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Abstract

For any two stochastic spaces X and $Y$, we would hke to search a real valued function
$f$ : $X\cross Yarrow \mathbb{R}$ for $(x,y)\in X\cross Y$ satisfying that whether the minimax identity (theorem)

$\inf_{x\in X}\sup_{y\in Y}f(x,y)=\sup_{y\in Y}id_{x\in X}f(x,y)$ holds. This problem established in a two-

person zero-sum dynamic game under some conditions is solvable.

Keywords. Minimax theorem, upper (lower) valuedfunction, dynamic games, saddle value

function.

1 Preliminary

For any spaces X and $Y$, a real valued function $f$ on $X\cross Y$ is considered to search

conditions in the function $f$ : $X\cross Yarrow \mathbb{R}$, and conditions in spaces X and $Y$ satisfy the

identity $iffi_{x\in X}\sup_{y\in Y}f(x,y)=\sup_{y\in Y}\inf_{x\in X}f(x,y)$, namely minimax identity or mm-
$\max$ theorem. There are three types in minimax theorems described by Ky Fan (cf. [1],

Fan). Thus the minimax theorems are multicriteria.

In this note, we assume the spaces X and $Y$ are regarded as the strategy spaces of
players I and II, respectively in a two person dynamic game, and we would assign a
game function $f$ in such a game system, and prove the minimax theorem holds.

Research means that one tries to find the conditions such that the objective result
holds. The achieved research may be used the technique by
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1. restriction,

2. extension, generalization

3. mix the conditions by restriction or extension, or create a new method and tech-

nique to explain the purpose result holds.

Our research work mostly obeys the above idea.

2 Performance of a two-person zero-sum dynamic game
We perform a two-person zero-sum dynamic game with a parameter $\theta$ by seven ele-

ments as following:

$(DG_{\theta})(S_{n},A_{n},B_{n},t_{n+1},u_{n},v_{n},\theta) , n\in \mathbb{N}.$

At first, we assume X and $Y$ are metrizable separable spaces. A two-person zero-
sum game means that, there are two players play a game in the state $S_{n}$ by using their

strategies $A_{n}\in X_{n}\subset X$ and $B_{n}\in Y_{n}\subset Y$ as the actions $A_{n}$ and $B_{n}$ , respectively. In the law

of motion, they have the reward functions $u_{n}$ and $v_{n}$ at $n\in \mathbb{N}$ (the time space).
In order to evaluate process smoothly in mathematical analysis, we assume that all

spaces are Borel measurability. Moreover, we assume the reward functions $u_{n}$ and $v_{n}$

are bounded.

After the step $S_{n}A_{n}B_{n}$ , the game system is moving the state from $S_{n}$ to $S_{n+1}$ by
transition probability $t_{n+1}$ . This game system is continuously passing to infinity. For
convenience, we use the stories of the game system $by$:

$H_{1}=S_{1},$

$H_{2}=S_{1}\cross A_{1}\cross B_{1}\cross S_{2}=H_{1}A_{1}B_{1}S_{2},$

:

$H_{n}=S_{1}\cross A_{1}\cross B_{1}\cross S_{2}\cross A_{2}\cross B_{2}\cross\cdots\cross S_{n-1}\cross A_{n-1}\cross B_{n-1}\cross S_{n}$

$=H_{n-1}A_{n-1}B_{n-1}S_{n\prime}n=2,3,\cdots$

Assume that $u_{n}$ : $H_{n}A_{n}B_{n}arrow \mathbb{R}$ and $v_{n}$ : $H_{n}A_{n}B_{n}arrow \mathbb{R}_{+}$ at time $n\in \mathbb{N}$ . By the bounded

converging theorem, when the time $n$ goes to infinity, they have limit functions

$\lim_{narrow\infty}u_{n}=u:H_{\infty}arrow \mathbb{R}$ and $\lim_{narrow\infty}v_{n}=v:H_{\infty}arrow \mathbb{R}_{+}$
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where $h\in H_{\infty}$ is a stochastic variable for time $n$ going to infinity. The function of $u$ and
$v$ are density function on $H_{\infty}$ with probability measure $P_{xy}($ . By the assumption, X

and $Y$ are separable, and so there exist sequences $\{X_{n}\}\subset X$ and $\{Y_{n}\}\subset Y$ dense in X and
$Y$, respectively.

3 Conditional expectation in the game system $1DG_{\theta}$ )

Let $E_{x_{n}},E_{y_{n}},E_{t_{n-1}}$ denote the expectation operators with respect to $x_{n}\in X_{n},$ $y_{n}\in Y_{n}$ and

the transition probability $\{t_{n+1}\}$ . Thus the total conditional expectations of player I and
player II are written as:

$E(u_{n\prime}x,y)(s_{1})= \int_{H_{\infty}}u_{n}(h)P_{xy}(dh|s_{1})=E_{xy}u_{n}(s_{1})$

$=E_{x_{1}}E_{y_{1}}E_{t_{2}}\cdots E_{x_{n-1}}E_{y_{n-1}}E_{t_{n}}E_{x_{n}}E_{y_{n}}u_{n}(s_{1})$ ,

and

$E(v_{n},x,y)(s_{1})= \int_{H_{\infty}}v_{n}(h)P_{xy}(dh|s_{1})=E_{xy}v_{n}(s)$

$=E_{x_{1}}E_{y_{1}}E_{t_{2}}\cdots E_{x_{n-1}}E_{y_{n-1}}E_{t_{n}}E_{x_{n}}E_{y_{n}}v_{n}(s_{1})$ ,

for $n\in \mathbb{N}$ by Fubim theorem. Hence the limits are given by bounded dominate (con-

vergent) theorem as:

$\lim_{narrow\infty}E(u_{n\prime}\cdot x,y)(s_{1})=\int_{H_{\infty}}\lim_{narrow\infty}E(u,x,y)P_{xy}(dh|s_{1})=U(x,y)(s_{1})\in \mathbb{R},$

and

$\lim_{narrow\infty}E(v_{n\prime}\cdot x,y)(s_{1})=\int_{H_{\infty}}\lim_{narrow\infty}E(v,x,y)P_{xy}(dh|s_{1})=V(x,y)(s_{1})\in \mathbb{R}_{+},$

respectively.

If a game function of the game system $(DG_{\theta}\rangle$ is given by:

(3.1) $F_{\theta}^{n}=u_{n}-\theta v_{n}, n\in \mathbb{N},$

it is regarded as the loss (gain) value function of player I, then player II has the gain
(loss) value function denoted by

(3.2) $-P_{\theta}.$
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Consequently, the sum of (3.1) and (3.2) equals zero for any time $n\in \mathbb{N}$ . By the

bounded Lebesgue theorem,

$F_{\theta}(x,y)(s_{1})= \lim_{narrow\infty}E_{xy}F_{\theta}^{n}(x,y)(s_{1})$

$= \lim_{narrow\infty}E_{xy}[u_{n}(x,y)-\theta v_{n}(x,y)](s_{1})$

$=U(x,y)(s_{1})-\theta V(x,y)(s_{1})$ . (Since operator $\int$ is linear.)

Hence it can be deduced to a minimax identity problem (cf. [5], Lai/Yu) to establish

$\inf_{x\in X}\sup_{y\in Y}F_{\theta}(x,y)(s_{1})=\sup_{y\in Y^{x}}\inf_{\in X}F_{\theta}(x,y)(s_{1})$

holds.

4 Game function and lower (upper) value function

The upper value function is defined by

$\overline{F}_{\theta}(s_{1})=\inf_{x\in}\sup_{y\in Y}F_{\theta}(x,y)(s_{1})$
.

Similarly, the lower value function of the game system is defined by:

$\underline{F}_{\theta}(s_{1})=\sup_{y\in Y^{\chi}}\inf_{\in X}F_{\theta}(x,y)(s_{1})$
.

Like in a minimax programming problem, the value $\inf_{x\in X}\sup_{y\in Y}F(x,y)(s_{1})$, needs

$\sup_{y\in Y}$ must be attainable. Thus for a minimax theorem problem, it requires the same

property which causes us to give the following two definitions.

Definition 4.1. A point $y^{*}\in Y$ is called a maximizer of $F_{\theta}(x,y)(s_{1})$ over $y\in Y$ for each
$x\in X$ in the system $(DG_{\theta})$, if there exists a maximizer $y^{*}\in Y$ such that the following
expression:

$\sup_{y\in Y}F_{\theta}(x,y)(s_{1})=F_{\theta}(x,y^{*})(s_{1})$
holds.

Definition 4.2. We call $x^{*}\in X$ a minimizer of $F_{\theta}(x,y)(s_{1})$ over $x\in X$ for each $y\in Y$ in the

system $(DG_{\theta})$ , if there exists a minimizer $x^{*}\in X$ such that the following expression:

$\inf_{x\in X}F_{\theta}(x,y)(s_{1})=F_{\theta}(x^{*},y)(s_{1})$ holds.
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Since the game functions $(1oss/$ gain) of $(DG_{\theta}\rangle$ performed by the form of player I

$F_{\theta}^{n}(x,y)(s_{1})=u_{n}(x,y)(s_{1})-\theta(s_{1})v_{n}(x,y)(s_{1})$,

for any $(x,y)\in X\cross Y$ at $n\in \mathbb{N}$ and $s_{1}\in S_{1}$ , the upper and lower values of players I and

II are in the real interval: $[\underline{F}_{\theta}(s_{1}),\overline{F}_{\theta}(s_{1})]$ which are not necessary positive value.

If $\overline{F}_{\theta}(s_{1})\geq 0$, then player I has no lose and player II has no gain in the game system
$(DG_{\theta})$ . Conversely, if $\underline{F}_{\theta}(s_{1})\leq 0$, then player I has no gain and player II has no lose.

Hence the following propositions are not hard to prove.
At first, we notice for upper function $\overline{F}_{\theta}.$

Proposition 4.3. Let the parametricfunctions $\theta_{1}(s_{1})$ , $\theta_{2}(s_{1})$ and $\theta(s_{1})$ be given. Then we have

(1) If $\theta_{1}(s_{1})>\theta_{2}(s_{1})\geq 0$, then $\overline{F}_{\theta_{1}}(s_{1})\leq\overline{F}_{\theta_{2}}(s_{2})$ ,

(2) $\overline{F}_{\theta}(s_{1})\geq 0=F_{\theta}(x,y)(s_{1})\geq 0,$

(3) $\overline{F}_{\theta}(s_{1})\leq 0\Leftrightarrow F_{\theta}(x,y)(s_{1})\leq 0.$

Similarly, we state lower value function $\underline{F}_{\theta}(s_{1})$ .

Proposition 4.4. Let $\theta_{1}(s_{1})$, $\theta_{2}(s_{1})$ and $\theta(s_{1})$ be given. Then we have

(1) If $\theta_{1}(s_{1})>\theta_{2}(s_{1})\geq 0$, then $\underline{F}_{\theta_{1}}(s_{1})\leq\underline{F}_{\theta_{2}}(s_{2})$,

(2) $\underline{F}_{\theta}(s_{1})\geq 0=F_{\theta}(x,y)(s_{1})\geq 0,$

(3) $\underline{F}_{\theta}(s_{1})\leq 0\Leftrightarrow F_{\theta}(x,y)(s_{1})\leq 0.$

Consequently, we can establish several minimax theorems in the game function of

the dynamic game of $(DG_{\theta})$ defined on stochastic spaces X and $Y$ as follows. For the

existence of saddle valued function of $(DG_{\theta})$, it is also not hard to prove these theorems.

5 Main Theorems

Theorem 5.1. (1) Let $y^{*}\in Y$ be a maximizer of $F_{\theta}(x,y)(s_{1})$ over $y\in Yfor$ each $x\in X$. Then

the minimax theorem holds:

$\overline{F}_{\theta}(s_{1})=\underline{F}_{\theta}(s_{1})\equiv P_{\theta}(s_{1})$ .

That is,
$\sup iM_{x}F_{\theta}(x,y)(s_{1})y\in Y^{x\in}=\inf_{x\in X}\sup_{y\in Y}F_{\theta}(x,y)(s_{1})$

.
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(2) If $\overline{F}_{\theta}(s_{1})$ is not positive and there exists $\overline{y}\in Y$ such that $F_{\theta}(x,\tilde{y})(s_{1})=0$, then $\overline{y}\in Y$ is a
maximizer of $\overline{F}_{\theta}(x,y)(s_{1})$ .

Question. In (1), we have known that there is a maximizer, then the minimax theorem holds.

The question arises that whether the maximizer exists? The answer is given in (2).

Proof. (1) If $y^{*}\in Y$ is a maximizer of $F_{\theta}(x,y)(s_{1})$ over $y\in Y$, then for any $x\in X,$

$\overline{F}_{\theta}(s_{1})=\inf_{x\in}\sup_{y\in Y}F_{\theta}(x,y)(s_{1})=\inf_{x\in X}F_{\theta}(x,y^{*})(s_{1})$

$\leq\sup_{y\in Y^{\chi}}\inf_{\in X}F_{\theta}(x,y)(s_{1})=\underline{F}_{\theta}(s_{1})$
.

This shows that the saddle value function $F_{\theta}(x,y)(s_{1})$ exists such that

$\overline{F}_{\theta}(s_{1})\leq\sup_{y\in Y^{\chi}}\inf_{\in X}F_{\theta}(x,y)(s_{1})=\underline{F}_{\theta}(s_{1})$

$\Rightarrow\overline{F}_{\theta}(s_{1})=F_{\theta}^{*}(s_{1})=\underline{F}_{\theta}(s_{1})$ .

That is, the minimax theorem of $F_{\theta}(x,y)(s_{1})$ holds.

(2) Since $\overline{F}_{\theta}(s_{1})\leq 0$ and there exists a $\tilde{y}\in Y$ such that $F_{\theta}(x,y\gamma(s_{1})=0$, it follows that

$\overline{F}_{\theta}(s_{1})\leq 0\leq F_{\theta}(x,y\gamma(s_{1})\leq\sup_{y\in Y}F_{\theta}(x,y)(s_{1})$
, for all $x\in X$

$\Rightarrow 0\leq\inf_{x\in X}F_{\theta}(x,y\gamma(s_{1})\leq\inf_{x\in X}\sup_{y\in Y}F_{\theta}(x,y)(s_{1})=\overline{F}_{\theta}(s_{1})\leq 0, \forall x\in X.$

That is,

$\inf_{x\in X}F_{\theta}(x,\overline{y})(s_{1})=\inf_{x\in}\sup_{y\in Y}F_{\theta}(x,y)(s_{1})$
.

Hence $\overline{y}\in Y$ is a maximizer of $F_{\theta}(x,y)(s_{1})$ . By (1), we see that the minimax theorem

holds.

$\square$

Theorem 5.2. (1) Let $x^{*}\in X$ be a minimizer of $F_{\theta}(x,y)(s_{1})$ over $x\in Xfor$ each $y\in Y$ such

that

$\overline{F}_{\theta}(s_{1})=\underline{F}_{\theta}(s_{1})\equiv F_{\theta}^{*}(s_{1})$ .

That is, the minimax theorem holdsfor $(DG_{\theta})$ .

55



(2) If $\underline{F}_{\theta}(s_{1})$ is not negative and there exists $\tilde{x}\in X$ such that $F_{\theta}(\overline{x},y)(s_{1})=0$, then is a
minimizer of $\overline{F}_{\theta}(x,y)(s_{1})$ .

Question. In (1), we have known that if there is a minimizer, then the minimax theorem holds.

The question arises that whether the minimizer exists 7 The answer is given in (2).

Proof. (1) If $x^{*}\in X$ is a mimmizer of $F_{\theta}(x,y)(s_{1})$ over $x\in X$, then for all $y\in Y,$

$\underline{F}_{\theta}(s_{1})=\sup i_{\in}d_{x}F_{\theta}(x,y)(s_{1})=\sup_{yy\in Y^{\chi}\in Y}F_{\theta}(x,y)(s_{1})$

$\geq$ iffi
$\sup_{y\in Y}F_{\theta}(x,y)(s_{1})=\overline{F}_{\theta}(s_{1})x\in X^{\cdot}$

Since $\underline{F}_{\theta}(s_{1})\leq\overline{F}_{\theta}(s_{1})$ is always true, we then get a saddle function $F_{\theta}^{*}(s_{1})$ exists such

that the above result implies:

$\overline{F}_{\theta}(s_{1})=F_{\theta}^{*}(s_{1})=\underline{F}_{\theta}(s_{1})$ .

Thus the $m\ddot{m}\max$ theorem
$x\in$Xiffi $\sup_{y\in Y}F_{\theta}(x,y)(s_{1})=\sup i_{\in}M_{x}F_{\theta}(x,y)(s_{1})y\in Y^{\chi}$

holds.

(2) Since $\underline{F}_{\theta}(s_{1})\geq 0$ and $\exists\overline{x}\in X$ such that $F_{\theta}\zeta\check{x,}y$) $(s_{1})=0$, it follows that

$\overline{F}_{\theta}(s_{1})\geq 0\geq F_{\theta}(\check{x,}y)(s_{1})\geq\inf_{x\in X}F_{\theta}(x,y)(s_{1})$ , for all $y\in Y$

$\Rightarrow 0\geq\sup_{y\in Y}F_{\theta}\zeta\check{x,}y)(s_{1})\geq\sup iffi_{\chi}F_{\theta}(x,y)(s_{1})y\in Y^{\chi\in}=\overline{F}_{\theta}(s_{1})\geq 0$
, for all $y\in Y.$

That is,

$\sup_{\in\gamma}F_{\theta}(\check{x,}y)(s_{1})=\sup i_{\in}ffi_{x}F_{\theta}(x,y)(s_{1})=\underline{F}_{\theta}(x,y)(s_{1})\geq 0yy\in Y^{\chi}.$

Hence $\overline{x}\in X$ is a mimmizer of $F_{\theta}(x,y)$ in the dynamic game system $(DG_{\theta})$, and

then by (1), we obtain that

$\dot{m}n\max_{\in Y}F_{\theta}(x,y)(s_{1})=\max\min_{xx\in Xyy\in Y\in X}F_{\theta}(s_{1})$

holds.
$\square$

Consequently, from Theorem 5.1 and Theorem 5.2, we know that the existence of
$m\ddot{m}$mizer and maximizer to the function $F_{\theta}(x,y)$ if and only if the minimax identity
problem is solved.
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