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ABSTRACT. In this paper, we consider an iterative method for a continuous pseudocon-
tractive mapping $T$ and a continuous bounded strongly pseudocontractive mapping $A$ in
a reflexive Banach space having a uniformly G\^ateaux differentiable norm. Under suitable
conditions on control parameters, we establish strong convergence of the sequence gener-
ated by the proposed iterative algorithm to a fixed point of the mapping $T$ , which solves
a ceratin variational inequality related to $A.$

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, we denote by $E$ with the norm $\Vert\cdot\Vert$ and $E^{*}$ a real Banach space
and the dual space of $E$ , respectively Let $C$ be a nonempty closed convex subset of
$E$ . For the mapping $T$ : $Carrow C$ , we denote the fixed point set of $T$ by $F(T)$ , that is,
$F(T)=\{x\in C:Tx=x\}.$

Let $J$ denote the normalized duality mapping from $E$ into $2^{X^{*}}$ defined by

$J(x)=\{f\in E^{*} : \langle x, f\rangle=\Vert x\Vert\Vert f\Vert, \Vert f\Vert=\Vert x\Vert\}, \forall x\in E,$

where $\rangle$ denotes the generalized duality pair between $E$ and $E^{*}$ . Recall that the norm
of $E$ is said to be G\^ateaux differentiable if

$\lim_{tarrow 0}\frac{\Vert x+ty\Vert-\Vert x\Vert}{t}$ (1.1)

exists for each $x,$ $y$ in its unit sphere $U=\{x\in E:\Vert x\Vert=1\}$ . Such an $E$ is called a smooth
Banach space. The norm is said to be uniformly G\^ateaux differentiable if for $y\in U$ , the
limit is attained uniformly for $x\in U$ . The space $E$ is said to have a uniformly Fbr\’echet

differentiable norm (and $E$ is said to be uniformly smooth) if the limit in (1.1) is attained
uniformly for $(x, y)\in U\cross U$ . It is known that $E$ is smooth if and only if the normalized
duality mapping $J$ is single-valued. It is well known that if $E$ is uniformly smooth, then the
duality mapping is norm to norm uniformly continuous on bounded subsets of $E$ , and that
if $E$ has a uniformly G\^ateaux differentiable norm, $J$ is norm $to-weak^{*}$ uniformly continuous
on each bounded subsets of $E([1,2$

It is relevant to the our results of this paper to note that while every uniformly smooth
Banach space is a reflexive Banach space having a uniformly G\^ateaux differentiable norm,
the converse does not hold. To see this, consider $E$ to be the direct sum $l^{2}(l^{p_{n}})$ , the class
of all those sequences $x=\{x_{n}\}$ with $x_{n}\in l^{p_{n}}$ and $\Vert x\Vert=(\sum_{n<\infty}\Vert x_{n}\Vert^{2})^{\frac{1}{2}}$ (see [3]). If
$1<p_{n}<\infty$ for $n\in \mathbb{N}$ , where either $\lim\sup_{narrow\infty}p_{n}=\infty$ or $\lim\inf_{narrow\infty}p_{n}=1$ , then $E$ is a
reflexive Banach space with a uniformly G\^ateaux differentiable norm, but is not uniformly
smooth (see [3, 4, 5 We also observe that the spaces which enjoy the fixed point property

2000 Mathematics Subject Classification. $47H10,$ $47H09,$ $47J20.$

Key words and phrases. Iterative algorithm; Pseudocontractive mapping; Strongly pseudocontractive
mapping; Fixed points; Uniformly G\^ateaux differentiable norm; Uniformly smooth Banach space; Reflexive
and Strictly convex Banach space; Variational inequality.

数理解析研究所講究録

第 1923巻 2014年 42-49 42



JONG SOO JUNG

(shortly, F.P.P) for nonexpansive mappings are not necessarily spaces having a uniformly
G\^ateaux differentiable norm. On the other hand, the converse of this fact appears to be
unknown as well.

A Banach space $E$ is said to be strictly convex if

$\Vert x\Vert=\Vert y\Vert=1,$ $x\neq y$ implies $\frac{\Vert x+y\Vert}{2}<1.$

A Banach space $E$ is said to be uniformly convex if $\delta_{E}(\epsilon)>0$ for all $\epsilon>0$ , where $\delta_{E}(\epsilon)$

is the modulus of convexity of $E$ defined by

$\delta_{E}(\epsilon)=\inf\{1-\frac{\Vert x+y\Vert}{2}$ : $\Vert x\Vert\leq 1,$ $\Vert y\Vert\leq 1,$ $\Vert x-y\Vert\geq\epsilon\},$ $\epsilon\in[0$ , 2$].$

It is well known that a uniformly convex Banach space $E$ is reflexive and strictly convex ([1])
and satisfies the F.P.P. for nonexpansive mappings. However, it appears to be unknown
whether a reflexive and strictly convex space satisfies the F.P.P. for nonexpansive mappings.

Recall that a mapping $T$ with domain $D(T)$ and range $R(T)$ in $E$ is called pseudocon-
tractive if the inequality

$\Vert x-y\Vert\leq\Vert x-y+r((I-T)x-(I-T)y)\Vert$ (1.2)

holds for each, $y\in D(T)$ and for all $r>0$ . From a result of Kato $[6],we$ know that (1.1)
is equivalent to (1.3) below; there exists $j(x-y)\in J(x-y)$ such that

$\langle Tx-Ty,j(x-y)\rangle\leq\Vert x-y\Vert^{2}$ (1.3)

for all $x,$ $y\in D(T)$ . The mapping $T$ is said to be strongly pseudocontractive it there exists
a constant $k\in(0,1)$ and $j(x-y)\in J(x-y)$ such that

$\langle Tx-Ty, j(x-y)\rangle\leq k\Vert x-y\Vert^{2}$

for all $x,$ $y\in D(T)$

The class of pseudocontractive mappings is one of the most important classes of mappings
in nonlinear analysis and it has been attracting mathematician’s interest. In addition to
generalizing the nonexpansive mappings (the mappings $T:Darrow E$ for which $\Vert Tx-Ty\Vert\leq$

$\Vert x-y$ $\forall x,$ $y\in D)$ , the pseudocontractive ones are characterized by the fact that $T$ is
pseudocontractive if and only if $I-T$ is accretive, where a mapping $A$ with domain $D(A)$

and range $R(A)$ in $E$ is called accretive if the inequality

$\Vert x-y\Vert\leq\Vert x-y+s(Ax-Ay$

holds for every $x,$ $y\in D(A)$ and for all $s>0.$

Within the past 40 years or so, many authors have been devoting their study to the
existence of zeros of accretive mappings or fixed points of pseudocontractive mappings and
iterative construction of zeros of accretive mappings and of fixed points of pseudocontractive
mappings (see [5,7,8,9,10 Also several iterative methods for approximating fixed points
(zeros) of nonexpansive and pseudocontractive mappings (accretive mappings) in Hilbert
spaces and Banach spaces have been introduced and studied by many authors. We can
refer to [11, 12, 13, 14, 15, 16, 17] and references in therein.

In 2007, Yao et al. [15] introduced an iterative method (1.4) below for approximating
fixed points of a continuous pseudocontractive mapping $T$ without compactness assumption
on its domain in a uniformly smooth Banach space: for arbitrary initial value $x_{0}\in C$ and
a fixed anchor $u\in C,$

$x_{n}=\alpha_{n}u+\beta_{n}x_{n-1}+\gamma_{n}Tx_{n}, \forall n\geq 1$ , (1.4)

where $\{\alpha_{n}\},$ $\{\beta_{n}\}$ and $\{\gamma_{n}\}$ are three sequences in $(0,1)$ satisfying some appropriate con-
ditions. By using the Reich inequality ([9]) in uniformly smooth Banach spaces:

$\Vert x+y\Vert^{2}\leq\Vert x\Vert^{2}+2\langle y, J(x)\rangle+\max\{\Vert x\Vert, 1\}\Vert y\Vert b(\Vert y\Vert) , \forall x, y\in E$ , (1.5)
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where $b$ : $[0, \infty$ ) $arrow[0, \infty$ ) is a nondecreasing continuous function, they proved that the
sequence $\{x_{n}\}$ generated by (1.4) converges strongly to a fixed point of $T$ . In particular, in
2007, by using the viscosity iterative method studied by [18, 19], Song and Chen [16] intro-
duced a modified implicit iterative method (1.6) below for a continuous pseudocontractive
mapping $T$ without compactness assumption on its domain in a real reflexive and strictly
convex Banach space having a uniformly G\^ateaux differentiable norm: for arbitrary initial
value $x_{0}\in C,$

$\{\begin{array}{l}x_{n}=\alpha_{n}y_{n}+(1-\alpha_{n})Tx_{n},y_{n}=\beta_{n}f(x_{n-1})+(1-\beta_{n})x_{n-1}, \forall n\geq 1,\end{array}$ (1.6)

where $\{\alpha_{n}\}$ and $\{\beta_{n}\}$ are two sequences in $(0,1)$ satisfying some appropriate conditions
and $f$ : $Carrow C$ is a contractive mapping, and proved that the sequence $\{x_{n}\}$ generated
by (1.6) converges strongly to a fixed point of $T$ , which is the unique solution of a ceratin
variational inequality related to $f.$

In this paper, inspired and motivated by above-mentioned results, we introduce the
following iterative method for a continuous pseudocontractive mapping $T$ : for arbitrary
initial value $x_{0}\in C,$

$x_{n}=\alpha_{n}Ax_{n}+\beta_{n}x_{n-1}+(1-\alpha_{n}-\beta_{n})Tx_{n}, \foralln\geq 1$ , (1.7)

where $\{\alpha_{n}\}$ and $\{\beta_{n}\}$ are two sequences in $(0,1)$ and $A$ : $Carrow C$ is a bounded continuous
strongly pseudocontractive mapping with a pseudocontractive constant $k\in(0,1)$ . In either
a reflexive Banach space having a uniformly G\^ateaux differentiable norm such that every
weakly compact convex subset of $E$ has the fixed point property for nonexpansive mappings,
or a reflexive and strict convex Banach space having a uniformly G\^ateaux differentiable
norm, we establish the strong convergence of the sequence generated by proposed iterative
method (1.7) to a fixed point of the mapping, which solves a ceratin variational inequality
related to $A$ . The main result generalizes, improves and develops the corresponding results
of Yao et al. [15] and Song and Chen [16] as well as Rafiq [17].

We need the following well-known lemmas for the proof of our main result.

Lemma 1.1 ([1, 2 Let $E$ be a Banach space and $J$ be the normalized duality mapping
on E. Then for any $x,$ $y\in E$ , the following inequality holds:

$\Vert x+y\Vert^{2}\leq\Vert x\Vert^{2}+2\langle y,j(x+y \forall j(x+y)\in J(x+y)$ .

Lemma 1.2 ([20]). Let $\{s_{n}\}$ be a sequence of non-negative real numbers satisfying

$s_{n+1}\leq(1-\lambda_{n})s_{n}+\lambda_{n}\delta_{n}, \forall n\geq 0,$

where $\{\lambda_{n}\}$ and $\{\delta_{n}\}$ satisfy the following conditions:
(i) $\{\lambda_{n}\}\subset[0$ , 1$]$ and $\sum_{n=0}^{\infty}\lambda_{n}=\infty$ or, equivalently, $\prod_{n=0}^{\infty}(1-\lambda_{n})=0,$

(ii) $\lim\sup_{narrow\infty}\delta_{n}\leq 0$ or $\sum_{n=0}^{\infty}\lambda_{n}|\delta_{n}|<\infty.$

Then $\lim_{narrow\infty}s_{n}=0.$

2. ITERATIVE METHODS

We need the following result which was given in [10].

Proposition 2.1. Let $C$ be a closed convex subset of a Banach space E. Suppose that $T,$ $A$

are two $continuot4S$ mappings from $C$ into itself, which are pseudocontractive and strongly
pseudocontractive, respectively. Then there exists a unique path $t\mapsto x_{t}\in C,$ $t\in(0,1)$ ,
satisfying

$x_{t}=tAx_{t}+(1-t)Tx_{t}.$
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Further, the followings hold:

(i) Suppose that there exists a bounded sequence $\{x_{n}\}$ in $C$ such that $x_{n}-Tx_{n}arrow 0,$

while $\{x_{n}-Ax_{n}\}$ is bounded. Then the path $\{x_{t}\}$ is bounded.
(ii) In particular, if $T$ has a fixed point in $C$ , then the path $\{x_{t}\}$ is bounded.
(iii) If $p$ is a fixed point of $T$ , there exists $j\in J(x_{t}-p)$ such that

$\langle x_{t}-Ax_{t},j\rangle\leq 0.$

We prepare the following result for the existence of a solution of the variational inequality
related to $A$ . For the proof, see [10, 22].

Theorem 2.1. Let $C$ be a nonempty closed convex subset of a Banach space $E$ and $T$ be a
continuous pseudocontractive mapping from $C$ into itself with $F(T)\neq\emptyset$ and $A:Carrow C$ be a
continuous bounded strongly pseudocontractive mapping with a pseudocontractive coefficient
$k\in(O, 1)$ . For each $t\in(O, 1)$ , let $x_{t}\in C$ be defined by

$x_{t}=tAx_{t}+(1-t)Tx_{t}$ . (2.1)

If one of the following assumptions holds:

(H1) $E$ is a reflexive Banach space, the norm of $E$ is uniformly G\^ateaux differentiable,
and every weakly compact convex subset of $E$ has the fixed point property for non-
expansive mappings;

(H2) $E$ is a reflexive and strictly convex Banach space and the norrn of $E$ is uniformly
G\^ateaux differentiable,

then the path $\{x_{t}\}$ converges strongly to a point $u$ in $F(T)$ , which is the unique solution of
the variational inequality

$\langle(I-A)u, J(u-v)\rangle\leq 0, \forall v\in F(T)$ . (2.2)

Using Theorem 2.1, we establish our main result.

Theorem 2.2. Let $E$ be a Banach space and $C$ be a nonempty closed convex subset

of E. Let $T$ : $Carrow C$ be a continuous pseudocontractive mapping such that $F(T)\neq$

$\emptyset$ , and $A$ : $Carrow C$ be a continuous bounded strongly pseudocontractive mapping with a
pseudocontractive constant $k\in(0,1)$ . Let $\{\alpha_{n}\}$ and $\{\beta_{n}\}$ be sequences in $(0,1)$ satisfying
the following conditions:
(C1) $\lim_{narrow\infty}\alpha_{n}=0$ and $\lim_{narrow\infty}\beta_{n}=0$ ;
(C2) $\sum_{n=1^{\frac{\alpha}{\alpha_{n}+\beta_{n}}=\infty}}^{\infty}.$

For arbitrary initial value $x_{0}\in C$ , let the sequence $\{x_{n}\}$ be defined by

$x_{n}=\alpha_{n}Ax_{n}+\beta_{n}x_{n-1}+(1-\alpha_{n}-\beta_{n})Tx_{n}, \foralln\geq 1$ . (2.6)

If one of the following assumptions holds:

(H1) $E$ is a reflexive Banach space, the norm of $E$ is uniformly G\^ateaux differentiable,
and every weakly compact convex subset of $E$ has the fixed point property for non-
expansive mappings;

(H2) $E$ is a reflexive and strictly convex Banach space and the norm of $E$ is uniformly
G\^ateaux differentiable,

then $\{x_{n}\}$ converges strongly to a fixed point $p$ of $T$ , which is the unique solution of the
variational inequality

$\langle(I-A)p, J(p-q)\rangle\leq 0, \forall q\in F(T)$ . (2.7)

Proof. We divide the proof into several steps as follows.
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Step 1. We show that $\{x_{n}\}$ is bounded. To this end, let $q\in F(T)$ . Then, noting that

$x_{n}-q=\alpha_{n}(Ax_{n}-q)+\beta_{n}(x_{n-1}-q)+(1-\alpha_{n}-\beta_{n})(Tx_{n}-q)$ ,

$\langle Tx_{n}-q, J(x_{n}-q)\rangle\leq\Vert x_{n}-q\Vert^{2}$ (2.8)
and

$\langle Ax_{n}-Aq, J(x_{n}-q)\rangle\leq k\Vert x_{n}-q\Vert^{2}$ , (2.9)
we have

$\Vert x_{n}-q\Vert^{2}=\langle\alpha_{n}[(Ax_{n}-Aq)+(Aq-q)]+\beta_{n}(x_{n-1}-q)$

$+(1-\alpha_{n}-\beta_{n})(Tx_{n}-q) , J(x_{n}-q)\rangle$

$\leq\alpha_{n}k\Vert x_{n}-q\Vert^{2}+\alpha_{n}\Vert Aq-q\Vert\Vert x_{n}-q\Vert$

$+\beta_{n}\Vert x_{n-1}-q\Vert\Vert x_{n}-q\Vert+(1-\alpha_{n}-\beta_{n})\Vert x_{n}-q\Vert^{2},$

which implies

$\Vert x_{n}-q\Vert\leq(1-\alpha_{n}(1-k)-\beta_{n})\Vert x_{n}-q\Vert+\alpha_{n}\Vert Aq-q\Vert$

$+\beta_{n}\Vert x_{n-1}-q$

So, we obtain

$\Vert x_{n}-q\Vert\leq\frac{\alpha_{n}}{(1-k)\alpha_{n}+\beta_{n}}\Vert Aq-q\Vert+\frac{\beta_{n}}{(1-k)\alpha_{n}+\beta_{n}}(x_{n-1}-q$

$= \frac{(1-k)\alpha_{n}}{(1-k)\alpha_{n}+\beta_{n}}\frac{\Vert Aq-q\Vert}{1-k}+\frac{\beta_{n}}{(1-k)\alpha_{n}+\beta_{n}}\Vert x_{n-1}-p\Vert$

$\leq\max\{\Vert x_{n-1}-q\Vert, \frac{\Vert Aq-q\Vert}{1-k}\}.$

By induction, we have

$\Vert x_{n}-q||\leq\max\{\Vert x_{0}-q\Vert,$ $\frac{1}{1-k}\Vert Aq-q\Vert\}$ for $n\geq 1.$

Hence $\{x_{n}\}$ is bounded. Since $A$ is a bounded mapping, $\{Ax_{n}\}$ is bounded. From (2.6), it
follows that

$\Vert Tx_{n}\Vert=\frac{1}{1-\alpha_{n}-\beta_{n}}(\Vert x_{n}\Vert+\alpha_{n}\Vert Ax_{n}\Vert+\beta_{n}\Vert x_{n-1}\Vert)$ ,

and so $\{Tx_{n}\}$ is bounded $(as narrow\infty)$ .

Step 2. We show that $\lim_{narrow\infty}\Vert x_{n}-Tx_{n}\Vert=0$ . In fact, by (2.1) and the condition (C1),
we have

$\Vert x_{n}-Tx_{n}\Vert\leq\alpha_{n}\Vert Ax_{n}-Tx_{n}\Vert+\beta_{n}\Vert x_{n-1}-Tx_{n}\Vertarrow 0.$

Step 3. We show that
$\lim_{narrow}\sup_{\infty}\langle Ap-p, J(x_{n}-p)\rangle\leq 0,$

where $p= \lim_{tarrow 0}x_{t}$ with $x_{t}\in C$ being defined by $x_{t}=tAx_{t}+(1-t)Tx_{t}$ . To this end, we
note that

$x_{t}-x_{n}=tAx_{t}+(1-t)Tx_{t}-x_{n}$

$=t(Ax_{t}-x_{t})+(Tx_{t}-x_{n})-t(Tx_{t}-x_{t})$

$=t(Ax_{t}-x_{t})+(Tx_{t}-Tx_{n})+(Tx_{n}-x_{n})+t^{2}(Ax_{t}-Tx_{t})$ .

Then, it follows that

$\Vert x_{t}-x_{n}\Vert^{2}=t\langle Ax_{t}-x_{t}, J(x_{t}-x_{n})\rangle+\langleTx_{t}-Tx_{n}, J(x_{t}-x_{n})\rangle$

$+\langle Tx_{n}-x_{n}, J(x_{t}-x_{n})\rangle+t^{2}\langle Ax_{t}-Tx_{t}, J(x_{t}-x_{n})\rangle$

$\leq t\langle Ax_{t}-x_{t}, J(x_{t}-x_{n})\rangle+\Vert x_{t}-x_{n}\Vert^{2}$

$+\Vert Tx_{n}-x_{n}\Vert\Vert x_{t}-x_{n}\Vert+t^{2}\Vert Ax_{t}-Tx_{t}\Vert\Vert x_{t}-x_{n}$
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which implies that

$\langle Ax_{t}-x_{t}, J(x_{n}-x_{t})\rangle\leq\frac{\Vert Tx_{n}-x_{n}\Vert}{t}\Vert x_{t}-x_{n}\Vert+t\Vert Ax_{t}-Tx_{t}\Vert\Vert x_{t}-x_{n}$ (2.10)

From Proposition 2.1, we know that $\{x_{t}\},$ $\{Ax_{t}\}$ and $\{Tx_{t}\}$ are bounded. Since $\{x_{n}\}$ and
$\{Tx_{n}\}$ are also bounded and $x_{n}-Tx_{n}arrow 0$ by Step 2, taking the upper limit as $narrow\infty$ in
(2.10), we get

$\lim_{narrow}\sup_{\infty}\langle Ax_{t}-x_{t}, J(x_{n}-x_{t})\rangle\leq tL$ , (2.11)

where $L>0$ is a constant such that $\Vert Ax_{t}-Tx_{t}\Vert\Vert x_{t}-x_{n}\Vert\leq L$ for all $n\geq 0$ and $t\in$

$(0,1)$ . Taking the $\lim\sup$ as $tarrow 0$ in (2.11) and noticing the fact that the two limits
are interchangeable due to the fact that $J$ is norm $to-weak^{*}$ uniformly continuous on each
bounded subsets of $E$ , we have

$\lim_{narrow}\sup_{\infty}\langle Ap-p, J(x_{n}-p)\rangle\leq 0.$

Step 4. We show that $\lim_{narrow\infty}\Vert x_{n}-p\Vert=0$ , where $p= \lim_{tarrow 0}x_{t}$ with $x_{t}\in C$ being
defined by $x_{t}=tAx_{t}+(1-t)Tx_{t}$ and $p$ is the unique solution of the variational inequality
(2.7) by Theorem 2.1. First, from (2.6), (2.8) and (2.9), we have

$\Vert x_{n}-p\Vert^{2}=\langle x_{n}-p,$ $J(x_{n}-p)\rangle$

$=\langle\alpha_{n}(Ax_{n}-p)+\beta_{n}(x_{n-1}-p)+(1-\alpha_{n}-\beta_{n})(Tx_{n}-p) , J(x_{n}-p)\rangle$

$=\langle\alpha_{n}(Ax_{n}-Ap) , J(x_{n}-p)\rangle+\beta_{n}\langle x_{n-1}-p, J(x_{n}-p)\rangle$

$+(1-\alpha_{n}-\beta_{n})\langle Tx_{n}-p, J(x_{n}-p)\rangle+\alpha_{n}\langle Ap-p, J(x_{n}-p)\rangle$

$\leq\alpha_{n}k\Vert x_{n}-p\Vert^{2}+\beta_{n}\Vert x_{n-1}-p\Vert\Vert x_{n}-p\Vert$

$+(1-\alpha_{n}-\beta_{n})\Vert x_{n}-p\Vert^{2}+\alpha_{n}\langle Ap-p, J(x_{n}-p)\rangle$

$\leq\alpha_{n}k\Vert x_{n}-p\Vert^{2}+\frac{\beta_{n}}{2}(\Vert x_{n-1}-p\Vert^{2}+\Vert x_{n}-p\Vert^{2})$

$+(1-\alpha_{n}-\beta_{n})\Vert x_{n}-p\Vert^{2}+\alpha_{n}\langle Ap-p, J(x_{n}-p$

This implies that

$\Vert x_{n}-p\Vert^{2}\leq\frac{\beta_{n}}{2(1-k)\alpha_{n}+\beta_{n}}\Vert x_{n-1}-p\Vert^{2}$

$+ \frac{2\alpha_{n}}{2(1-k)\alpha_{n}+\beta_{n}}\langle Ap-p, J(x_{n}-p)\rangle$

$=(1- \frac{2(1-k)\alpha_{n}}{2(1-k)\alpha_{n}+\beta_{n}})\Vert x_{n-1}-p\Vert^{2}$
(2.12)

$+ \frac{2(1-k)\alpha_{n}}{2(1-k)\alpha_{n}+\beta_{n}}\frac{\langle Ap-p,J(x_{n}-p)\rangle}{1-k}$

$=(1-\lambda_{n})\Vert x_{n-1}-p\Vert^{2}+\lambda_{n}\delta_{n},$

where $\lambda_{n}=\frac{2(1-k)\alpha_{n}}{2(1-k)\alpha_{n}+\beta_{n}}$ and $\delta_{n}=\frac{1}{1-k}\langle Ap-p,$ $J(x_{n}-p)\rangle$ . We observe that $0 \leq\frac{2(1-k)\alpha_{n}}{2(1-k)\alpha_{n}+\beta_{n}}\leq$

$1$ and $\frac{(1-k)\alpha_{n}}{\alpha_{n}+\beta_{n}}=\frac{2(1-k)\alpha_{n}}{2\alpha_{n}+2\beta_{n}}<\frac{2(1-k)\alpha_{n}}{2(1-k)\alpha_{n}+\beta_{n}}$ . From the condition (C2) and Step 3, it is easily

seen that $\sum_{n=1}^{\infty}\lambda_{n}=\infty$ and $\lim\sup_{narrow\infty}\delta_{n}\leq 0$ . Thus, applying Lemma 1.2 to (2.12), we
conclude that $\lim_{narrow\infty}x_{n}=p$ . This completes the proof. $\square$

Corollary 2.1. Let $E$ be a uniformly smooth Banach space and $C$ be a nonempty closed
convex subset of E. Let $T:Carrow C$ be a continuous pseudocontractive mapping such that
$F(T)\neq\emptyset$ and $A$ : $Carrow C$ be a continuous bounded strongly pseudocontractive mapping
with a pseudocontractive constant $k\in(O, 1)$ . Let $\{\alpha_{n}\}$ and $\{\beta_{n}\}$ be two sequences in $(0,1)$

satisfying the conditions (C1) and (C2) in Theorem 2.2. For arbitrary initial value $x_{0}\in C,$
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let the sequence $\{x_{n}\}$ be generated by (2.6) in Theorem 2.2. Then $\{x_{n}\}$ converges strongly
to a fixed point $p$ of $T$ , which is the unique solution of the variational inequality (2.7)

Corollary 2.2 ([16, Theorem 3.1]). Let $E$ be a uniformly smooth Banach space and $C$ be
a nonempty closed convex subset of E. Let $T:Carrow C$ be a continuous pseudocontractive
mapping such that $F(T)\neq\emptyset$ . Let $\{\alpha_{n}\},$ $\{\beta_{n}\}$ and $\{\gamma_{n}\}$ be three sequences in $(0,1)$ satisfying
the conditions $(Cl)$ and (C2) in Theorem 2.2 and $\gamma_{n}=1-\alpha_{n}-\beta_{n}$ for $n\geq 1$ . For arbitraw
initial value $x_{0}\in C$ and a fixed anchor $u\in C$ , let the sequence $\{x_{n}\}$ be generated by

$x_{n}=\alpha_{n}u+\beta_{n}x_{n-1}+\gamma_{n}Tx_{n}, \forall n\geq 1.$

Then $\{x_{n}\}conver9^{eS}$ strongly to a fixed point $p$ of $T$ , which is the unique solution of the
variational inequality

$\langle p-u, J(p-q)\rangle\leq 0, \forall q\in F(T)$ .

Proof. Taking $Ax=u,$ $\forall x\in C$ as a constant function, the result follows from Corollary
2.1.

Corollary 2.3. Let $E$ be a uniformly convex Banach space having a uniformly G\^ateaux

differentiable norm and $C$ be a nonempty closed convex subset of E. Let $T:Carrow C$ be a
continuous pseudocontractive mapping such that $F(T)\neq\emptyset$ and $A$ : $Carrow C$ be a continuous
bounded strongly pseudocontractive mapping with a pseudocontractive constant $k\in(0,1)$ .
Let $\{\alpha_{n}\}$ and $\{\beta_{n}\}$ be three sequences in $(0,1)$ satisfying the conditions (C1) and (C2) in
Theorem 2.2. For arbitrary initial value $x_{0}\in C$ , let the sequence $\{x_{n}\}$ be generated by (2.6)
in Theorem 2.2. Then $\{x_{n}\}$ converges strongly to a fixed point $p$ of $T$ , which is the unique
solution of the variational inequality (2.7).

Remark 2.1.

1) Theorem 2.2 extends and improves Theorem 3.1 of Yao et al. [15] in the following
aspects:
(a) $u$ is replaced by a continuous bounded strongly pseudocontractive mapping $A.$

(b) The uniformly smooth Banach space is extended to a reflexive Banach space
having a uniformly G\^ateaux differentiable norm.

(c) The condition $\#_{n}^{\alpha}arrow 0$ in [15] is weakened to $\alpha_{n}arrow 0$ and $\beta_{n}arrow 0$ as $narrow\infty.$

2) It is worth pointing out that in Corollary 2.1 and Corollary 2.2, we do not use the
Reich inequality (1.5) in comparison with Theorem 3.1 of Yao et al. [15].

3) Theorem 2.2 and Corollary 2.3 also develop and complement Theorem 3.1 and
Corollary 3.2 of Song and Chen [16] by replacing the contractive mapping with a
continuous bounded strongly pseudocontractive mapping in the iterative scheme
(1.7) in [16].

4) The assumption (H1) in Theorem 2.1 and Theorem 2.2 appears to be independent
of the assumption (H2).

5) We point out that the results in this paper apply to all $L^{p}$ spaces, $1<p<\infty.$
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