G-manifold X satisfying the following conditions.

1. X^G is diffeomorphic to F.
2. X is homotopy equivalent to Z.
3. In the case that $\dim Z \equiv 0 \mod 2$ and $\pi_1(Z) = 0$, X is diffeomorphic to Z.

Proof. Take the smooth G-action on the sphere S described in Corollary 2.3 with $x_0 \in F_0 \subset F$ and $S^G = F \amalg F'$ such that $T_{x_0}(S) \cong W \oplus (\mathbb{R}[G] - \mathbb{R})^\oplus n$ and $F \cong F'$. Let Y be the connected sum of S and Z at points x_0 and z_0. By setting $Y^G_0 = F \# Z^G$ and $Y^G_1 = F'$ we have $Y^G = Y^G_0 \amalg Y^G_1$. Note Y^G_0 is without boundary. The tubular neighborhood U of Y^G_0 satisfies the gap condition for $(\{e\}, C_2)$, $(\{e\}, C_3)$ and $(\{e\}, C_5)$, and the cobordism gap condition for (C_2, D_6), (C_2, D_{10}), and (C_3, A_4). Deleting the fixed point submanifold F^G_0 from Y by means of Theorem 3.3, there exists a G-manifold X satisfying the desired conditions in the theorem, where $X^G = F' \cong F$. □

4. EQUIVARIANT COHOMOLOGY THEORY $\omega(\bullet)_G^*$ AND G-FRAMED MAPS

Equivariant surgeries are operated on smooth G-manifolds, but more precisely on G-framed maps. T. Petrie gave an idea to construct G-framed maps by using
the equivariant cohomology theory $\omega^*_G(\bullet)$ and the Burnside ring $\Omega(G)$. In order to construct our G-framed maps, we employ a modification given in [11] of Petrie's construction.

Let $\Omega(G)$ denote the Burnside ring, i.e.

$$\Omega(G) = \{ [X] \mid X \text{ is a finite } G\text{-CW complex} \},$$

where $[X] = [Y]$ if and only if $\chi(X^H) = \chi(Y^H)$ for all $H \leq G$. The next proposition is well known, see [2, 20, 1].

Proposition 4.1. Let G be a nontrivial perfect group. Then there exists an idempotent β in the Burnside ring $\Omega(G)$ such that $\chi_G(\beta) = 1$ and $\chi_H(\beta) = 0$ for all $H \neq G$.

Let $S(G)$ and $S(G)_{\text{max}}$ denote the set of all subgroups and all maximal proper subgroups of G, respectively. For a subgroup H of G, (H) stands for the G-conjugacy class containing H, i.e.

$$(H) = \{ gHg^{-1} \mid g \in G \}.$$

The β in Proposition 4.1 has the form

$$\beta = [G/G] - \sum_{(K) \subset S(G)_{\text{max}}} [G/K] - \sum_{(H) \subset \mathcal{F}} a_H [G/H],$$

for some G-invariant lower closed $\mathcal{F} \subset S(G) \setminus (S(G)_{\text{max}} \cup (G))$ and $a_H \in \mathbb{Z}$.

Proposition 4.2. Let $G = A_5$ and let α be the element of the Burnside ring $\Omega(G)$ given by

Then for any proper subgroup $H < G$, $\text{res}^G_H \alpha$ coincides with $[H/H]$ in $\Omega(H)$.

Proposition 4.3. Let G be A_5. Then there exists a finite G-CW complex Z fulfilling the following conditions.

1. $Z^G = \{ z_0, z_1 \}$.
2. $\bigcup_{H \in S(G)_{\text{max}}} Z^H = \{ z_0, z_1 \} \ast S(G)_{\text{max}}$, where each subgroup in $S(G)_{\text{max}}$ is regarded as a point. Thus Z^H is homeomorphic to the 1-dimensional disk $[-1, 1]$ for each $H \in S(G)_{\text{max}}$.

(3) \(Z^{D_4} = Z^{A_4} \) and \(Z^{C_5} = Z^{D_{10}} \).

(4) \(Z^H \) is contractible for any subgroup \(H < G \).

The \(G \)-CW complex \(Z \) in this lemma is constructed using Oliver-Petrie's \(G \)-CW-surgery theory [21] and the wedge sum technique [16].

Let \(M_n = \mathbb{C}[G]^{\oplus n} \) and let \(M_n^* \) be the one-point compactification of \(M_n \), hence we write \(M_n^* = M_n \cup \{ \infty \} \). For a finite \(G \)-CW complex \(X \) with base point in \(X^G \),

\[
\overline{\omega}_G^0(X) = \lim_{n \to \infty} [X \wedge M^*, M^*]^G_0,
\]

where \([-,-]^G_0\] stands for the set of all homotopy classes of maps in the category of pointed \(G \)-spaces. For a finite \(G \)-CW complex \(Z \), \(\omega_G^0(Z) \) is defined to be \(\overline{\omega}_G^0(Z^+) \), where

\[
Z^+ = Z \amalg (G/G)
\]

and \(G/G \) is regarded as the base point of \(Z^+ \).

For the set \(S \) of all powers \(\beta^k, k \in \mathbb{N} \), the restriction \(j^*: S^{-1}\omega_G^0(Z) \to S^{-1}\omega_G^0(Z^G) \) induced by the inclusion map \(j: Z^G \to Z \) is an isomorphism. It is obvious that for any element \(\gamma \in \omega_H^0(Z) \) and any proper subgroup \(H \) of \(G \), \(\text{res}_H^G \beta \cdot \gamma = 0_{Z} \) in \(\omega_H^0(Z) \).

Lemma 4.4. Let \(G \) be a nontrivial perfect group, \(\beta \) the element in Proposition 4.1, and \(Z \) a finite \(G \)-CW complex with

\[
Z^G = \{ z_0, z_1 \}.
\]

Then there exists an element \(\gamma \in \omega_G^0(Z) \) such that \(\gamma|_{z_0} = \beta \) and \(\gamma|_{z_1} = 0_{z_1} \) in \(\Omega(G) \) and \(\beta \gamma = \gamma \). In addition, for any proper subgroup \(H < G \), there exists a 'homotopy' \(\Gamma_H \in \omega_H^0(Z \times I) \) from \(\text{res}_H^G \gamma \) to \(0_Z \), rel. \(z_1 \times I \), i.e. \(\Gamma_H|_{Z \times \{0\}} = \text{res}_H^G \gamma, \Gamma_H|_{Z \times \{1\}} = 0_Z, \) and \(\Gamma_H|_{z_1 \times I} = 0_{z_1 \times I} \), such that \(\text{res}_H^G \beta \cdot \Gamma_H = \Gamma_H \). Moreover, for any pair of distinct proper subgroups \(H \) and \(K \) of \(G \), there exists a 'homotopy' \(\overline{\Gamma}_{H,K} \in \omega_{H \cap K}^0(Z \times I \times I) \) from \(\text{res}_{H \cap K}^H \Gamma_H \) to \(\text{res}_{H \cap K}^K \Gamma_K \), rel. \(z_1 \times I \times I \) and \(Z \times \partial I \times I \).

As a next step, consider the elements \(1_{Z} - \gamma \in \omega_G^0(Z), 1_{Z \times I} - \Gamma_H \in \omega_H^0(Z \times I), \) and \(1_{Z \times I \times I} - \overline{\Gamma}_{H,K} \in \omega_{H \cap K}^0(Z \times I \times I) \). Recall that an element \(\alpha \in \omega_G^0(Z) \) is represented by a \(G \)-map

\[
Z^+ \wedge M^* \to M^*
\]

preserving the base point \(\infty \), where \(M = \mathbb{C}[G]^{\oplus n} \) for some \(n \).
Lemma 4.5. Let G be a nontrivial perfect group, β the element in Proposition 4.1, and Z a finite G-CW complex with $Z^G = \{z_0, z_1\}$. Then there exist maps α, A_H, and $\overline{A}_{H,K}$ satisfying the following conditions (1)–(3), where H and K range all proper subgroups of G such that $H \neq K$.

1. α is a map of pointed G-spaces $Z^+ \times M^* \to M^*$ such that $[\alpha] = 1 - \gamma$ for the γ above, and $\alpha|_{\{z_1\}^+ \wedge M^*} = id_{\{z_1\}^+ \wedge M^*}$.

2. A_H is a homotopy of pointed H-spaces $(Z \times I)^+ \wedge M^* \to M^*$ from α to 1_Z, where $1_Z : Z^+ \wedge M^* \to M^*$ and $1_Z(z, v) = v$ for all $z \in Z$ and $v \in M$, rel. $\{z_1\}^+ \wedge M^*$.

3. $\overline{A}_{H,K}$ is a homotopy of pointed $H \cap K$-spaces $((Z \times I) \times I)^+ \wedge M^* \to M^*$ from A_H to A_j rel. $(z_1 \times I)^+ \wedge M^*$ and $(Z \times \partial)^+ \wedge M^*$.

Proposition 4.6. Let $G = A_5$ and $\mathcal{K} = (A_4) \cup (D_{10}) \cup (D_6) \cup (D_4) \cup (C_5)$. Let Z be the finite G-CW complex in Proposition 4.3. Then there exist maps α, A_H, and $\overline{A}_{H,K}$ of Lemma 4.5 satisfying the additional conditions:

1. $\alpha|_{z_0}^{-1}(0)^G = \emptyset$ and $|((\alpha|_{z_0}^{-1}(0))^H| = 1$ for $H \in \mathcal{K}$.

2. For each $H \in \mathcal{K}$, there exists a connected component $X(H)$ of $\alpha^{-1}(0)$ containing both $(\alpha|_{z_0}^{-1}(0))^H$ and $(z_1, 0)$ such that α is transversal on $X(H)$ to $0 \subset M$, the normal derivative of α on $X(H)$ is the identity, and the projection $Z \times M \to Z$ diffeomorphically maps $X(H)$ to Z^H.

3. For each pair of $H \in S(G)_{\text{max}}$ and $L \in \mathcal{K}$ with $L \leq H$, there exists a connected component $W(H, L)$ of $A_H^{-1}(0)$ containing $X(H)^L \times \{0\}$ ($\subset Z \times M \times I$) and $Z^L \times \partial \times \{0\}$ ($\subset Z \times M \times I$) such that A_H is transversal on $W(H, L)$ to $0 \subset M$, the normal derivative of A_H on $W(H, L)$ is the identity, and the projection $Z \times I \times M \to Z \times I$ diffeomorphically maps $W(H, L)$ to $Z^L \times I$.

A G-framed map $f = (f, b)$ consists of a G-map $f : X \to Y$ such that X and Y are compact smooth G-manifold and $f(\partial X) \subset \partial Y$, and an isomorphism $b : T(X) \oplus \mathcal{E}_X(\mathbb{R}^m) \to f^*T(Y) \oplus \mathcal{E}_X(\mathbb{R}^m)$ of real G-vector bundles for some integer $m \geq 0$. In the following we suppose Y is connected and $f : (X, \partial X) \to (Y, \partial Y)$ is of degree 1.
Lemma 4.7. Let Y be a compact smooth G-manifold with a decomposition $Y^G = Y_0^G \amalg Y_1^G$ such that $\partial Y_0^G = \emptyset$. Let U be the G-tubular neighborhood of Y_0^G. Then there exist a G-framed map $f = (f, b)$, H-framed cobordisms $F_H = (F_H, B_H) : f \sim id_Y$, rel. $Y \setminus \hat{U}$ for $H < G$, and $H \cap K$-framed cobordisms $\overline{F}_{H,K} = (\overline{F}_{H,K}, \overline{B}_{H,K}) : F_H \sim F_K$ rel. $((Y \setminus \mathring{U}) \times I) \cup (Y \times \partial I)$, for $H, K < G$ such that $H \neq K$, where

\[f : X \rightarrow Y, \]
\[b : T(X) \oplus \varepsilon_X(\mathbb{R}^m) \rightarrow f^*(Y) \oplus \varepsilon_X(\mathbb{R}^m), \]
\[F_H : W_H \rightarrow Y \times I, \]
\[B_H : T(W_H) \oplus \varepsilon_{W_H}(\mathbb{R}^m) \rightarrow F_H^*T(Y \times I) \oplus \varepsilon_{W_H}(\mathbb{R}^m), \]
\[\overline{F}_{H,K} : \overline{W}_{H,K} \rightarrow Y \times I \times I, \]
\[\overline{B}_{H,K} : T(\overline{W}_{H,K}) \oplus \varepsilon_{\overline{W}_{H,K}}(\mathbb{R}^m) \rightarrow \overline{F}_{H,K}^*T(Y \times I \times I) \oplus \varepsilon_{\overline{W}_{H,K}}(\mathbb{R}^m), \]

for some integer $m > 0$.

This lemma is obtained by the arguments in [11].

Lemma 4.8. Let $G = A_5$ and $\mathcal{K} = (A_4) \cup (D_{10}) \cup (D_6) \cup (D_4) \cup (C_5)$. Then the framed maps f, F_H and $\overline{F}_{H,K}$ in Lemma 4.7 can be chosen so that X^L and W_H^L are $N_H(L)$-diffeomorphic to Y^L and $Y^L \times I$, respectively, for all $H, K \in S(G)_{\text{max}}$ and all $L \in \mathcal{K}$ with $L \leq H$.

This modification is achieved by using Proposition 4.6 and the reflection method in [8].

REFERENCES

*Graduate School of Natural Science and Technology
Okayama University
Tsushima-naka 3-1-1, Kitaku
Okayama, 700-8530 Japan
E-mail address: morimoto@ems.okayama-u.ac.jp*