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Abstract. In this article, using strongly asymptotically invariant sequences, we first prove
a nonlinear ergodic theorem for widely more generalized hybrid mappings in a Hilbert space.
Next, we prove a weak convergence theorem of Mann’s type [24] for the mappings. Further-
more, using the idea of mean convergence by Shimizu and Takahashi [25, 26], we prove a strong
convergence theorem of $Halpern^{\}}s$ type [8] for the mappings. The nonlinear ergodic theorem
and the strong convergence theorem in this article generalize the Kawasaki and Takahashi
nonlinear ergodic theorem [19] and the Hojo and Takahashi strong convergence theorem [11],
respectively.

1 Introduction

Let $H$ be a real Hilbert space and let $C$ be a non-empty subset of $H$ . For a mapping $T:Carrow H,$

we denote by $F(T)$ the set of fixed points of $T$ . Kocourek, Takahashi and Yao [20] introduced
a broad class of nonlinear mappings in a Hilbert space which covers nonexpansive mappings
[7], nonspreading mappings [21, 22] and hybrid mappings [31]. A mapping $T:Carrow H$ is said
to be generalized hybrid if there exist $\alpha,$

$\beta\in \mathbb{R}$ such that

$\alpha\Vert Tx-Ty\Vert^{2}+(1-\alpha)\Vert x-Ty\Vert^{2}\leq\beta\Vert Tx-y\Vert^{2}+(1-\beta)\Vert x-y\Vert^{2}$

for all $x,$ $y\in C$ , where $\mathbb{R}$ is the set of real numbers; see also [1]. We call such a mapping an $(\alpha,$

$\beta)$-generalized hybrid mapping. Kocourek, Takahashi and Yao [20] and Hojo and Takahashi
[11] proved the following nonlinear ergodic and strong convergence theorems for generalized
hybrid mappings, respectively.

Theorem 1.1 ([20]). Let $H$ be a real Hilbert space, let $C$ be a non-empty, closed and convex
subset of $H$ , let $T$ be a generalized hybrid mapping from $C$ into itself with $F(T)\neq\emptyset$ and let
$P$ be the metric projection of $H$ onto $F(T)$ . Then for any $x\in C,$

$S_{n}x= \frac{1}{n}\sum_{k=0}^{n-1}T^{k_{X}}$

converges weakly to $p\in F(T)$ , where $p= \lim_{narrow\infty}PT^{n}x.$

Theorem 1.2 ([11]). Let $C$ be a non-empty, closed and convex subset of a real Hilbert space
H. Let $T$ be a generalized hybrid mapping of $C$ into itself. Let $u\in C$ and define two sequences
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$\{x_{n}\}$ and $\{z_{n}\}$ in $C$ as follows: $x_{1}=x\in C$ and

$\{\begin{array}{l}x_{n+1}=\alpha_{n}u+(1-\alpha_{n})z_{n},z_{n}=\frac{1}{n}\sum_{k=0}^{n-1}T^{k}x_{n}\end{array}$

for all $n=1$ , 2, where $0\leq\alpha_{n}\leq 1,$ $\alpha_{n}arrow 0$ and $\sum_{n=1}^{\infty}\alpha_{n}=\infty$ . If $F(T)$ is nonempty, then
$\{x_{n}\}$ and $\{z_{n}\}$ converge strongly to $Pu\in F(T)$ , where $P$ is the metric projection of $H$ onto
$F(T)$ .

Very recently, Kawasaki and Takahashi [19] introduced a broader class of nonlinear mappings
than the class of generalized hybrid mappings in a Hilbert space. A mapping $T$ from $C$ into
$H$ is said to be widely more generalized hybrid if there exist $\alpha,$

$\beta,$
$\gamma,$

$\delta,$
$\epsilon,$

$\zeta,$ $\eta\in \mathbb{R}$ such that

$\alpha\Vert Tx-Ty\Vert^{2}+\beta\Vert x-Ty\Vert^{2}+\gamma\Vert Tx-y\Vert^{2}+\delta\Vert x-y\Vert^{2}$ (1.1)

$+\epsilon\Vert x-Tx\Vert^{2}+\zeta\Vert y-Ty\Vert^{2}+\eta\Vert(x-Tx)-(y-Ty)\Vert^{2}\leq 0$

for all $x,$ $y\in C$ . Such a mapping $T$ is called an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)$-widely more generalized
hybrid mapping; see also [18]. An $(\alpha, \beta, \gamma, \delta, 0,0,0)$-widely more generalized hybrid mapping
is generalized hybrid in the sense of Kocourek, Takahashi and Yao [20] if $\alpha+\beta=-\gamma-\delta=1.$

A generalized hybrid mapping with a fixed point is quasi-nonexpansive. However, a widely
more generalized hybrid mapping is not quasi-nonexpansive generally even if it has a fixed
point. In [19], Kawasaki and Takahashi proved fixed point theorems and nonlinear ergodic
theorems of Baillon’s type [3] for such new mappings in a Hilbert space. In particular, by
using their fixed point theorems, they proved directly Browder and Petryshyn’s fixed point
theorem [5] for strict pseudo-contractive mappings and Kocourek, Takahashi and Yao’s fixed
point theorem [20] for super generalized hybrid mappings.

In this article, using strongly asymptotically invariant sequences, we first prove a nonlinear
ergodic theorem for widely more generalized hybrid mappings in a Hilbert space. Next, we
prove a weak convergence theorem of Mann’s type [24] for the mappings. Furthermore, using
the idea of mean convergence by Shimizu and Takahashi [25, 26], we prove a strong convergence
theorem of Halpern’s type [8] for the mappings. The nonlinear ergodic theorem and the strong
convergence theorem in this article generalize the Kawasaki and Takahashi nonlinear ergodic
theorem $[]$ and the Hojo and Takahashi strong convergence theorem [11].

2 Preliminaries

Throughout this paper, we denote by $\mathbb{N}$ the set of positive integers. Let $H$ be $a$ (real) Hilbert
space with inner product $\rangle$ and norm $\Vert$ . respectively. We denote the strong convergence
and the weak convergence of $\{x_{n}\}$ to $x\in H$ by $x_{n}arrow x$ and $x_{n}arrow x$ , respectively. From [30],
we have that for any $x,$ $y\in H$ and $\lambda\in \mathbb{R},$

$\Vert y\Vert^{2}-\Vert x\Vert^{2}\leq 2\langle y-x, y\rangle$ , (2.1)

$\Vert\lambda x+(1-\lambda)y\Vert^{2}=\lambda\Vert x\Vert^{2}+(1-\lambda)\Vert y\Vert^{2}-\lambda(1-\lambda)\Vert x-y\Vert^{2}$ . (2.2)

Furthermore, we know that for $x,$ $y,$ $u,$ $v\in H$

$2\langle x-y, u-v\rangle=\Vert x-v\Vert^{2}+\Vert y-u\Vert^{2}-\Vert x-u\Vert^{2}-\Vert y-v\Vert^{2}$ . (2.3)
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Let $C$ be a non-empty subset of $H$ . A mapping $T$ : $Carrow H$ is said to be nonexpansive if
$\Vert Tx-Ty\Vert\leq\Vert x-y\Vert$ for all $x,$ $y\in C$ . A mapping $T:Carrow H$ with $F(T)\neq\emptyset$ is called quasi-
nonexpansive if $\Vert x-Ty\Vert\leq\Vert x-y\Vert$ for all $x\in F(T)$ and $y\in C$ . Let $C$ be a non-empty, closed
and convex subset of $H$ and $x\in H$ . Then, we know that there exists a unique nearest point
$z\in C$ such that $\Vert x-z\Vert=\inf_{y\in C}\Vert x-y\Vert$ . We denote such a correspondence by $z=P_{C}x$ . The
mapping $P_{C}$ is called the metric projection of $H$ onto $C$ . It is known that $P_{C}$ is nonexpansive
and

$\langle x-P_{C}x, P_{C}x-u\rangle\geq 0$

for all $x\in H$ and $u\in C$ . Furthermore, we know that

$\Vert P_{C}x-P_{C}y\Vert^{2}\leq\langle x-y, P_{C}x-P_{C}y\rangle$ (2.4)

for all $x,$ $y\in H$ ; see [30] for more details. For proving main results in this article, we also need
the following lemmas proved in Takahashi and Toyoda [32] and Aoyama, Kimura, Takahashi
and Toyoda [2].

Lemma 2.1 ([32]). Let $D$ be a non-empty, closed and convex subset of H. Let $P$ be the metric
projection from $H$ onto D. Let $\{u_{n}\}$ be a sequence in H. If $\Vert u_{n+1}-u\Vert\leq\Vert u_{n}-u\Vert$ for any
$u\in D$ and $n\in \mathbb{N}$ , then $\{Pu_{n}\}$ converges strongly to some $u_{0}\in D.$

Lemma 2.2 ([2]). Let $\{s_{n}\}$ be a sequence of nonnegative real numbers, let $\{\alpha_{n}\}$ be a se-
quence of $[0$ , 1$]$ with $\sum_{n=1}^{\infty}\alpha_{n}=\infty$ , let $\{\beta_{n}\}$ be a sequence of nonnegative real numbers with
$\sum_{n=1}^{\infty}\beta_{n}<\infty$ , and let $\{\gamma_{n}\}$ be a sequence of real numbers with $\lim\sup_{narrow\infty}\gamma_{n}\leq 0$ . Suppose
that

$s_{n+1}\leq(1-\alpha_{n})s_{n}+\alpha_{n}\gamma_{n}+\beta_{n}$

for all $n=1$ , 2, Then $\lim_{narrow\infty}s_{n}=0.$

Let $\ell\infty$ be the Banach space of bounded sequences with supremum norm. Let $\mu$ be an
element of $(\ell^{\infty})^{*}$ (the dual space of $\ell^{\infty}$ ). Then we denote by $\mu(f)$ the value of $\mu$ at $f=$
$(x_{1}, x_{2}, x_{3}, \ldots)\in l^{\infty}$ . Sometimes, we denote by $\mu_{n}(x_{n})$ the value $\mu(f)$ . A linear functional $\mu$

on $\ell\infty$ is called a mean if $\mu(e)=\Vert\mu\Vert=1$ , where $e=(1,1,1,$ . . A mean $\mu$ is called a Banach
limit on $\ell\infty$ if $\mu_{n}(x_{n+1})=\mu_{n}(x_{n})$ . We know that there exists a Banach limit on $\ell\infty$ . If $\mu$ is a
Banach limit on $\ell\infty$ , then for $f=(x_{1}, x_{2}, x_{3}, \ldots)\in\ell\infty,$

$\lim_{narrow}\inf_{\infty}x_{n}\leq\mu_{n}(x_{n})\leq\lim_{narrow}\sup_{\infty}x_{n}.$

In particular, if $f=(x_{1}, x_{2}, x_{3}, \ldots)\in\ell\infty$ and $x_{n}arrow a\in \mathbb{R}$ , then we have $\mu(f)=\mu_{n}(x_{n})=a.$

See [28] for the proof of existence of a Banach limit and its other elementary properties. For
$f\in\ell\infty$ , define $\ell_{1}$ : $\ell\inftyarrow\ell\infty$ as follows:

$\ell_{1}f(k)=f(1+k) , \forall k\in \mathbb{N}.$

A sequence $\{\mu_{n}\}$ of means on $l^{\infty}$ is said to be strongly asymptotically invariant if

$\Vert\ell_{1}^{*}\mu_{n}-\mu_{n}\Vertarrow 0,$

where $\ell_{1}^{*}$ is the adjoint operator of $\ell_{1}$ . See [6] for more details. The following definition which
was introduced by Takahashi [27] is crucial in the fixed point theory. Let $h$ be a bounded
function of $\mathbb{N}$ into $H$ . Then, for any mean $\mu$ on $\ell\infty$ , there exists a unique element $h_{\mu}\in H$

such that
$\langle h_{\mu}, z\rangle=(\mu)_{k}\langle h(k) , z\rangle, \forall z\in H.$
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Such $h_{\mu}$ is contained in $\overline{co}\{h(k):k\in \mathbb{N}\}$ , where $\overline{co}A$ is the closure of convex hull of $A$ . In
particular, let $T$ be a mapping of a subset $C$ of a Hilbert space $H$ into itself such that
$\{T^{k}x : k\in \mathbb{N}\}$ is bounded for some $x\in C$ . Putting $h(k)=T^{k}x$ for all $k\in \mathbb{N}$ , we have that
there exists $z_{0}\in H$ such tat

$\mu_{k}\langle T^{k_{X}}, y\rangle=\langle z_{0}, y\rangle, \forall y\in H.$

We denote such $z_{0}$ by $T_{\mu}x$ . From Kawasaki and Takahashi [19], we also know the following
fixed point theorem for widely more generalized hybrid mappings in a Hilbert space.

Theorem 2.3 ([19]). Let $H$ be a Hilbert space, let $C$ be a non-empty, closed and convex subset

of $H$ and let $T$ be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)$-widely more generalized hybrid mapping from $C$ into

itself i. e., there exist $\alpha,$
$\beta,$

$\gamma,$
$\delta,$

$\epsilon,$
$\zeta,$ $\eta\in \mathbb{R}$ such that

$\alpha\Vert Tx-Ty\Vert^{2}+\beta\Vert x-Ty\Vert^{2}+\gamma\Vert Tx-y\Vert^{2}+\delta\Vert x-y\Vert^{2}$

$+\epsilon\Vert x-Tx\Vert^{2}+\zeta\Vert y-Ty\Vert^{2}+\eta\Vert(x-Tx)-(y-Ty)\Vert^{2}\leq 0$

for all $x,$ $y\in C$ . Suppose that it satisfies the following condition (1) or (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\gamma+\epsilon+\eta>0$ and $\zeta+\eta\geq 0$ ;
(2) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\beta+\zeta+\eta>0$ and $\epsilon+\eta\geq 0.$

Then $T$ has a fixed point if and only if there exists $z\in C$ such that $\{T^{n}z : n=0, 1, . . .\}$ is
bounded. In particular, a fixed point of $T$ is unique in the case of $\alpha+\beta+\gamma+\delta>0$ under the
conditions (1) and (2).

3 Nonlinear ergodic theorems
In this section, using the technique developed by Takahashi [27], we prove a mean convergence
theorem for widely more generalized hybrid mappings in a Hilbert space. Before proving the
result, we need the following three lemmas. The following lemma was proved by Kawasaki
and Takahashi [19].

Lemma 3.1 ([19]). Let $H$ be a real Hilbert space, let $C$ be a closed and convex subset of $H$

and let $T$ be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)$-widely more generalized hybrid mapping from $C$ into itself
such that $F(T)\neq\emptyset$ and it satisfies the condition (1) or (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0,$ $\zeta+\eta\geq 0$ and $\alpha+\beta>0$ ;
(2) $\alpha+\beta+\gamma+\delta\geq 0,$ $\epsilon+\eta\geq 0$ and $\alpha+\gamma>0.$

Then $T$ is quasi-nonexpansive.

The following two lemmas by Hoj $0$ and Takahashi [12] are crucial in the proof of our main
theorem in this section.

Lemma 3.2 ([12]). Let $C$ be a non-empty, closed and convex subset of a real Hilbert space
H. Let $T$ be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)$-widely more generalized hybrid mapping from $C$ into itself
such that $F(T)\neq\emptyset$ . Suppose that it satisfies the following condition (1) or (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\gamma>0,$ $\epsilon+\eta\geq 0$ and $\zeta+\eta\geq 0$ ;
(2) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\beta>0,$ $\zeta+\eta\geq 0$ and $\epsilon+\eta\geq 0.$
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Let $\{\mu_{\nu}\}$ be a srongly asymptotically invariant net of means on $\ell\infty$ . For any $x\in C$ , define
$S_{\mu_{\nu}}x$ as follows:

$\langle S_{\mu_{\nu}}x,$ $y\rangle=(\mu_{\nu})_{k}\langle T^{k_{X}},$ $y\rangle,$ $\forall y\in H.$

Then $\lim_{\nu}\Vert S_{\mu_{\nu}}x-TS_{\mu_{\nu}}x\Vert=0$ . In addition, if $C$ is bounded, then

$\lim_{x}\sup_{\in\nu C}\Vert S_{\mu_{\nu}}x-TS_{\mu_{\nu}}x\Vert=0.$

Lemma 3.3 ([12]). Let $H$ be a Hilbert space and let $C$ be a non-empty, closed and convex
subset of H. Let $T:Carrow C$ be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)$ -widely more generalized hybrid mapping.
Suppose that it satisfies the following condition (1) or (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0$ and $\alpha+\gamma+\epsilon+\eta>0$ ;
(2) $\alpha+\beta+\gamma+\delta\geq 0$ and $\alpha+\beta+\zeta+\eta>0.$

If $x_{\nu}arrow z$ and $x_{\nu}-Tx_{\nu}arrow 0$ , then $z\in F(T)$ .

Now we have the following nonlinear ergodic theorem for widely more generalized hybrid
mappings in a Hilbert space which was proved by Hojo and Takahashi [12].

Theorem 3.4 ([12]). Let $H$ be a real Hilbert space, let $C$ be a non-empty, closed and convex
subset of $H$ and let $T$ be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)$-widely more generalized hybrid mapping from $C$

into itself such that $F(T)\neq\emptyset$ . Suppose that $T$ satisfies the condition (1) or (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\gamma>0,$ $\epsilon+\eta\geq 0$ and $\zeta+\eta\geq 0$ ;
(2) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\beta>0,$ $\zeta+\eta\geq 0$ and $\epsilon+\eta\geq 0.$

Let $\{\mu_{\nu}\}$ be a srongly asymptotically invariant net of means on $\ell\infty$ and let $P$ be the metric
projection of $H$ onto $F(T)$ . Then for any $x\in C$ , the net $\{S_{\mu_{\nu}}x\}$ converges weakly to a fixed
point $p$ of $T$ , where $p= \lim_{narrow\infty}PT^{n}x.$

Using Theorem 3.4, we have the following nonlinear ergodic theorem for widely more gen-
eralized hybrid mappings in a Hilbert space which was proved by Kawasaki and Takahashi
[19].

Theorem 3.5 ([19]). Let $H$ be a real Hilbert space, let $C$ be a non-empty, closed and convex
subset of $H$ and let $T$ be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)$-widely more generalized hybrid mapping from $C$

into itself such that $F(T)\neq\emptyset$ and it satisfies the condition (1) or (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\gamma+\epsilon+\eta>0,$ $\zeta+\eta\geq 0$ and $\alpha+\beta>0$ ;
(2) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\beta+\zeta+\eta>0,$ $\epsilon+\eta\geq 0$ and $\alpha+\gamma>0.$

Then for any $x\in C$ the Ces\‘aro means

$S_{n}x= \frac{1}{n}\sum_{k=0}^{n-1}T^{k_{X}}$

converge weakly to a fixed point $p$ ofT and $p= \lim_{narrow\infty}PT^{n}x$ , where $P$ is the metric projection

of $H$ onto $F(T)$ .

Proof. For any $f=(x_{0}, x_{1}, x_{2}, \ldots)\in\ell\infty$ , define

$\mu_{n}(f)=\frac{1}{n}\sum_{k=0}^{n-1}x_{k}, \forall n\in \mathbb{N}.$
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Then $\{\mu_{n} : n\in \mathbb{N}\}$ is an asymptotically invariant sequence of means on $\ell^{\infty}$ ; see [28, p.78].
Furthermore, we have that for any $x\in C$ and $n\in \mathbb{N},$

$T_{\mu_{\mathfrak{n}}}x= \frac{1}{n}\sum_{k=0}^{n-1}T^{k_{X}}.$

Therefore, we have the desired result from Theorem 3.4. 口

4 Weak convergence theorems of Mann’s type
In this section, we prove a weak convergence theorem of Mann’s type [24] for widely more
generalized hybrid mappings in a Hilbert space. Let $C$ be a non-empty, closed and convex
subset of a Hilbert space $H$ . Then we know from Lemma 3.1 that an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)$-widely
more generalized hybrid mapping $T$ from $C$ into itself with $F(T)\neq\emptyset$ which satisfies the
condition (1) or (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\beta>0$ and $\zeta+\eta\geq 0$ ;
(2) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\gamma>0$ and $\epsilon+\eta\geq 0,$

is quasi-nonexpansive. If $T$ : $Carrow H$ is quasi-nonexpansive, then $F(T)$ is closed and convex;
see Itoh and Takahashi [17]. It is not difficult to prove such a result in a Hilbert space. In
fact, for proving that $F(T)$ is closed, take a sequence $\{z_{n}\}\subset F(T)$ with $z_{n}arrow z$ . Since $C$ is
weakly closed, we have $z\in C$ . Furthermore, from

$\Vert z-Tz\Vert\leq\Vert z-z_{n}\Vert+\Vert z_{n}-Tz\Vert\leq 2\Vert z-z_{n}\Vertarrow 0,$

$z$ is a fixed point of $T$ and so $F(T)$ is closed. Let us show that $F(T)$ is convex. For $x,$ $y\in F(T)$

and $\alpha\in[0$ , 1$]$ , put $z=\alpha x+(1-\alpha)y$ . Then we have from (2.2) that

$\Vert z-Tz\Vert^{2}=\Vert\alpha x+(1-\alpha)y-Tz\Vert^{2}$

$=\alpha\Vert x-Tz\Vert^{2}+(1-\alpha)\Vert y-Tz\Vert^{2}-\alpha(1-\alpha)\Vert x-y\Vert^{2}$

$\leq\alpha\Vert x-z\Vert^{2}+(1-\alpha)\Vert y-z\Vert^{2}-\alpha(1-\alpha)\Vertx-y\Vert^{2}$

$=\alpha(1-\alpha)^{2}\Vert x-y\Vert^{2}+(1-\alpha)\alpha^{2}\Vert x-y\Vert^{2}-\alpha(1-\alpha)\Vert x-y\Vert^{2}$

$=\alpha(1-\alpha)(1-\alpha+\alpha-1)\Vert x-y\Vert^{2}=0$

and hence $Tz=z$ . This implies that $F(T)$ is convex. Using Lemma 3.1 and the technique
developed by Ibaraki and Takahashi [14, 15], we can prove the following weak convergence
theorem.

Theorem 4.1 ([9]). Let $H$ be a Hilbert space and let $C$ be a non-empty, closed and convex
subset of H. Let $T:Carrow C$ be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)-$ widely more 9eneralized hybrid mappin9
with $F(T)\neq\emptyset$ which satisfies the condition (1) or (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\gamma>0,$ $\epsilon+\eta\geq 0$ and $\zeta+\eta\geq 0$ ;
(2) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\beta>0,$ $\zeta+\eta\geq 0$ and $\epsilon+\eta\geq 0.$

Let $P$ be the mertic projection of $H$ onto $F(T)$ . Let $\{\mu_{n}\}$ be a srongly asymptotically invariant
sequence of means on $\ell\infty$ . Let $\{\alpha_{n}\}$ be a sequence of real numbers such that $0\leq\alpha_{n}\leq 1$ and
$\lim\inf_{narrow\infty}\alpha_{n}(1-\alpha_{n})>0$ . Suppose $\{x_{n}\}$ is the sequence generated by $x_{1}=x\in C$ and

$x_{n+1}=\alpha_{n}x_{n}+(1-\alpha_{n})T_{\mu_{n}}x_{n}, n\in \mathbb{N}.$
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Then $\{x_{n}\}$ converges weakly to $v\in F(T)$ , where $v= \lim_{narrow\infty}Px_{n}.$

Using Theorem 4.1, we can show the following weak convergence theorem of Mann’s type
for generalized hybrid mappings in a Hilbert space.

Theorem 4.2 ([9]). Let $H$ be a Hilbert space and let $C$ be a non-empty, closed and convex
subset of H. Let $T$ : $Carrow C$ be a generalized hybrid mapping with $F(T)\neq\emptyset$ . Let $\{\mu_{n}\}$ be
a srongly asymptotically invariant sequence of means on $\ell\infty$ . Let $\{\alpha_{n}\}$ be a sequence of real
numbers such that $0\leq\alpha_{n}\leq 1$ and $\lim\inf_{narrow\infty}\alpha_{n}(1-\alpha_{n})>$ O. Suppose that $\{x_{n}\}$ is the
sequence generated by $x_{1}=x\in C$ and

$x_{n+1}=\alpha_{n}x_{n}+(1-\alpha_{n})T_{\mu_{n}}x_{n}, n\in \mathbb{N}.$

Then the sequence $\{x_{n}\}$ converges weakly to an element $v\in F(T)$ .

Proof. Since $T:Carrow C$ is a generalized hybrid mapping, there exist $\alpha,$
$\beta\in \mathbb{R}$ such that

$\alpha\Vert Tx-Ty\Vert^{2}+(1-\alpha)\Vert x-Ty\Vert^{2}\leq\beta\Vert Tx-Ty\Vert^{2}+(1-\beta)\Vert x-Ty\Vert^{2}$

for all $x,$ $y\in C$ . We have that an $(\alpha, \beta)$-generalized hybrid mapping is an $(\alpha,$ $1-\alpha,$ $-\beta,$ $-(1-$
$\beta)$ , $0,$ $0,$ $0)$ -widely more generalized hybrid mapping which satisfies the condition (2) in Theo-
rem 4.1. Therefore, we have the desired result from Theorem 4.1. 口

5 Strong Convergence Theorems
In this section, using the idea of mean convergence by Shimizu and Takahashi [25] and [26], we
prove the following strong convergence theorem for widely more generalized hybrid mappings
in a Hilbert space.

Theorem 5.1 ([9]). Let $C$ be a nonempty, closed and convex subset of a real Hilbert space $H.$

Let $T$ be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)$-widely more generalized hybrid mapping of $C$ into itself which
satisfies the following condition (1) or (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\gamma>0,$ $\epsilon+\eta\geq 0$ and $\zeta+\eta\geq 0$ ;
(2) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\beta>0,$ $\zeta+\eta\geq 0$ and $\epsilon+\eta\geq 0.$

Let $\{\mu_{n}\}$ be a srongly asymptotically invariant sequence of means on $\ell\infty$ . Let $u\in C$ and define
sequences $\{x_{n}\}$ and $\{z_{n}\}$ in $C$ as follows: $x_{1}=x\in C$ and

$\{\begin{array}{l}x_{n+1}=\alpha_{n}u+(1-\alpha_{n})z_{n},z_{n}=T_{\mu_{n}}x_{n}\end{array}$

for all $n=1$ , 2, where $0\leq\alpha_{n}\leq 1,$ $\alpha_{n}arrow 0$ and $\sum_{n=1}^{\infty}\alpha_{n}=\infty$ . If $F(T)\neq\emptyset$ , then $\{x_{n}\}$

and $\{z_{n}\}$ converge strongly to Pu, where $P$ is the metric projection of $H$ onto $F(T)$ .

Using Theorem 5.1, as in the proof of Theorem 4.2, we can show the result (Theorem 1.2)
in Introduction which was obtained by Hojo and Takahashi [11].
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