
ON THE EXISTENCE OF THE MEAN VALUES FOR
CERTAIN ORDER-PRESERVING OPERATORS IN $L^{1}.$

HIROMICHI MIYAKE (三宅啓道)

1. INTRODUCTION

Let $(\Omega, \mathcal{A}, \mu)$ be a positive measure space with $\sigma$-algebra $\mathcal{A}$ and mea-
sure $\mu$ . It is known that if $T$ is a linear contraction on $L^{1}=L^{1}(\Omega, \mathcal{A}, \mu)$

which does not increase $L^{\infty}$-norm (so called a Dunford-Schwartz $or\succ$

erator on $L^{1}$ ) and $\mu$ is finite, then $T$ is weakly almost periodic, that
is, for each $f\in L^{1}$ , the orbit $\{T^{n}f : n=0, 1, . . . \}$ of $f$ under $T$ is
a relatively weakly compact subset of $L^{1}$ . This is, however, not the
case when $\mu$ is infinite and $\sigma$-finite. Indeed, in this case, there ex-
ists a Dunford-Schwartz operator $T$ on $L^{1}$ which is not weakly almost
periodic, but for each $f\in L^{1}$ , the Ces\‘aro means $n^{-1} \sum_{k=0}^{n-1}T^{k}f$ of $f$

converge strongly to a fixed point of $T$ . Then, assigning to each $f\in L^{1}$

the limit of the Ces\‘aro means $n^{-1} \sum_{k=0}^{n-1}T^{k}f$ of $f$ , the linear operator
on $L^{1}$ is a unique projection $P$ of $L^{1}$ onto the subspace of $L^{1}$ consisting
of fixed points of $T$ such that $PT=P=TP$ and for each $f\in L^{1},$

$Pf$ is contained in the closure of convex hull of the orbit of $f$ under
$T$ . Such a projection $P$ is said to be ergodic; see Takahashi [21] and
also Hirano, Kido and Takahashi [8]. Therefore, it is natural to ask
a question of whether every Dunford-Schwartz operator on $L^{1}$ has the
mean values on $L^{1}$ (in the sense defined in the following section) if $\mu$

is $\sigma$-finite.
Recently, we [15] discussed a method of constructing a separated

locally convex topology $\tilde{\tau}$ on $L^{1}$ such that the weak topology of $L^{1}$

associated with $\tilde{\tau}$ is coarser than the weak topology on $L^{1}$ generated
by $L^{\infty}=L^{\infty}(\Omega, \mathcal{A}, \mu)$ without the assumption that $\mu$ is finite. $A$

sufficient and necessary condition was shown for a bounded subset of
$L^{1}$ relative to $L^{1}$-norm to be relatively weakly compact in $(L^{1},\tilde{\tau})$ . We
applied it to show the existence of the mean values for commutative
semigroups of Dunford-Schwartz operators on $L^{1}$ . This result also gives
an identification of the limit function in almost everywhere convergence
of the Ces\‘airo means $n^{-1} \sum_{k=0}^{n-1}T^{k}f$ of an $f\in L^{1}$ for such an operator
$T$ on $L^{1}.$

In this paper, we summarize those arguments presented in [15] about
weak compactness in $(L^{1},\tilde{\tau})$ and the existence of the mean values for
commutative semigroups of Dunford-Schwartz operators on $L^{1}$ We
also apply them to show the existence of the mean values for certain
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order-preserving operators $T$ in $L^{1}$ , for which it seems to be still un-
known whether for each $f\in L_{+}^{1}$ , the Ces\‘aro means $n^{-1} \sum_{k=0}^{n-1}T^{k}f$ of $f$

converge weakly in $L^{1}$ in the case when $\mu$ is infinite and $\sigma$-finite.

2. PRELIMINARIES

Throughout the paper, let $\mathbb{N}_{+}$ and $\mathbb{R}$ denote the set of non-negative
integers and the set of real numbers, respectively. Let $\langle E,$ $F\rangle$ be the
duality between vector spaces $E$ and $F$ over $\mathbb{R}$ . If $A$ is a subset of $E,$

then $A^{o}=\{y\in F : \langle x, y\rangle\leq 1(x\in A)\}$ is a subset of $F$ , called the polar
of $A$ . For each $y\in F$ , we define a linear form $f_{y}$ on $E$ by $f_{y}(x)=\langle x,$ $y\rangle.$

Then, $\sigma(E, F)$ denotes the weak topology on $E$ generated by the family
$\{f_{y} : y\in F\}$ . Let $\tau(E, F)$ and $\beta(E, F)$ denote the Mackey topology on
$E$ with respect to $\langle E,$ $F\rangle$ and the strong topology on $E$ with respect
to $\langle E,$ $F\rangle$ , respectively. Let $(E, \mathfrak{T})$ is a locally convex space. Then, the
topological dual of $E$ is denoted by $E’$ . The bilinear form $(x, f)\mapsto f(x)$

on $E\cross E’$ defines a duality $\langle E,$ $E$ The weak topology $\sigma(E, E’)$ on
$E$ generated by $E’$ is called the weak topology of $E$ (associated with
$\mathfrak{T}$ if this distinction is necessary). The topological dual of $E$ under
the strong topology $\beta(E’, E)$ with respect to $\langle E,$ $E’\rangle$ is denoted by $E_{\beta}’,$

called the strong dual of $E.$

Let $S$ be a semigroup. We denote by $l^{\infty}(S)$ the vector space of real-
valued bounded functions defined on $S$ ; under the norm $f\mapsto\Vert f\Vert=$

$\sup_{s\in S}|f(s)|,$ $l^{\infty}(S)$ is a Banach space. For each $\mathcal{S}\in S$ , we define
operators $l(s)$ and $r(s)$ on $l^{\infty}(S)$ by $(l(s)f)(t)=f(st)$ and $(r(s)f)(t)=$

$f(ts)$ for each $t\in S$ and $f\in l^{\infty}(S)$ , respectively. Then, a linear
functional $m$ on $l^{\infty}(S)$ is said to be a mean on $S$ if $\Vert m\Vert=m(e)=$

$1$ , where $e(\mathcal{S})=1$ for each $s\in S$ . For each $s\in S$ , we define a
point evaluation $\delta_{s}$ by $\delta_{S}(f)=f(s)$ for each $f\in l^{\infty}(S)$ . A convex
combination of point evaluations is called a finite mean on $S$ . As is
well known, a linear functional $m$ on $l^{\infty}(S)$ is a mean on $S$ if and only
if $\inf_{s\in S}f(s)\leq m(f)\leq\sup_{s\in S}f(s)$ for each $f\in l^{\infty}(S)$ . We often write
$m_{s}(f(s))$ for the value $m(f)$ of a mean $m$ on $S$ at an $f\in l^{\infty}(S)$ . $A$

mean $m$ on $S$ is said to be left (or right) invariant if $m=l(s)’m$ (or $m=$

$\prime r(s)’m)$ for each $s\in S$ , where $l(s)’$ and $r(s)’$ are the adjoint operators of
$l(s)$ and $r(s)$ , respectively. If a mean $m$ on $S$ is left and right invariant,

then $m$ is said to be invariant. In particular, an invariant mean on $N_{+}$

is called a Banach limit. If there exists a left (or right) invariant mean
on $S$ , then $S$ is said to be left (or right) amenable. If $S$ is left and
right amenable, then $S$ is said to be amenable. It is known that if $S$

is commutative, then $S$ is amenable, due to the fixed point theorem of
Kakutani and Markov; for more details, see Day [4].

We denote by $l_{c}^{\infty}(S, E)$ the vector space of vector-valued functions
$f$ defined on a semigroup $S$ with values in a locally convex space
$E$ for which the closure of convex hull of $f(S)$ is weakly compact.

For each $\mathcal{S}\in S$ , we define the operators $L(s)$ and $R(s)$ on $l_{c}^{\infty}(S, E)$

91



by $(L(s)f)(t)=f(st)$ and $(R(s)f)(t)=f(ts)$ for each $t\in S$ and
$f\in l_{c}^{\infty}(S, E)$ , respectively. Motivated by an original work of Taka-
hashi [21], we introduce a notion of the mean values for vector-valued
functions in $l_{c}^{\infty}(S, E)$ . Let $m$ be a mean on $S$ . For each $f\in l_{c}^{\infty}(S, E)$ ,
we define a linear functional $\tau(m)f$ on the strong dual $E_{\beta}’$ of $E$ by
$\tau(m)f$ : $x’\mapsto m_{s}\langle f(s)$ , $x’\rangle$ for each $x’\in E$ . Then, it follows from
the separation theorem that $\tau(m)f$ is an element of $E$ , which is con-
tained in the closure of convex hull of $f(S)$ . We denote by $\tau(m)$ the
linear operator of $l_{c}^{\infty}(S, E)$ into $E$ that assigns to each $f\in l_{c}^{\infty}(S, E)$

a unique element $\tau(m)f$ of $E$ such that $m_{s}\langle f(\mathcal{S})$ , $x’\rangle=\langle\tau(m)f,$ $x’\rangle$ for
each $x’\in E’$ . The operator $\tau(m)$ is called the vector-valued mean on
$S$ (generated by $m$ if explicit reference to the mean $m$ is needed); for
more details, see Kada and Talcahashi [9]. Note that it is also a vector-
valued mean in the sense of Goldberg and Irwin [7]. Whenever $S$ is left
amenable, an $f\in l_{c}^{\infty}(S, E)$ is said to have the mean value if there exists
an element $p$ of $E$ such that $p=\tau(m)f$ for each left invariant mean $m$

on $S$ . The element $p$ is called the mean value of $f$ ; see Lorentz [13],
Day [4] and Miyake [14]. It is shown in [14] that an $f\in l_{c}^{\infty}(S, E)$ has
the mean value if and only if the closure of convex hull of the right
orbit $\mathcal{R}\mathcal{O}(f)=\{R(\mathcal{S})f\in l_{c}^{\infty}(S, E) : s\in S\}$ of $f$ contains exactly
one constant function, where $l_{c}^{\infty}(S, E)$ is endowed with the topology of
weakly pointwise convergence, for which the family of finite intersec-
tions of sets of the form $U(s;x’;\epsilon)=\{f\in l_{c}^{\infty}(S, E) : |\langle f(s), x <\epsilon\}$

$(s\in S, x’\in E’ and \epsilon>0)$ is a neighborhood base of O. It is also known
that whenever $S$ is an amenable semigroup with identity, if a vector-
valued function $f$ defined on $S$ with values in a bounded subset of a
complete locally convex space is weakly almost periodic in the sense of
Eberlein, then $f$ has the mean value in the sense herein defined; see
also von Neumann [17], Bochner and von Neumann [2], Eberlein [6],
Ruess and Summers [19] and Miyake and Takahashi [16].

The notion of the mean values for vector-valued functions is applied
to semigroups of transformations in the following way. Let $C$ be a
closed convex subset of a locally convex space $(E, \mathfrak{T})$ and let $S$ be a
left amenable semigroup acting on $C$ . We assume that for each $x\in C,$

the closure of convex hull of the orbit $\mathcal{O}(x)=\{s(x) : \mathcal{S}\in S\}$ of $x$ under
$S$ is weakly compact. Let $m$ be a mean on $S$ . We define a mapping $\phi_{S}$

of $C$ into $l_{c}^{\infty}(S, E)$ by $(\phi_{S}(x))(s)=s(x)$ for each $x\in C$ and $s\in S$ . We
simply write $S(m)x$ in place of $\tau(m)(\phi_{S}(x))$ . We denote by $S(m)$ the
mapping of $C$ into itself that assigns to each $x\in C$ a unique element
$S(m)x$ of $C$ such that $m_{s}\langle s(x)$ , $x’\rangle=\langle S(m)x,$ $x’\rangle$ for each $x’\in E’$ . An
element $p$ of $E$ is said to be the mean value of an $x\in C$ under $S$ (with
respect to $S$ if this distinction is necessary) if $p$ is the mean value of
$\phi_{S}(x)$ , that is, $p=S(m)x$ for each left invariant mean $m$ on $S$ . If there
exists the mean value of $x$ under $S$ for each $x\in C$ , then $S$ is said to
have the mean values on $C$ (with respect to S). If $S$ is a semigroup
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generated by a single element $\sigma\in S$ , then we often write $\sigma(m)x$ (or
$\sigma(m))$ instead of $S(m)x$ $($or $S(m))$ . Accordingly, the mean value of an
$x\in C$ under $S$ is simply called the mean value of $x$ under $\sigma$ . Moreover,

if $S$ has the mean values on $C$ , then a is also said to have the mean
values on $C$ ; see Ruess and Summers [19], Miyake and Takahashi [16]
and Miyake [14].

3. ON WEAK COMPACTNESS IN A SEPARATED LOCALLY CONVEX

TOPOLOGY ON $L^{1}$

Throughout the paper, let $(\Omega, \mathcal{A}, \mu)$ denote a positive measure space
with $\sigma$-algebra $\mathcal{A}$ and measure $\mu$ and let $\mathcal{F}$ denote the family of mea-
surable subsets of $\Omega$ with finite measure. Then, $\mathcal{F}$ is ordered by set
inclusion in the sense that for $E,$ $F\in \mathcal{F},$ $E\leq F$ if and only if $E\subset F,$

so that each finite subset of $\mathcal{F}$ has an upper bound. Let $E\in \mathcal{A}$ . If $\mathcal{A}_{E}$

denotes the family of intersections of members of $\mathcal{A}$ with $E$ and $\mu_{E}$ de-
notes the restriction of $\mu$ to $\mathcal{A}_{E}$ , then the triple $(E, \mathcal{A}_{E}, \mu_{E})$ is a positive
measure space. For $1\leq p<\infty$ , let $\mathcal{L}^{p}(E)$ be the vector space of mea-

surable functions $f$ defined on $E$ for which $\Vert f\Vert_{E,p}=(\int_{E}|f|^{p}d\mu)^{\frac{1}{p}}<\infty$

and let $\mathcal{L}^{\infty}(E)$ be the vector space of measurable functions $f$ defined
on $E$ for which $\Vert f\Vert_{E,\infty}=\inf_{N}\sup_{w\in E\backslash N}|f(w)|<\infty$ , where $N$ ranges
over the null subsets of $E$ . If $\mathcal{N}_{E}$ denotes the set of null functions
defined on $E$ and $[f]$ denotes the equivalence class of an $f\in \mathcal{L}^{p}(E)$

mod $\mathcal{N}_{E}(1\leq p\leq\infty)$ , then $[f]\mapsto\Vert f\Vert_{E,p}$ is a norm on the quo-
tient space $\mathcal{L}^{p}(E)/\mathcal{N}_{E}$ , which thus becomes a Banach space, usually

denoted by $L^{p}(E)$ . For an $f\in L^{p}(\Omega)$ , $\Vert f\Vert_{\Omega,p}$ is called the $L^{p}arrow$norm of
$f$ , simply denoted by $\Vert f\Vert_{p}$ . A measurable function $f$ defined on $\Omega$ is
called essentially-bounded if $\Vert f\Vert_{\infty}<\infty$ . Every element of $Ii^{p}(E)$ is
considered as a measurable function $f$ defined on $E$ with $\Vert f\Vert_{E,p}<\infty,$

if no confusion will occur. We note that $L^{p}(\Omega)$ is ordered by defining
$f\leq g(f, g\in L^{p}(\Omega))$ to mean that $f(x)\leq g(x)$ almost everywhere on
$\Omega$ , so that $L^{p}(\Omega)$ is a Banach lattice. We call a function $f\in L^{p}(\Omega)$

non-negative if $f\geq$ O. The set of non-negative functions in $L^{p}(\Omega)$

will be denoted by $L_{+}^{p}(\Omega)$ . For each $E\in \mathcal{A}$ , the bilinear form on
$L^{1}(E)\cross L^{\infty}(E)$ that is defined by $\langle f,$ $h \rangle=\int_{E}fhd\mu$ for each $f\in L^{1}(E)$

and $h\in L^{\infty}(E)$ places $L^{1}(E)$ and $L^{\infty}(E)$ in duality. For $E,$ $F\in \mathcal{F}$ with
$E\leq F$ , let $i_{EF}$ denote the mapping of $L^{1}(F)$ onto $L^{1}(E)$ that assigns

to each $f\in L^{1}(F)$ the restriction $f|_{E}\in L^{1}(E)$ of $f$ to $E$ . Then, the
canonical imbedding of $L^{\infty}(E)$ into $L^{\infty}(F)$ is the adjoint operator of
$i_{EF}$ , denoted by $j_{FE}.$

Let $\mathcal{L}_{loc}^{1}(\Omega)$ be the vector space of measurable functions defined on
$\Omega$ which are locally integrable, that is, integrable on each $E\in \mathcal{F}$ and
let $\mathcal{N}_{loc}$ be the vector subspace of $\mathcal{L}_{loc}^{1}(\Omega)$ consisting of measurable
functions $f$ defined on $\Omega$ for which $\mu\{w\in E : f(w)\neq 0\}=0$ for

each $E\in \mathcal{F}$ . If $[f]$ denotes the equivalence class of an $f\in \mathcal{L}_{loc}^{1}(\Omega)$
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mod $\mathcal{N}_{loc}$ , then $[f]=[g](f, g\in \mathcal{L}_{loc}^{1}(\Omega))$ means that for each $E\in \mathcal{F},$

$f|_{E}(x)=g|_{E}(x)$ almost everywhere on $E$ , where $f|_{E}$ and $g|_{E}$ are the
restrictions of $f$ and $g$ to $E$ , respectively. In particular, if $\mu$ is a finite,
then $\mathcal{N}_{loc}$ equals the set $\mathcal{N}_{\Omega}$ of null functions defined on $\Omega$ and hence for
$f,$ $g\in \mathcal{L}_{loc}^{1}(\Omega)$ , $[f]=[g]$ if and only if $f(x)=g(x)$ almost everywhere
on $\Omega$ . For each $E\in \mathcal{F},$ $[f]\mapsto\Vert f\Vert_{E,1}$ is a semi-norm on the quotient
space $\mathcal{L}_{loc}^{1}(\Omega)/\mathcal{N}_{loc}$ , which becomes a locally convex space, denoted by
$L_{loc}^{1}(\Omega)$ , under the separated locally convex topology $\tau$ generated by
the semi-norms $[f]\mapsto\Vert f\Vert_{E,1}(E\in \mathcal{F})$ . Every element of $L_{loc}^{1}(\Omega)$ is also
considered as a measurable, locally integrable function defined on $\Omega$ , if
no confusion will occur.

In the $\mathcal{S}equel$, we shall assume that the measure $\mathcal{S}pace(\Omega, \mathcal{A}, \mu)$ is
$\sigma$ -finite. The product space $\mathcal{L}$ of $(L^{1}(E), \Vert \Vert_{E,1})$ , $E\in \mathcal{F}$ is the
Cartesian product $L= \prod_{E\in \mathcal{F}}L^{1}(E)$ endowed with the product topol-
ogy. Then, $L_{loc}^{1}(\Omega)$ is identified as a closed (and hence complete) sub-
space of $\mathcal{L}$ by the isomorphism of $L_{loc}^{1}(\Omega)$ into $\mathcal{L}$ that is defined by
$f\mapsto(f|_{E})_{E\in \mathcal{F}}$ , where $f|_{E}$ is the restriction of an $f\in L_{loc}^{1}(\Omega)$ to $E.$

Let $D=\oplus_{E\in \mathcal{F}}L^{\infty}(E)$ be the direct sum of $L^{\infty}(E)$ , $E\in \mathcal{F}$ . The
vector spaces $L$ and $D$ are placed in duality by the bilinear form on
$L\cross D$ that is defined by $\langle f,$ $g \rangle=\sum_{E}\langle f_{E},$ $g_{E}\rangle$ for each $f=(f_{E})\in$

$L$ and $g=(g_{E})\in D$ , where $f_{E}\in L^{1}(E)$ and $g_{E}\in L^{\infty}(E)$ for
each $E\in \mathcal{F}$ and the sum is taken over at most a finite number of
non-zero terms of $g$ . Then, the topological dual of $\mathcal{L}$ is $D$ and the
topological dual of $L_{loc}^{1}(\Omega)$ is the quotient space $D/(L_{loc}^{1}(\Omega))^{o}$ , which
is algebraically isomorphic to the vector subspace $L_{loc}^{\infty}(\Omega)$ of $L^{\infty}(\Omega)$

consisting of measurable, essentially-bounded functions $f$ defined on
$\Omega$ for which $\mu\{w\in\Omega : f(w)\neq 0\}<\infty$ . Note that $L_{loc}^{1}(\Omega)$ is
identified as the reduced projective limit $\frac{bm}{\backslash }i_{EF}L^{1}(F)$ of the fam-
ily $\{(L^{1}(E), \Vert \Vert_{E,1}) : E\in \mathcal{F}\}$ with respect to the mappings $i_{EF}$

$(E, F\in \mathcal{F} and E\leq F)$ . If $\mathcal{D}=\oplus_{E\in \mathcal{F}}L^{\infty}(E)$ is the locally convex
direct sum of $(L^{\infty}(E), \tau(L^{\infty}(E), L^{1}(E)))$ , $E\in \mathcal{F}$ , then the quotient
space $\mathcal{D}/(L_{loc}^{1}(\Omega))^{o}$ is the inductive limit $1iBj_{FE}L^{\infty}(E)$ of the family
$\{(L^{\infty}(E), \tau(L^{\infty}(E), L^{1}(E))) : E\in \mathcal{F}\}$ with respect to the mappings
$j_{FE}$ $(E, F\in \mathcal{F} and E\leq F)$ .

Proposition 1. $L_{loc}^{1}(\Omega)$ is a complete locally convex space. The topo-
logical dual of $L_{loc}^{1}(\Omega)$ is algebraically isomorphic to $L_{loc}^{\infty}(\Omega)$ .

It is clear that if $\mu$ is finite, then $L_{loc}^{1}(\Omega)$ equals $L^{1}(\Omega)$ and hence, $\tau$ is
just the topology on $L^{1}(\Omega)$ generated by the metric $(f, g)\mapsto\Vert f-g\Vert_{1}.$

We note that if $C$ is a bounded subset of $L^{1}(\Omega)\cap L^{p}(\Omega)$ relative to $I\mathscr{J}-$

norm, i.e. $\sup_{f\in C}\Vert f\Vert_{p}<\infty$ , then the weak topology on $C$ generated
by $L^{q}(\Omega)$ is the relative topology of the weak topology of $L_{loc}^{1}(\Omega)$ to $C,$

where $p$ and $q$ are a pair of conjugate exponents, that is, $1<p<\infty$

and $p^{-1}+q^{-1}=1.$
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A subset $A$ of $L_{loc}^{1}(\Omega)$ is said to be locally uniformly integrable if
for each $E\in \mathcal{F}$ , the set $\{f|_{E}\in L^{1}(E) : f\in A\}$ of the restrictions
of the functions in $A$ to $E$ is uniformly integrable, that is, for each
$E\in \mathcal{F}$ and $\epsilon>0$ , there exists a $\delta>0$ such that for each $F\in \mathcal{A}$

with $F\subset E$ and $\mu(F)<\delta,$ $\sup_{f\in A}\int_{F}|f|d\mu<\epsilon$ . It follows from
the theorem of Tychonoff that if $A$ is a locally uniformly integrable,
bounded subset of $L_{|oc}^{1}(\Omega)$ , then $A$ is relatively weakly compact, since
$L_{loc}^{1}(\Omega)$ is a complete subspace of $\mathcal{L}$ . The converse holds.

Proposition 2. Let $C$ be a $\mathcal{S}ubset$ of $L_{loc}^{1}(\Omega)$ . Then, $C$ is relatively
weakly compact if and only if $Ci\mathcal{S}$ bounded and locally uniformly inte-
grable.

We apply Cantor’s diagonal argument to obtain a characterization
of an adherent point of a subset $C$ of $L_{loc}^{1}(\Omega)$ as the limit function in
almost everywhere convergence of some sequence of functions in $C.$

Lemma 1. Let $C$ be a $sub_{\mathcal{S}}et$ of $L_{loc}^{1}(\Omega)$ and let $f$ be a function in the
closure of C. Then, there exists a sequence $\{f_{n}\}$ offunctions in Csuch
that $f_{n}(x)$ converges to $f(x)$ almost everywhere on $\Omega.$

Let $\tilde{\tau}$ denote the relative topology of $\tau$ on $L_{loc}^{1}(\Omega)$ to $L^{1}(\Omega)$ , which
is the locally convex topology on $L^{1}(\Omega)$ generated by the semi-norms
$f\mapsto\Vert f\Vert_{E,1}(E\in \mathcal{F})$ . In the sequel, $L^{1}(\Omega)$ will be considered as a locally
convex space under this topology $\tilde{\tau}$ , if $L^{1}(\Omega)$ is not specified explicitly
as a Banach space $(L^{1}(\Omega), \Vert \Vert_{1})$ under the norm $f\mapsto\Vert f\Vert_{1}$ . Then,
the topological dual of $L^{1}(\Omega)$ is algebraically isomorphic to $L_{loc}^{\infty}(\Omega)$ . It
follows from Lemma 1 that if a subset $C$ of $L^{1}(\Omega)$ is bounded relative
to $L^{1}$-norm, i.e. $\sup_{f\in C}\Vert f||_{1}<\infty$ , then the closure in $L_{loc}^{1}(\Omega)$ of $C$ is
contained in $L^{1}(\Omega)$ .

Proposition 3. If $C$ is a bounded subset of $L^{1}(\Omega)$ relative to $L^{1}$ -norm,
then the closure in $L^{1}(\Omega)$ of $Ci_{\mathcal{S}}$ complete.

A sufficient and necessary condition is also given by Lemma 1 for a
bounded subset of $L^{1}(\Omega)$ relative to $L^{1}$-norm to be relatively weakly
compact.

Proposition 4. Let $C$ be a bounded subset of $L^{1}(\Omega)$ relative to $L^{1}-$

norm. Then, $C$ is relatively weakly compact if and only if $C$ is locally
uniformly integrable.

Remark 1. Let $\Omega=\mathbb{R}$ , let $\mathcal{A}$ be the a-algebra of Lebesgue measurable
subsets of $\mathbb{R}$ and let $\mu$ be Lebesgue measure on $\mathbb{R}$ . Then, for each
$f\in L^{1}(\mathbb{R})$ , the subset $\{f_{x} : x\in \mathbb{R}\}$ of $L^{1}(\mathbb{R})$ is relatively weakly
compact (or relatively compact relative to the weak topology of $L^{1}(\mathbb{R})$

associated with $\tau$ where $f_{x}(y)=f(y-x)$ for each $x,$ $y\in \mathbb{R}$ . For
example, let $f$ be the real-valued function on $\mathbb{R}$ which is defined by
$f(x)=e^{-|x|}(x\in \mathbb{R})$ . Then, the subset $\{f_{x} : x\in \mathbb{R}\}$ of $L^{1}(\mathbb{R})$ is
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not relatively weakly compact in $(L^{1}(\mathbb{R}), \Vert \Vert_{1})$ , but relatively weakly
compact.

Remark 2. Let $\Omega=\mathbb{R}^{n}$ , i.e. $n$-dimensional Euclidean space, let $\mathcal{A}$

be the a-algebra of Lebesgue measurable subsets of $\mathbb{R}^{n}$ and let $\mu$ be
Lebesgue measure on $\mathbb{R}^{n}$ . Then, by considering $\mathcal{F}$ as the family $\mathcal{K}$

of compact subsets of $\mathbb{R}^{n}$ , we can apply those arguments presented in
this section to obtain similar results to the propositions in it, which
concern weak compactness in the separated locally convex topology $\tilde{\tau}_{\mathcal{K}}$

on $L^{1}(\mathbb{R}^{n})$ generated by the semi-norms $f\mapsto\Vert f\Vert_{K,1}(K\in \mathcal{K})$ . The
topological dual of $(L^{1}(\mathbb{R}^{n}),\tilde{\tau}_{\mathcal{K}})$ is algebraically isomorphic to the vector
subspace of $L\infty(\mathbb{R}^{n})$ consisting of Lebesgue measurable, essentially-
bounded functions defined on $\mathbb{R}^{n}$ with compact support. Note that,
in this case, a Lebesgue measurable function $f$ defined on $\mathbb{R}^{n}$ is called
locally integrable if $f$ is Lebesgue integrable on each $K\in \mathcal{K}$ , and a
subset $A$ of $L^{1}(\mathbb{R}^{n})$ is said to be locally uniformly integrable if for each
$K\in \mathcal{K}$ , the set $\{f|_{K}\in L^{1}(K) : f\in A\}$ of the restrictions of the
functions in $A$ to $K$ is uniformly integrable.

4. ON EXISTENCE OF THE MEAN VALUES FOR OPERATORS

We apply the result about weak compactness in the separated 10-
cally convex topology $\tilde{\tau}$ on $L^{1}(\Omega)$ in the previous section to show the
existence of the mean values for commutative semigroups of Dunford-
Schwartz operators on $L^{1}(\Omega)$ . Similar results are also obtained for
(commutative semigroups of) certain order-preserving operators in
$L^{1}(\Omega)$ .

A linear operator $T$ on $L^{1}(\Omega)$ is said to be a Dunford-Schwartz
operator on $L^{1}(\Omega)$ if $\Vert T\Vert_{1}\leq 1$ and $\Vert Tf\Vert_{\infty}\leq\Vert f\Vert_{\infty}$ for each $f\in$

$L^{1}(\Omega)\cap L^{\infty}(\Omega)$ . In this section, $T$ will denote such an operator on
$L^{1}(\Omega)$ , if $T$ is not specified explicitly. For each $f\in L^{1}(\Omega)$ , the orbit
$\{T^{n}f : n=0, 1, . . . \}$ of $f$ under $T$ (denoted by $\mathcal{O}(f)$ ) is a uniformly
integrable, bounded subset of $L^{1}(\Omega)$ relative to $L^{1}$-norm.

Lemma 2. For each $f\in L^{1}(\Omega)$ , the orbit $\mathcal{O}(f)$ of $f$ under $T$ is rela-
tively weakly compact. Moreover, if $\mu$ is finite, then $T$ is weakly almost
$periodic_{f}$ that is, for each $f\in L^{1}(\Omega)$ , the orbit $\mathcal{O}(f)$ of $f$ under $T$ is
relatively weakly compact in $(L^{1}(\Omega), \Vert\cdot\Vert_{1})$ .

Let $m$ be a mean on $\mathbb{N}_{+}$ . It follows from this lemma that for each
$f\in L^{1}(\Omega)$ , there exists a unique function $T(m)f$ in $L^{1}(\Omega)$ such that
$m_{k}( \int_{\Omega}(T^{k}f)hd\mu)=\int_{\Omega}(T(m)f)hd\mu$ for each $h\in L_{loc}^{\infty}(\Omega)$ . Then, $f\mapsto$

$T(m)f$ is a linear operator on $L^{1}(\Omega)$ , denoted by $T(m)$ . For each
$f\in L^{1}(\Omega)$ , $T(m)f$ is contained in the closure of convex hull of the
orbit $\mathcal{O}(f)$ of $f$ under $T.$

Lemma 3. For each mean $m$ on $\mathbb{N}_{+},$ $T(m)$ is a Dunford-Schwartz
operator on $L^{1}(\Omega)$ .
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Recall that a function $p$ in $L^{1}(\Omega)$ is the mean value of an $f\in L^{1}(\Omega)$

under $T$ with respect to $\tilde{\tau}$ if and only if $\int_{\Omega}phd\mu=m_{k}(\int_{\Omega}(T^{k}f)hd\mu)=$

$\int_{\Omega}(T(m)f)hd\mu$ for each $h\in L_{loc}^{\infty}(\Omega)$ and Banach limit $m$ . It is known
that $T$ can be regarded as a linear contraction on $L^{p}(\Omega)(1<p<\infty)$ ,
that is, a linear operator on $L^{p}(\Omega)$ whose norm is less than or equal to
1, due to Riesz-Thorin convexity theorem. It follows from the ergodic
theorem of Yosida and Kakutani that for each $f\in L^{1}(\Omega)\cap L^{2}(\Omega)$ ,
$n^{-1} \sum_{k=0}^{n-1}T^{k+h}f$ converges strongly to a fixed point of $T$ in $L^{2}(\Omega)$

uniformly in $h\in \mathbb{N}_{+}$ . In other words, $T$ has the mean values on
$L^{1}(\Omega)\cap L^{2}(\Omega)$ with respect to $\tilde{\tau}$ ; see Lorentz [13].

Theorem 1. Every Dunford-Schwartz operator on $L^{1}(\Omega)$ has the mean
values on $L^{1}(\Omega)$ with respect to $\tilde{\tau}.$

The notion of the mean values for $T$ allows us to give an identification
of the limit function in almost everywhere convergence of the Ces\‘aro

means $n^{-1} \sum_{k=0}^{n-1}T^{k}f$ of an $f\in L^{1}(\Omega)$ by virtue of the convergence
theorem of Vitali.

Proposition 5. If the Ces\‘aro means $n^{-1} \sum_{k=0}^{n-1}T^{k}f$ of an $f\in L^{1}(\Omega)$

converge almost everywhere on $\Omega$ , then the limit function $i_{\mathcal{S}}$ the mean
value of $f$ under $T$ with $re\mathcal{S}pect$ to $\tilde{\tau}.$

By the work of Takahashi [21], we are allowed to extend Theorem 1
to commutative semigroups of Dunford-Schwartz operators on $L^{1}(\Omega)$ .

It follows from Riesz-Thorin convexity theorem that every semigroup
$S$ of Dunford-Schwartz operators on $L^{1}(\Omega)$ can be regarded as a semi-
group of linear contractions on $L^{p}(\Omega)(1<p<\infty)$ . Moreover, if $S$ is
commutative, then $S$ has the mean values on $L^{2}(\Omega)$ and also has the
mean values on $L^{1}(\Omega)\cap L^{2}(\Omega)$ with respect to $\tilde{\tau}$ ; see also Kido and
Takahashi [11].

Theorem 2. If $S$ is a commutative semigroup of Dunford-Schwartz
$operator\mathcal{S}$ on $L^{1}(\Omega)$ , then $Sha\mathcal{S}$ the mean $value\mathcal{S}$ on $L^{1}(\Omega)$ with respect
to $\tilde{\tau}.$

An operator $T$ on $L_{+}^{1}(\Omega)$ is said to be order-preserving if $f\leq g(f,$ $g\in$

$L_{+}^{1}(\Omega))$ implies $Tf\leq Tg$ . Similar results to the above proposition and
theorems in this section can be obtained for order-preserving operators
$T$ on $L_{+}^{1}(\Omega)$ for which $T(O)=0$ and $T$ is nonexpansive with respect to
$L^{1}$-norm and $L^{\infty}$-norm, that is, $\Vert Tf-Tg\Vert_{1}\leq\Vert f-g\Vert_{1}$ for each $f,$ $g\in$

$L_{+}^{1}(\Omega)$ and $\Vert Tf-Tg\Vert_{\infty}\leq\Vert f-g\Vert_{\infty}$ for each $f,$ $g\in L_{+}^{1}(\Omega)\cap L^{\infty}(\Omega)$ , by
means of the nonlinear interpolation theorem of Browder, which implies
that such an operator on $L_{+}^{1}(\Omega)$ can be regarded as an operator $W$ on
$L_{+}^{p}(\Omega)(1<p<\infty)$ such that $\Vert Wf-Wg\Vert_{p}\leq\Vert f-g\Vert_{p}$ for each
$f,$ $g\in L_{+}^{p}(\Omega)$ ; see Krengel and Lin [12].

Theorem 3. If $T$ is an $order-pre\mathcal{S}$erving operator on $L_{+}^{1}(\Omega)$ and $T(O)=$

$0$ and if $T$ is $nonexpan\mathcal{S}ive$ with respect to $L^{1}$ -norm and $L^{\infty}$ -norm, then
$T$ has the mean $value\mathcal{S}$ on $L_{+}^{1}(\Omega)$ with $re\mathcal{S}pect$ to $\tilde{\tau}.$
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Finally, we note that the last theorem can be also generalized to
commutative semigroups of such operators on $L_{+}^{1}(\Omega)$ .

REFERENCES

[1] J. B. Baillon, Un theor\‘eme de type ergodique pour les contractions non lin\’eaires

dans un espace de Hilbert, C. R. Acad. Sci. Paris S\’er. A-B, 280 (1975), 1511-
1514.

[2] S. Bochner and J. von Neumann, Almost periodic functions in groups. II, Hans.
Amer. Math. Soc., 37 (1935), 21-50.

[3] F. E. Browder, Remarks on nonlinear interpolation in Banach spaces, J. Funct.
Anal., 4 (1969), 390-403.

[4] M. M. Day, Amenable semigroup, Illinois J. Math., 1 (1957), 509-544.
[5] N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience, New

York, 1958.
[6] W. F. Eberlein, Abstract ergodic theorems and weak almost periodic functions,

Trans. Amer. Math. Soc., 67 (1949), 217-240.
[7] S. Goldberg and P. Irwin, Weakly almost periodic vector-valuedfunctions, Dis-

sertationes Math. (Rozprawy Mat 157 (1979), 1-42.
[8] N. Hirano, K. Kido and W. Takahashi, Nonexpansive retractions and nonlinear

ergodic theorems in Banach spaces, Nonlinear Anal., 12 (1988), 1269-1281.
[9] O. Kada and W. Takahashi, Strong convergence and nonlinear ergodic theorems

for commutative semigroups of nonexpansive mappings, Nonlinear Anal., 28
(1997), 495-511.

[10] J. L. Kelley, General Topology, Van Nostrand, Princeton, 1955.
[11] K. Kido and W. Takahashi, Mean ergodic theorems for semigroups of linear

operators, J. Math. Anal. Appl., 103 (1984), 387-394.
[12] U. Krengel and M. Lin, Order preserving nonexpansive operators in $L_{1}$ , Israel.

J. Math., 58 (1987), 170-192.
[13] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta. Math.,

80 (1948), 167-190.
[14] H. Miyake, On almost convergence for vector-valued functions and its appli-

cation, in Nonlinear Analysis and Convex Analysis (S. Akashi ed RIMS
K\^oky\^uroku 1755 (2011), 68-75.

[15] H. Miyake, On the existence of the mean values for commutative semigroups

of Dunford-Schwartz operators on $L^{1}$ , Annual Meeting of the Mathematical
Society of Japan, Kyoto, 2013.

[16] H. Miyake and W. Takahashi, Vector-valued weakly almost periodic functions
and mean ergodic theorems in Banach spaces, J. Nonlinear Convex Anal., 9
(2008), 255-272.

[17] J. von Neumann, Almost periodic functions in a group, I, Trans. Amer. Math.
Soc., 36 (1934), 445-492.

[18] W. M. Ruess and W. H. Summers, Weak almost periodicity and the strong
ergodic limit theorem for contraction semigroups, Israel J. Math., 64 (1988),
139-157.

[19] W. M. Ruess and W. H. Summers, Ergodic theorems for semigroups of opera-
tors, Proc. Amer. Math. Soc., 114 (1992), 423-432.

[20] H. H. Schaefer, Topological Vector Spaces, Springer-Verlag, New York, 1971.
[21] W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of

nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc., 81 (1981),
253-256.

[22] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yoko-
hama, 2000.

98


