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ON THE EXISTENCE OF THE MEAN VALUES FOR
CERTAIN ORDER-PRESERVING OPERATORS IN L.

HIROMICHI MIYAKE (=% i)

1. INTRODUCTION

Let (€, A, 1) be a positive measure space with o-algebra A and mea-
sure p. It is known that if T is a linear contraction on L' = L(£2, A, u)
which does not increase L*-norm (so called a Dunford-Schwartz op-
erator on L') and p is finite, then T is weakly almost periodic, that
is, for each f € L', the orbit {T"f : n = 0,1,...} of f under T is
a relatively weakly compact subset of L!. This is, however, not the
case when p is infinite and o-finite. Indeed, in this case, there ex-
ists a Dunford-Schwartz operator T on L! which is not weakly almost
periodic, but for each f € L', the Cesaro means n™! z:;é TEf of f
converge strongly to a fixed point of T. Then, assigning to each f € L!
the limit of the Cesaro means n™' 3"p_  T*f of £, the linear operator
on L' is a unique projection P of L' onto the subspace of L! consisting
of fixed points of T such that PT = P = TP and for each f € L,
Pf is contained in the closure of convex hull of the orbit of f under
T. Such a projection P is said to be ergodic; see Takahashi [21] and
also Hirano, Kido and Takahashi [8]. Therefore, it is natural to ask
a question of whether every Dunford-Schwartz operator on L! has the
mean values on L' (in the sense defined in the following section) if p
is o-finite.

Recently, we [15] discussed a method of constructing a separated
locally convex topology 7 on L! such that the weak topology of L!
associated with 7 is coarser than the weak topology on L! generated
by L* = L*(Q, A, n) without the assumption that p is finite. A
sufficient and necessary condition was shown for a bounded subset of
L' relative to L'-norm to be relatively weakly compact in (L!, 7). We
applied it to show the existence of the mean values for commutative
semigroups of Dunford-Schwartz operators on L. This result also gives
an identification of the limit function in almost everywhere convergence
of the Cesaro means n~ ! 3p_c T*f of an f € L' for such an operator
T on L.

In this paper, we summarize those arguments presented in [15] about
weak compactness in (L', 7) and the existence of the mean values for
commutative semigroups of Dunford-Schwartz operators on L'. We
also apply them to show the existence of the mean values for certain



order-preserving operators T in L!, for which it seems to be still un-
known whether for each f € L., the Cesiro means n=* 34— T*f of f
converge weakly in L' in the case when y is infinite and o-finite.

2. PRELIMINARIES

Throughout the paper, let N, and R denote the set of non-negative
integers and the set of real numbers, respectively. Let (F, F') be the
duality between vector spaces E and F over R. If A is a subset of F,
then A° = {y € F: (z,y) < 1(z € A)}is asubset of F, called the polar
of A. For each y € F, we define a linear form f, on E by fy(z) = (z,9).
Then, o(E, F) denotes the weak topology on E generated by the family
{fy :y € F}. Let 7(E, F) and S(FE, F) denote the Mackey topology on
E with respect to (F, F) and the strong topology on E with respect
to (E, F), respectively. Let (E,¥) is a locally convex space. Then, the
topological dual of E is denoted by E’. The bilinear form (z, f) — f(z)
on E x E' defines a duality (F, E’). The weak topology o(E, E') on
E generated by E' is called the weak topology of E (associated with
% if this distinction is necessary). The topological dual of £ under
the strong topology B(E’, E) with respect to (E, E') is denoted by Ej,
called the strong dual of F.

Let S be a semigroup. We denote by [°°(S) the vector space of real-
valued bounded functions defined on S; under the norm f — ||f]| =
SuPeg [f(s)], 1°°(S) is a Banach space. For each s € S, we define
operators I(s) and r(s) on I*°(S) by (I(s)f)(t) = f(st) and (r(s)f)(t) =
f(ts) for each t € S and f € [*°(S), respectively. Then, a linear
functional m on 1°°(9) is said to be a mean on S if ||m| = m(e) =
1, where e(s) = 1 for each s € S. For each s € S, we define a
point evaluation &, by d,(f) = f(s) for each f € I®(S). A convex
combination of point evaluations is called a finite mean on S. As is
well known, a linear functional m on [*°(S) is a mean on S if and only
if infses f(s) < m(f) < supyeg f(s) for each f € 1°°(S). We often write
ms(f(s)) for the value m(f) of a mean m on S at an f € I®°(S). A
mean m on S is said to be left (or right) invariant if m = I(s)'m (or m =
r(s)'m) for each s € S, where I(s)’ and 7(s)’ are the adjoint operators of
I(s) and 7(s), respectively. If a mean m on S is left and right invariant,
then m is said to be invariant. In particular, an invariant mean on N,
is called a Banach limit. If there exists a left (or right) invariant mean
on S, then S is said to be left (or right) amenable. If S is left and
right amenable, then S is said to be amenable. It is known that if S
is commutative, then S is amenable, due to the fixed point theorem of
Kakutani and Markov; for more details, see Day [4].

We denote by [2°(.S, E) the vector space of vector-valued functions
f defined on a semigroup S with values in a locally convex space
E for which the closure of convex hull of f(S) is weakly compact.
For each s € S, we define the operators L(s) and R(s) on [(S, E)
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by (L(s)f)(t) = f(st) and (R(s)f)(t) = f(ts) for each t € S and
f € I%°(S, E), respectively. Motivated by an original work of Taka-
hashi [21], we introduce a notion of the mean values for vector-valued
functions in I°(S, E). Let m be a mean on S. For each f € I(S, E),
we define a linear functional 7(m)f on the strong dual Ej of E by
T(m)f : ' — ms(f(s),2’) for each 2’ € E. Then, it follows from
the separation theorem that 7(m)f is an element of E, which is con-
tained in the closure of convex hull of f(S). We denote by 7(m) the
linear operator of [2°(S, E) into E that assigns to each f € I%(S, E)
a unique element 7(m)f of E such that m,(f(s),z’) = (r(m)f,x’) for
each ' € E’. The operator 7(m) is called the vector-valued mean on
S (generated by m if explicit reference to the mean m is needed); for
more details, see Kada and Takahashi [9]. Note that it is also a vector-
valued mean in the sense of Goldberg and Irwin [7]. Whenever S is left
amenable, an f € {°(S, E) is said to have the mean value if there exists
an element p of E such that p = 7(m)f for each left invariant mean m
on S. The element p is called the mean value of f; see Lorentz [13],
Day [4] and Miyake [14]. It is shown in [14] that an f € I2°(S, E) has
the mean value if and only if the closure of convex hull of the right
orbit RO(f) = {R(s)f € IP(S,E) : s € S} of f contains exactly
one constant function, where [2°(S, E) is endowed with the topology of
weakly pointwise convergence, for which the family of finite intersec-
tions of sets of the form U(s;a';¢) = {f € IX(S, E) : |(f(s),7')]| < €}
(s € S,2’ € E' and € > 0) is a neighborhood base of 0. It is also known
that whenever S is an amenable semigroup with identity, if a vector-
valued function f defined on S with values in a bounded subset of a
complete locally convex space is weakly almost periodic in the sense of
Eberlein, then f has the mean value in the sense herein defined; see
also von Neumann [17], Bochner and von Neumann [2], Eberlein [6],
Ruess and Summers [19] and Miyake and Takahashi [16].

The notion of the mean values for vector-valued functions is applied
to semigroups of transformations in the following way. Let C be a
closed convex subset of a locally convex space (E,%) and let S be a
left amenable semigroup acting on C. We assume that for each z € C,
the closure of convex hull of the orbit O(z) = {s(z) : s € S} of z under
S is weakly compact. Let m be a mean on S. We define a mapping ¢g
of C into I°(S, E) by (¢s(x))(s) = s(z) foreachz € C and s € S. We
simply write S(m)z in place of 7(m)(ps(x)). We denote by S(m) the
mapping of C into itself that assigns to each z € C a unique element
S(m)z of C such that my(s(z),z') = (S(m)z,z’) for each ' € E’. An
element p of E is said to be the mean value of an z € C under S (with
respect to ¥ if this distinction is necessary) if p is the mean value of
¢s(z), that is, p = S(m)z for each left invariant mean m on S. If there
exists the mean value of z under S for each x € C, then S is said to
have the mean values on C (with respect to ¥). If S is a semigroup
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generated by a single element o € S, then we often write o(m)z (or
o(m)) instead of S(m)z (or S(m)). Accordingly, the mean value of an
z € C under S is simply called the mean value of x under 0. Moreover,
if S has the mean values on C, then o is also said to have the mean
values on C; see Ruess and Summers [19], Miyake and Takahashi [16]
and Miyake [14].

3. ON WEAK COMPACTNESS IN A SEPARATED LOCALLY CONVEX
TOPOLOGY ON L}

Throughout the paper, let (€2, .4, 1) denote a positive measure space
with o-algebra A and measure p and let F denote the family of mea-
surable subsets of ) with finite measure. Then, F is ordered by set
inclusion in the sense that for E,F € 7, E < F if and only if E C F,
so that each finite subset of F has an upper bound. Let E € A. If Ag
denotes the family of intersections of members of A with E and ug de-
notes the restriction of y to Ag, then the triple (E, Ag, ug) is a positive
measure space. For 1 < p < oo, let LP(E) be the vector space of mea-

surable functions f defined on E for which || f||gp = (J5 | fI? du)v < 00
and let L>(F) be the vector space of measurable functions f defined
on E for which || f||g,c = infy sup,emn |f(w)| < 0o, where N ranges
over the null subsets of E. If N denotes the set of null functions
defined on E and [f] denotes the equivalence class of an f € LP(E)
mod Ng (1 < p < o), then [f] — ||fllgp is @ norm on the quo-
tient space LP(E)/Ng, which thus becomes a Banach space, usually
denoted by LP(E). For an f € LP(Q), ||flla, is called the LP-norm of
f, simply denoted by || f||,- A measurable function f defined on €2 is
called essentially-bounded if || f|lcc < c0. Every element of LP(E) is
considered as a measurable function f defined on F with || f|g, < oo,
if no confusion will occur. We note that LP(2) is ordered by defining
f<g(f g€ LP(Q)) to mean that f(z) < g(z) almost everywhere on
Q, so that LP(Q) is a Banach lattice. We call a function f € LP({2)
non-negative if f > 0. The set of non-negative functions in LP(£2)
will be denoted by L% (). For each E € A, the bilinear form on
L'(E)x L*(E) that is deﬁned by (f,h) = [, fh du for each f € L'(E)
and h € L*(F) places L'(FE) and L°°(E) in duality. For E, F € F with
E < F, let igr denote the mapping of L*(F') onto L'(E) that assigns
to each f € L*(F) the restriction f|g € L'(E) of f to E. Then, the
canonical imbedding of L®°(E) into L*°(F') is the adjoint operator of
iEF) denoted by ]FE

Let £},.(©) be the vector space of measurable functions defined on
Q which are locally integrable, that is, integrable on each E' € F and
let M, be the vector subspace of Eloc( ) consisting of measurable
functions f defined on Q for which u{w € F : f(w) # 0} = 0 for
each E € F. If [f] denotes the equivalence class of an f € L} ()
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mod N, then [f] = [g] (f,g € L}..(2)) means that for each E € F,
fle(z) = g|p(z) almost everywhere on E, where f|g and g|g are the
restrictions of f and g to E, respectively. In particular, if y is o-finite,
then NV, equals the set N of null functions defined on £ and hence for
fr9 € L,.(Q), [f] = [g] if and only if f(z) = g(z) almost everywhere
on (). For each E € F, [f|] = ||fllg1 is a semi-norm on the quotient
space L],,(2)/Nioe, which becomes a locally convex space, denoted by
L}, .(Q), under the separated locally convex topology T generated by
the semi-norms [f] — || f||z1 (E € F). Every element of L} _(f2) is also
considered as a measurable, locally integrable function defined on €, if
no confusion will occur.

In the sequel, we shall assume that the measure space (2, A, p) is
o-finite. The product space £ of (L'(E),|| - ||g1), E € F is the
Cartesian product L = [z L'(E) endowed with the product topol-
ogy. Then, L; () is identified as a closed (and hence complete) sub-
space of £ by the isomorphism of L, () into £ that is defined by
f = (flg)Eer, where f|g is the restriction of an f € L} () to E.
Let D = @g.r L°(E) be the direct sum of L*(E), E € F. The
vector spaces L and D are placed in duality by the bilinear form on
L x D that is defined by (f,g) = Y g(fr,9g) for each f = (fg) €
L and g = (9gg) € D, where fp € LY(E) and gg € L*(E) for
each £ € F and the sum is taken over at most a finite number of
non-zero terms of g. Then, the topological dual of £ is D and the
topological dual of Lj,.() is the quotient space D/(L} (2))°, which
is algebraically isomorphic to the vector subspace L{2(Q) of L*°(£)
consisting of measurable, essentially-bounded functions f defined on
Q for which u{w € Q : f(w) # 0} < oco. Note that L} (Q) is
identified as the reduced projective limit Lir_nz'EFLl(F) of the fam-
ily {(LY(E),|| - le1) : E € F} with respect to the mappings igp
(E,F € Fand E X F). If D = @g.r L*(F) is the locally convex
direct sum of (L*(E),7(L*(FE),L*(E))), E € F, then the quotient
space D/(L;,.(2))° is the inductive limit lim jrpL*°(E) of the family
{(L>*(E), 7(L*(F), L)(E))) : E € F} with respect to the mappings
JFE (E,Fe}'and E< F)

Proposition 1. L () is a complete locally convex space. The topo-
logical dual of L, () is algebraically isomorphic to L$2.().

It is clear that if p is finite, then L () equals L!(£2) and hence, 7 is
just the topology on L'(€2) generated by the metric (f, g) — ||f — gll1.
We note that if C is a bounded subset of L!'(Q2) N LP(2) relative to LP-
norm, i.e. supscc ||fll, < 0o, then the weak topology on C' generated
by L%(Q) is the relative topology of the weak topology of L;, () to C,
where p and ¢ are a pair of conjugate exponents, that is, 1 < p < oo
and p~l+q1=1.
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A subset A of L () is said to be locally uniformly integrable if
for each E € F, the set {f|g € L}(E) : f € A} of the restrictions
of the functions in A to F is uniformly integrable, that is, for each
E € F and € > 0, there exists a 6 > 0 such that for each FF € A
with F' C FE and u(F) < 6, supseu [ |fldp < e It follows from
the theorem of Tychonoff that if A is a locally uniformly integrable,
bounded subset of L} (), then A is relatively weakly compact, since

loc
L;,.(£2) is a complete subspace of £. The converse holds.

Proposition 2. Let C be a subset of L}, (2). Then, C is relatively
weakly compact if and only if C is bounded and locally uniformly inte-

grable.

We apply Cantor’s diagonal argument to obtain a characterization
of an adherent point of a subset C' of L (£2) as the limit function in
almost everywhere convergence of some sequence of functions in C.

Lemma 1. Let C be a subset of L, .(Q) and let f be a function in the
closure of C. Then, there exists a sequence { f,} of functions in C such
that fn(x) converges to f(x) almost everywhere on SQ.

Let 7 denote the relative topology of 7 on L, .(2) to L*(§2), which
is the locally convex topology on L'(Q2) generated by the semi-norms
f= \fller (E € F). Inthe sequel, L'(Q2) will be considered as a locally
convex space under this topology 7, if L(Q) is not specified explicitly
as a Banach space (L'(Q),]| - |l1) under the norm f +~ ||f|l.. Then,
the topological dual of L'(f2) is algebraically isomorphic to Lj2.(Q2). It
follows from Lemma 1 that if a subset C of L}(2) is bounded relative
to L'-norm, i.e. sup;cc [|flli < oo, then the closure in Lj, () of C' is

contained in L'(12).

Proposition 3. If C is a bounded subset of L*(Q) relative to L*-norm,
then the closure in L*(?) of C is complete.

A sufficient and necessary condition is also given by Lemma 1 for a
bounded subset of L'(Q2) relative to L'-norm to be relatively weakly
compact.

Proposition 4. Let C be a bounded subset of L*(Q) relative to L'-
norm. Then, C is relatively weakly compact if and only if C is locally
uniformly integrable.

Remark 1. Let Q) = R, let A be the og-algebra of Lebesgue measurable
subsets of R and let u be Lebesgue measure on R. Then, for each
f € LYR), the subset {f; : = € R} of L'(R) is relatively weakly
compact (or relatively compact relative to the weak topology of L'(R)
associated with 7), where f.(y) = f(y — z) for each z,y € R. For
example, let f be the real-valued function on R which is defined by
f(z) = e7®l(z € R). Then, the subset {f, : £ € R} of L}(R) is
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not relatively weakly compact in (L'(R), || - ||1), but relatively weakly
compact.

Remark 2. Let Q = R", i.e. n-dimensional Euclidean space, let A
be the o-algebra of Lebesgue measurable subsets of R" and let u be
Lebesgue measure on R™, Then, by considering F as the family K
of compact subsets of R®, we can apply those arguments presented in
this section to obtain similar results to the propositions in it, which
concern weak compactness in the separated locally convex topology T
on L'(R™) generated by the semi-norms f — ||fllx1 (K € K). The
topological dual of (L*(R"), 7x) is algebraically isomorphic to the vector
subspace of L°(R™) consisting of Lebesgue measurable, essentially-
bounded functions defined on R® with compact support. Note that,
in this case, a Lebesgue measurable function f defined on R™ is called
locally integrable if f is Lebesgue integrable on each K € K, and a
subset A of L}(R™) is said to be locally uniformly integrable if for each
K € K, the set {f|lx € LY(K) : f € A} of the restrictions of the
functions in A to K is uniformly integrable.

4. ON EXISTENCE OF THE MEAN VALUES FOR OPERATORS

We apply the result about weak compactness in the separated lo-
cally convex topology 7 on L!(Q2) in the previous section to show the
existence of the mean values for commutative semigroups of Dunford-
Schwartz operators on L'(Q). Similar results are also obtained for
(commutative semigroups of) certain order-preserving operators in
LY().

A linear operator T' on L'(Q) is said to be a Dunford-Schwartz
operator on LY(Q) if ||T|; < 1 and ||Tf|lec < |If]loo for each f €
LY() N L*(Q). In this section, T will denote such an operator on
LY(Q), if T is not specified explicitly. For each f € L'(Q), the orbit
{T"f :n=0,1,...} of f under T (denoted by O(f)) is a uniformly
integrable, bounded subset of L1(f2) relative to L-norm.

Lemma 2. For each f € LY(Q2), the orbit O(f) of f under T is rela-
tively weakly compact. Moreover, if u is finite, then T is weakly almost
periodic, that is, for each f € L*(Q), the orbit O(f) of f under T is
relatively weakly compact in (L*(Q), || - |l1)-

Let m be a mean on N,. It follows from this lemma that for each
f € LY(f), there exists a unique function 7(m)f in L!(Q) such that
mi(Jo(T* R dp) = [(T(m)f)hdy for each h € LS (). Then, f —
T(m)f is a linear operator on L'(2), denoted by T'(m). For each
f € LY), T(m)f is contained in the closure of convex hull of the
orbit O(f) of f under T. :

Lemma 3. For each mean m on N,, T(m) is a Dunford-Schwartz
operator on L'(Q).
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Recall that a function p in L!(f2) is the mean value of an f € L'(Q)
under T With respect to 7 if and only if [, ph du = my, ([o(T*f)h dp) =
Jo(T(m) f)h dp for each h € L () and Banach limit m. It is known
that T can be regarded as a linear contraction on LP(Q) (1 < p < 00),
that is, a linear operator on LP(2) whose norm is less than or equal to
1, due to Riesz-Thorin convexity theorem. It follows from the ergodic
theorem of Yosida and Kakutani that for each f € L'(Q2) N L*(),
n~l SR TR f converges strongly to a fixed point of T in L?(Q)
uniformly in h € N,. In other words, T" has the mean values on
LY(Q)) N L*()) with respect to 7; see Lorentz [13].

Theorem 1. Every Dunford-Schwartz operator on L'(2) has the mean
values on L*(Y) with respect to 7.

The notion of the mean values for T" allows us to give an identification
of the limit function in almost everywhere convergence of the Cesaro
means n 'Y p_o T*f of an f € L*(Q) by virtue of the convergence
theorem of Vitali.

Proposition 5. If the Cesiro means n=* S 34—y T*f of an f € L*(Q)
converge almost everywhere on ), then the limit function is the mean
value of f under T with respect to 7.

By the work of Takahashi [21], we are allowed to extend Theorem 1
to commutative semigroups of Dunford-Schwartz operators on L'(S2).
It follows from Riesz-Thorin convexity theorem that every semigroup
S of Dunford-Schwartz operators on L'(f2) can be regarded as a semi-
group of linear contractions on LP(Q2) (1 < p < co0). Moreover, if S is
commutative, then S has the mean values on L%(2) and also has the
mean values on L'(2) N L*(Q) with respect to 7; see also Kido and
Takahashi [11].

Theorem 2. If S is a commutative semigroup of Dunford-Schwartz
operators on L*(Q)), then S has the mean values on L'(Q2) with respect
to T.

An operator T on L () is said to be order-preserving if f < g (f, g €
L (Q)) implies T'f < Tg. Similar results to the above proposition and
theorems in this section can be obtained for order-preserving operators
T on L1 (Q) for which T'(0) = 0 and T is nonexpansive with respect to
L'-norm and L*-norm, that is, ||Tf —Tgll1 < ||f —gll1 for each f,g €
I1.(9) and |[Tf ~ Tgllo, < 1 — gllo for each £, g € LL(@)NL=(%), by
means of the nonlinear interpolation theorem of Browder, which implies
that such an operator on L! () can be regarded as an operator W on
LE () (1 < p < o) such that [|[Wf — Wyl, < ||f — gllp for each
f, € L (£2); see Krengel and Lin [12].

Theorem 3. IfT is an order-preserving operator on L} () and T'(0) =
0 and if T is nonezpansive with respect to L'-norm and L*°-norm, then
T has the mean values on L () with respect to 7.
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Finally, we note that the last theorem can be also generalized to
commutative semigroups of such operators on L (12).
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