ON THE EXISTENCE OF THE MEAN VALUES FOR CERTAIN ORDER-PRESERVING OPERATORS IN L^1 .

HIROMICHI MIYAKE (三宅 啓道)

1. INTRODUCTION

Let $(\Omega, \mathcal{A}, \mu)$ be a positive measure space with σ -algebra \mathcal{A} and measure μ . It is known that if T is a linear contraction on $L^1 = L^1(\Omega, \mathcal{A}, \mu)$ which does not increase L^{∞} -norm (so called a Dunford-Schwartz operator on L^1) and μ is finite, then T is weakly almost periodic, that is, for each $f \in L^{1}$, the orbit $\{T^{n}f : n = 0, 1, ...\}$ of f under T is a relatively weakly compact subset of L^1 . This is, however, not the case when μ is infinite and σ -finite. Indeed, in this case, there exists a Dunford-Schwartz operator T on L^1 which is not weakly almost periodic, but for each $f \in L^1$, the Cesàro means $n^{-1} \sum_{k=0}^{n-1} \check{T}^k f$ of f converge strongly to a fixed point of T. Then, assigning to each $f \in L^1$ the limit of the Cesàro means $n^{-1} \sum_{k=0}^{n-1} T^k f$ of f, the linear operator on L^1 is a unique projection P of L^1 onto the subspace of L^1 consisting of fixed points of T such that PT = P = TP and for each $f \in L^1$, Pf is contained in the closure of convex hull of the orbit of f under T. Such a projection P is said to be ergodic; see Takahashi [21] and also Hirano, Kido and Takahashi [8]. Therefore, it is natural to ask a question of whether every Dunford-Schwartz operator on L^1 has the mean values on L^1 (in the sense defined in the following section) if μ is σ -finite.

Recently, we [15] discussed a method of constructing a separated locally convex topology $\tilde{\tau}$ on L^1 such that the weak topology of L^1 associated with $\tilde{\tau}$ is coarser than the weak topology on L^1 generated by $L^{\infty} = L^{\infty}(\Omega, \mathcal{A}, \mu)$ without the assumption that μ is finite. A sufficient and necessary condition was shown for a bounded subset of L^1 relative to L^1 -norm to be relatively weakly compact in $(L^1, \tilde{\tau})$. We applied it to show the existence of the mean values for commutative semigroups of Dunford-Schwartz operators on L^1 . This result also gives an identification of the limit function in almost everywhere convergence of the Cesàro means $n^{-1} \sum_{k=0}^{n+1} T^k f$ of an $f \in L^1$ for such an operator T on L^1 .

In this paper, we summarize those arguments presented in [15] about weak compactness in $(L^1, \tilde{\tau})$ and the existence of the mean values for commutative semigroups of Dunford-Schwartz operators on L^1 . We also apply them to show the existence of the mean values for certain order-preserving operators T in L^1 , for which it seems to be still unknown whether for each $f \in L^1_+$, the Cesàro means $n^{-1} \sum_{k=0}^{n-1} T^k f$ of fconverge weakly in L^1 in the case when μ is infinite and σ -finite.

2. Preliminaries

Throughout the paper, let \mathbb{N}_+ and \mathbb{R} denote the set of non-negative integers and the set of real numbers, respectively. Let $\langle E, F \rangle$ be the duality between vector spaces E and F over \mathbb{R} . If A is a subset of E, then $A^\circ = \{y \in F : \langle x, y \rangle \leq 1 \ (x \in A)\}$ is a subset of F, called the polar of A. For each $y \in F$, we define a linear form f_y on E by $f_y(x) = \langle x, y \rangle$. Then, $\sigma(E, F)$ denotes the weak topology on E generated by the family $\{f_y : y \in F\}$. Let $\tau(E, F)$ and $\beta(E, F)$ denote the Mackey topology on E with respect to $\langle E, F \rangle$ and the strong topology on E with respect to $\langle E, F \rangle$, respectively. Let (E, \mathfrak{T}) is a locally convex space. Then, the topological dual of E is denoted by E'. The bilinear form $(x, f) \mapsto f(x)$ on $E \times E'$ defines a duality $\langle E, E' \rangle$. The weak topology $\sigma(E, E')$ on E generated by E' is called the weak topology of E (associated with \mathfrak{T} if this distinction is necessary). The topological dual of E under the strong topology $\beta(E', E)$ with respect to $\langle E, E' \rangle$ is denoted by E'_{β} , called the strong dual of E.

Let S be a semigroup. We denote by $l^{\infty}(S)$ the vector space of realvalued bounded functions defined on S; under the norm $f \mapsto ||f|| =$ $\sup_{s\in S} |f(s)|, l^{\infty}(S)$ is a Banach space. For each $s \in S$, we define operators l(s) and r(s) on $l^{\infty}(S)$ by (l(s)f)(t) = f(st) and (r(s)f)(t) =f(ts) for each $t \in S$ and $f \in l^{\infty}(S)$, respectively. Then, a linear functional m on $l^{\infty}(S)$ is said to be a mean on S if ||m|| = m(e) =1, where e(s) = 1 for each $s \in S$. For each $s \in S$, we define a point evaluation δ_s by $\delta_s(f) = f(s)$ for each $f \in l^{\infty}(S)$. A convex combination of point evaluations is called a finite mean on S. As is well known, a linear functional m on $l^{\infty}(S)$ is a mean on S if and only if $\inf_{s \in S} f(s) \leq m(f) \leq \sup_{s \in S} f(s)$ for each $f \in l^{\infty}(S)$. We often write $m_s(f(s))$ for the value m(f) of a mean m on S at an $f \in l^{\infty}(S)$. A mean m on S is said to be left (or right) invariant if m = l(s)'m (or m =r(s)'m for each $s \in S$, where l(s)' and r(s)' are the adjoint operators of l(s) and r(s), respectively. If a mean m on S is left and right invariant, then m is said to be invariant. In particular, an invariant mean on \mathbb{N}_+ is called a Banach limit. If there exists a left (or right) invariant mean on S, then S is said to be left (or right) amenable. If S is left and right amenable, then S is said to be amenable. It is known that if Sis commutative, then S is amenable, due to the fixed point theorem of Kakutani and Markov; for more details, see Day [4].

We denote by $l_c^{\infty}(S, E)$ the vector space of vector-valued functions f defined on a semigroup S with values in a locally convex space E for which the closure of convex hull of f(S) is weakly compact. For each $s \in S$, we define the operators L(s) and R(s) on $l_c^{\infty}(S, E)$

by (L(s)f)(t) = f(st) and (R(s)f)(t) = f(ts) for each $t \in S$ and $f \in l_c^{\infty}(S, E)$, respectively. Motivated by an original work of Takahashi [21], we introduce a notion of the mean values for vector-valued functions in $l_c^{\infty}(S, E)$. Let m be a mean on S. For each $f \in l_c^{\infty}(S, E)$, we define a linear functional $\tau(m)f$ on the strong dual E'_{β} of E by $\tau(m)f : x' \mapsto m_s \langle f(s), x' \rangle$ for each $x' \in E$. Then, it follows from the separation theorem that $\tau(m)f$ is an element of E, which is contained in the closure of convex hull of f(S). We denote by $\tau(m)$ the linear operator of $l_c^{\infty}(S, E)$ into E that assigns to each $f \in l_c^{\infty}(S, E)$ a unique element $\tau(m)f$ of E such that $m_s\langle f(s), x'\rangle = \langle \tau(m)f, x'\rangle$ for each $x' \in E'$. The operator $\tau(m)$ is called the vector-valued mean on S (generated by m if explicit reference to the mean m is needed); for more details, see Kada and Takahashi [9]. Note that it is also a vectorvalued mean in the sense of Goldberg and Irwin [7]. Whenever S is left amenable, an $f \in l^{\infty}_{c}(S, E)$ is said to have the mean value if there exists an element p of E such that $p = \tau(m) f$ for each left invariant mean m on S. The element p is called the mean value of f; see Lorentz [13], Day [4] and Miyake [14]. It is shown in [14] that an $f \in l_c^{\infty}(S, E)$ has the mean value if and only if the closure of convex hull of the right orbit $\mathcal{RO}(f) = \{R(s)f \in l_c^{\infty}(S, E) : s \in S\}$ of f contains exactly one constant function, where $l_c^{\infty}(S, E)$ is endowed with the topology of weakly pointwise convergence, for which the family of finite intersections of sets of the form $U(s; x'; \epsilon) = \{f \in l_c^{\infty}(S, E) : |\langle f(s), x' \rangle| < \epsilon\}$ $(s \in S, x' \in E' \text{ and } \epsilon > 0)$ is a neighborhood base of 0. It is also known that whenever S is an amenable semigroup with identity, if a vectorvalued function f defined on S with values in a bounded subset of a complete locally convex space is weakly almost periodic in the sense of Eberlein, then f has the mean value in the sense herein defined; see also von Neumann [17], Bochner and von Neumann [2], Eberlein [6], Ruess and Summers [19] and Miyake and Takahashi [16].

The notion of the mean values for vector-valued functions is applied to semigroups of transformations in the following way. Let C be a closed convex subset of a locally convex space (E, \mathfrak{T}) and let S be a left amenable semigroup acting on C. We assume that for each $x \in C$, the closure of convex hull of the orbit $\mathcal{O}(x) = \{s(x) : s \in S\}$ of x under S is weakly compact. Let m be a mean on S. We define a mapping ϕ_S of C into $l_c^{\infty}(S, E)$ by $(\phi_S(x))(s) = s(x)$ for each $x \in C$ and $s \in S$. We simply write S(m)x in place of $\tau(m)(\phi_S(x))$. We denote by S(m) the mapping of C into itself that assigns to each $x \in C$ a unique element S(m)x of C such that $m_s\langle s(x), x' \rangle = \langle S(m)x, x' \rangle$ for each $x' \in E'$. An element p of E is said to be the mean value of an $x \in C$ under S (with respect to \mathfrak{T} if this distinction is necessary) if p is the mean value of $\phi_S(x)$, that is, p = S(m)x for each left invariant mean m on S. If there exists the mean value of x under S for each $x \in C$, then S is said to have the mean values on C (with respect to \mathfrak{T}). If S is a semigroup generated by a single element $\sigma \in S$, then we often write $\sigma(m)x$ (or $\sigma(m)$) instead of S(m)x (or S(m)). Accordingly, the mean value of an $x \in C$ under S is simply called the mean value of x under σ . Moreover, if S has the mean values on C, then σ is also said to have the mean values on C; see Ruess and Summers [19], Miyake and Takahashi [16] and Miyake [14].

3. On weak compactness in a separated locally convex topology on L^1

Throughout the paper, let $(\Omega, \mathcal{A}, \mu)$ denote a positive measure space with σ -algebra \mathcal{A} and measure μ and let \mathcal{F} denote the family of measurable subsets of Ω with finite measure. Then, \mathcal{F} is ordered by set inclusion in the sense that for $E, F \in \mathcal{F}, E \leq F$ if and only if $E \subset F$, so that each finite subset of \mathcal{F} has an upper bound. Let $E \in \mathcal{A}$. If \mathcal{A}_E denotes the family of intersections of members of \mathcal{A} with E and μ_E denotes the restriction of μ to \mathcal{A}_E , then the triple $(E, \mathcal{A}_E, \mu_E)$ is a positive measure space. For $1 \leq p < \infty$, let $\mathcal{L}^p(E)$ be the vector space of measurable functions f defined on E for which $||f||_{E,p} = (\int_E |f|^p d\mu)^{\frac{1}{p}} < \infty$ and let $\mathcal{L}^{\infty}(E)$ be the vector space of measurable functions f defined on E for which $||f||_{E,\infty} = \inf_N \sup_{w \in E \setminus N} |f(w)| < \infty$, where N ranges over the null subsets of E. If \mathcal{N}_E denotes the set of null functions defined on E and [f] denotes the equivalence class of an $f \in \mathcal{L}^p(E)$ mod \mathcal{N}_E $(1 \leq p \leq \infty)$, then $[f] \mapsto ||f||_{E,p}$ is a norm on the quotient space $\mathcal{L}^p(E)/\mathcal{N}_E$, which thus becomes a Banach space, usually denoted by $L^p(E)$. For an $f \in L^p(\Omega)$, $||f||_{\Omega,p}$ is called the L^p -norm of f, simply denoted by $||f||_p$. A measurable function f defined on Ω is called essentially-bounded if $||f||_{\infty} < \infty$. Every element of $L^{p}(E)$ is considered as a measurable function f defined on E with $||f||_{E,p} < \infty$, if no confusion will occur. We note that $L^p(\Omega)$ is ordered by defining $f \leq g \ (f,g \in L^p(\Omega))$ to mean that $f(x) \leq g(x)$ almost everywhere on Ω , so that $L^p(\Omega)$ is a Banach lattice. We call a function $f \in L^p(\Omega)$ non-negative if $f \geq 0$. The set of non-negative functions in $L^{p}(\Omega)$ will be denoted by $L^p_+(\Omega)$. For each $E \in \mathcal{A}$, the bilinear form on $L^1(E) \times L^\infty(E)$ that is defined by $\langle f, h \rangle = \int_E fh \ d\mu$ for each $f \in L^1(E)$ and $h \in L^{\infty}(E)$ places $L^{1}(E)$ and $L^{\infty}(E)$ in duality. For $E, F \in \mathcal{F}$ with $E \leq F$, let i_{EF} denote the mapping of $L^1(F)$ onto $L^1(E)$ that assigns to each $f \in L^1(F)$ the restriction $f|_E \in L^1(E)$ of f to E. Then, the canonical imbedding of $L^{\infty}(E)$ into $L^{\infty}(F)$ is the adjoint operator of i_{EF} , denoted by j_{FE} .

Let $\mathcal{L}^{1}_{loc}(\Omega)$ be the vector space of measurable functions defined on Ω which are locally integrable, that is, integrable on each $E \in \mathcal{F}$ and let \mathcal{N}_{loc} be the vector subspace of $\mathcal{L}^{1}_{loc}(\Omega)$ consisting of measurable functions f defined on Ω for which $\mu\{w \in E : f(w) \neq 0\} = 0$ for each $E \in \mathcal{F}$. If [f] denotes the equivalence class of an $f \in \mathcal{L}^{1}_{loc}(\Omega)$

mod \mathcal{N}_{loc} , then [f] = [g] $(f, g \in \mathcal{L}^{1}_{loc}(\Omega))$ means that for each $E \in \mathcal{F}$, $f|_{E}(x) = g|_{E}(x)$ almost everywhere on E, where $f|_{E}$ and $g|_{E}$ are the restrictions of f and g to E, respectively. In particular, if μ is σ -finite, then \mathcal{N}_{loc} equals the set \mathcal{N}_{Ω} of null functions defined on Ω and hence for $f, g \in \mathcal{L}^{1}_{loc}(\Omega), [f] = [g]$ if and only if f(x) = g(x) almost everywhere on Ω . For each $E \in \mathcal{F}, [f] \mapsto ||f||_{E,1}$ is a semi-norm on the quotient space $\mathcal{L}^{1}_{loc}(\Omega)/\mathcal{N}_{loc}$, which becomes a locally convex space, denoted by $L^{1}_{loc}(\Omega)$, under the separated locally convex topology τ generated by the semi-norms $[f] \mapsto ||f||_{E,1}$ ($E \in \mathcal{F}$). Every element of $L^{1}_{loc}(\Omega)$ is also considered as a measurable, locally integrable function defined on Ω , if no confusion will occur.

In the sequel, we shall assume that the measure space $(\Omega, \mathcal{A}, \mu)$ is σ -finite. The product space \mathcal{L} of $(L^1(E), \|\cdot\|_{E,1}), E \in \mathcal{F}$ is the Cartesian product $L = \prod_{E \in \mathcal{F}} L^1(E)$ endowed with the product topology. Then, $L^1_{loc}(\Omega)$ is identified as a closed (and hence complete) subspace of \mathcal{L} by the isomorphism of $L^1_{loc}(\Omega)$ into \mathcal{L} that is defined by $f \mapsto (f|_E)_{E \in \mathcal{F}}$, where $f|_E$ is the restriction of an $f \in L^1_{loc}(\Omega)$ to E. Let $D = \bigoplus_{E \in \mathcal{F}} L^{\infty}(E)$ be the direct sum of $L^{\infty}(E)$, $E \in \mathcal{F}$. The vector spaces L and D are placed in duality by the bilinear form on $L \times D$ that is defined by $\langle f, g \rangle = \sum_{E} \langle f_E, g_E \rangle$ for each $f = (f_E) \in$ L and $g = (g_E) \in D$, where $f_E \in L^1(E)$ and $g_E \in L^\infty(E)$ for each $E \in \mathcal{F}$ and the sum is taken over at most a finite number of non-zero terms of g. Then, the topological dual of \mathcal{L} is D and the topological dual of $L^1_{loc}(\Omega)$ is the quotient space $D/(L^1_{loc}(\Omega))^\circ$, which is algebraically isomorphic to the vector subspace $L^{\infty}_{loc}(\Omega)$ of $L^{\infty}(\Omega)$ consisting of measurable, essentially-bounded functions f defined on Ω for which $\mu\{w \in \Omega : f(w) \neq 0\} < \infty$. Note that $L^1_{loc}(\Omega)$ is identified as the reduced projective limit $\lim_{E \to F} i_{EF} L^1(F)$ of the family $\{(L^1(E), \|\cdot\|_{E,1}) : E \in \mathcal{F}\}$ with respect to the mappings i_{EF} $(E, F \in \mathcal{F} \text{ and } E \leq F)$. If $\mathcal{D} = \bigoplus_{E \in \mathcal{F}} L^{\infty}(E)$ is the locally convex direct sum of $(L^{\infty}(E), \tau(L^{\infty}(E), L^{1}(E))), E \in \mathcal{F}$, then the quotient space $\mathcal{D}/(L^1_{loc}(\Omega))^\circ$ is the inductive limit $\varinjlim j_{FE}L^\infty(E)$ of the family $\{(L^{\infty}(E), \tau(L^{\infty}(E), L^{1}(E))) : E \in \mathcal{F}\}$ with respect to the mappings j_{FE} $(E, F \in \mathcal{F} \text{ and } E \leq F).$

Proposition 1. $L^1_{loc}(\Omega)$ is a complete locally convex space. The topological dual of $L^1_{loc}(\Omega)$ is algebraically isomorphic to $L^{\infty}_{loc}(\Omega)$.

It is clear that if μ is finite, then $L^1_{loc}(\Omega)$ equals $L^1(\Omega)$ and hence, τ is just the topology on $L^1(\Omega)$ generated by the metric $(f,g) \mapsto ||f-g||_1$. We note that if C is a bounded subset of $L^1(\Omega) \cap L^p(\Omega)$ relative to L^p norm, i.e. $\sup_{f \in C} ||f||_p < \infty$, then the weak topology on C generated by $L^q(\Omega)$ is the relative topology of the weak topology of $L^1_{loc}(\Omega)$ to C, where p and q are a pair of conjugate exponents, that is, 1 $and <math>p^{-1} + q^{-1} = 1$. A subset A of $L^1_{loc}(\Omega)$ is said to be locally uniformly integrable if for each $E \in \mathcal{F}$, the set $\{f|_E \in L^1(E) : f \in A\}$ of the restrictions of the functions in A to E is uniformly integrable, that is, for each $E \in \mathcal{F}$ and $\epsilon > 0$, there exists a $\delta > 0$ such that for each $F \in \mathcal{A}$ with $F \subset E$ and $\mu(F) < \delta$, $\sup_{f \in A} \int_F |f| d\mu < \epsilon$. It follows from the theorem of Tychonoff that if A is a locally uniformly integrable, bounded subset of $L^1_{loc}(\Omega)$, then A is relatively weakly compact, since $L^1_{loc}(\Omega)$ is a complete subspace of \mathcal{L} . The converse holds.

Proposition 2. Let C be a subset of $L^1_{loc}(\Omega)$. Then, C is relatively weakly compact if and only if C is bounded and locally uniformly integrable.

We apply Cantor's diagonal argument to obtain a characterization of an adherent point of a subset C of $L^1_{loc}(\Omega)$ as the limit function in almost everywhere convergence of some sequence of functions in C.

Lemma 1. Let C be a subset of $L^{1}_{loc}(\Omega)$ and let f be a function in the closure of C. Then, there exists a sequence $\{f_n\}$ of functions in C such that $f_n(x)$ converges to f(x) almost everywhere on Ω .

Let $\tilde{\tau}$ denote the relative topology of τ on $L^1_{loc}(\Omega)$ to $L^1(\Omega)$, which is the locally convex topology on $L^1(\Omega)$ generated by the semi-norms $f \mapsto ||f||_{E,1}$ ($E \in \mathcal{F}$). In the sequel, $L^1(\Omega)$ will be considered as a locally convex space under this topology $\tilde{\tau}$, if $L^1(\Omega)$ is not specified explicitly as a Banach space $(L^1(\Omega), || \cdot ||_1)$ under the norm $f \mapsto ||f||_1$. Then, the topological dual of $L^1(\Omega)$ is algebraically isomorphic to $L^{\infty}_{loc}(\Omega)$. It follows from Lemma 1 that if a subset C of $L^1(\Omega)$ is bounded relative to L^1 -norm, i.e. $\sup_{f \in C} ||f||_1 < \infty$, then the closure in $L^1_{loc}(\Omega)$ of C is contained in $L^1(\Omega)$.

Proposition 3. If C is a bounded subset of $L^1(\Omega)$ relative to L^1 -norm, then the closure in $L^1(\Omega)$ of C is complete.

A sufficient and necessary condition is also given by Lemma 1 for a bounded subset of $L^1(\Omega)$ relative to L^1 -norm to be relatively weakly compact.

Proposition 4. Let C be a bounded subset of $L^1(\Omega)$ relative to L^1 -norm. Then, C is relatively weakly compact if and only if C is locally uniformly integrable.

Remark 1. Let $\Omega = \mathbb{R}$, let \mathcal{A} be the σ -algebra of Lebesgue measurable subsets of \mathbb{R} and let μ be Lebesgue measure on \mathbb{R} . Then, for each $f \in L^1(\mathbb{R})$, the subset $\{f_x : x \in \mathbb{R}\}$ of $L^1(\mathbb{R})$ is relatively weakly compact (or relatively compact relative to the weak topology of $L^1(\mathbb{R})$ associated with $\tilde{\tau}$), where $f_x(y) = f(y - x)$ for each $x, y \in \mathbb{R}$. For example, let f be the real-valued function on \mathbb{R} which is defined by $f(x) = e^{-|x|} (x \in \mathbb{R})$. Then, the subset $\{f_x : x \in \mathbb{R}\}$ of $L^1(\mathbb{R})$ is not relatively weakly compact in $(L^1(\mathbb{R}), \|\cdot\|_1)$, but relatively weakly compact.

Remark 2. Let $\Omega = \mathbb{R}^n$, i.e. *n*-dimensional Euclidean space, let \mathcal{A} be the σ -algebra of Lebesgue measurable subsets of \mathbb{R}^n and let μ be Lebesgue measure on \mathbb{R}^n . Then, by considering \mathcal{F} as the family \mathcal{K} of compact subsets of \mathbb{R}^n , we can apply those arguments presented in this section to obtain similar results to the propositions in it, which concern weak compactness in the separated locally convex topology $\tilde{\tau}_{\mathcal{K}}$ on $L^1(\mathbb{R}^n)$ generated by the semi-norms $f \mapsto ||f||_{K,1}$ ($K \in \mathcal{K}$). The topological dual of $(L^1(\mathbb{R}^n), \tilde{\tau}_{\mathcal{K}})$ is algebraically isomorphic to the vector subspace of $L^{\infty}(\mathbb{R}^n)$ consisting of Lebesgue measurable, essentially-bounded functions defined on \mathbb{R}^n with compact support. Note that, in this case, a Lebesgue measurable function f defined on \mathbb{R}^n is called locally integrable if f is Lebesgue integrable on each $K \in \mathcal{K}$, and a subset A of $L^1(\mathbb{R}^n)$ is said to be locally uniformly integrable if for each $K \in \mathcal{K}$, the set $\{f|_K \in L^1(K) : f \in A\}$ of the restrictions of the functions in A to K is uniformly integrable.

4. ON EXISTENCE OF THE MEAN VALUES FOR OPERATORS

We apply the result about weak compactness in the separated locally convex topology $\tilde{\tau}$ on $L^1(\Omega)$ in the previous section to show the existence of the mean values for commutative semigroups of Dunford-Schwartz operators on $L^1(\Omega)$. Similar results are also obtained for (commutative semigroups of) certain order-preserving operators in $L^1(\Omega)$.

A linear operator T on $L^1(\Omega)$ is said to be a Dunford-Schwartz operator on $L^1(\Omega)$ if $||T||_1 \leq 1$ and $||Tf||_{\infty} \leq ||f||_{\infty}$ for each $f \in L^1(\Omega) \cap L^{\infty}(\Omega)$. In this section, T will denote such an operator on $L^1(\Omega)$, if T is not specified explicitly. For each $f \in L^1(\Omega)$, the orbit $\{T^n f : n = 0, 1, ...\}$ of f under T (denoted by $\mathcal{O}(f)$) is a uniformly integrable, bounded subset of $L^1(\Omega)$ relative to L^1 -norm.

Lemma 2. For each $f \in L^1(\Omega)$, the orbit $\mathcal{O}(f)$ of f under T is relatively weakly compact. Moreover, if μ is finite, then T is weakly almost periodic, that is, for each $f \in L^1(\Omega)$, the orbit $\mathcal{O}(f)$ of f under T is relatively weakly compact in $(L^1(\Omega), \|\cdot\|_1)$.

Let m be a mean on \mathbb{N}_+ . It follows from this lemma that for each $f \in L^1(\Omega)$, there exists a unique function T(m)f in $L^1(\Omega)$ such that $m_k(\int_{\Omega} (T^k f)h \, d\mu) = \int_{\Omega} (T(m)f)h \, d\mu$ for each $h \in L^{\infty}_{loc}(\Omega)$. Then, $f \mapsto T(m)f$ is a linear operator on $L^1(\Omega)$, denoted by T(m). For each $f \in L^1(\Omega), T(m)f$ is contained in the closure of convex hull of the orbit $\mathcal{O}(f)$ of f under T.

Lemma 3. For each mean m on \mathbb{N}_+ , T(m) is a Dunford-Schwartz operator on $L^1(\Omega)$.

Recall that a function p in $L^1(\Omega)$ is the mean value of an $f \in L^1(\Omega)$ under T with respect to $\tilde{\tau}$ if and only if $\int_{\Omega} ph \, d\mu = m_k \left(\int_{\Omega} (T^k f) h \, d\mu \right) = \int_{\Omega} (T(m)f)h \, d\mu$ for each $h \in L^{\infty}_{loc}(\Omega)$ and Banach limit m. It is known that T can be regarded as a linear contraction on $L^p(\Omega)$ (1 , $that is, a linear operator on <math>L^p(\Omega)$ whose norm is less than or equal to 1, due to Riesz-Thorin convexity theorem. It follows from the ergodic theorem of Yosida and Kakutani that for each $f \in L^1(\Omega) \cap L^2(\Omega)$, $n^{-1} \sum_{k=0}^{n-1} T^{k+h} f$ converges strongly to a fixed point of T in $L^2(\Omega)$ uniformly in $h \in \mathbb{N}_+$. In other words, T has the mean values on $L^1(\Omega) \cap L^2(\Omega)$ with respect to $\tilde{\tau}$; see Lorentz [13].

Theorem 1. Every Dunford-Schwartz operator on $L^1(\Omega)$ has the mean values on $L^1(\Omega)$ with respect to $\tilde{\tau}$.

The notion of the mean values for T allows us to give an identification of the limit function in almost everywhere convergence of the Cesàro means $n^{-1} \sum_{k=0}^{n-1} T^k f$ of an $f \in L^1(\Omega)$ by virtue of the convergence theorem of Vitali.

Proposition 5. If the Cesàro means $n^{-1} \sum_{k=0}^{n-1} T^k f$ of an $f \in L^1(\Omega)$ converge almost everywhere on Ω , then the limit function is the mean value of f under T with respect to $\tilde{\tau}$.

By the work of Takahashi [21], we are allowed to extend Theorem 1 to commutative semigroups of Dunford-Schwartz operators on $L^1(\Omega)$. It follows from Riesz-Thorin convexity theorem that every semigroup S of Dunford-Schwartz operators on $L^1(\Omega)$ can be regarded as a semigroup of linear contractions on $L^p(\Omega)$ (1 . Moreover, if <math>S is commutative, then S has the mean values on $L^2(\Omega)$ and also has the mean values on $L^1(\Omega) \cap L^2(\Omega)$ with respect to $\tilde{\tau}$; see also Kido and Takahashi [11].

Theorem 2. If S is a commutative semigroup of Dunford-Schwartz operators on $L^1(\Omega)$, then S has the mean values on $L^1(\Omega)$ with respect to $\tilde{\tau}$.

An operator T on $L^1_+(\Omega)$ is said to be order-preserving if $f \leq g$ $(f, g \in L^1_+(\Omega))$ implies $Tf \leq Tg$. Similar results to the above proposition and theorems in this section can be obtained for order-preserving operators T on $L^1_+(\Omega)$ for which T(0) = 0 and T is nonexpansive with respect to L^1 -norm and L^∞ -norm, that is, $||Tf - Tg||_1 \leq ||f - g||_1$ for each $f, g \in L^1_+(\Omega)$ and $||Tf - Tg||_{\infty} \leq ||f - g||_{\infty}$ for each $f, g \in L^1_+(\Omega) \cap L^\infty(\Omega)$, by means of the nonlinear interpolation theorem of Browder, which implies that such an operator on $L^1_+(\Omega)$ can be regarded as an operator W on $L^p_+(\Omega)$ $(1 such that <math>||Wf - Wg||_p \leq ||f - g||_p$ for each $f, g \in L^p_+(\Omega)$; see Krengel and Lin [12].

Theorem 3. If T is an order-preserving operator on $L^1_+(\Omega)$ and T(0) = 0 and if T is nonexpansive with respect to L^1 -norm and L^{∞} -norm, then T has the mean values on $L^1_+(\Omega)$ with respect to $\tilde{\tau}$.

Finally, we note that the last theorem can be also generalized to commutative semigroups of such operators on $L^1_+(\Omega)$.

References

- J. B. Baillon, Un théorème de type ergodique pour les contractions non linéaires dans un espace de Hilbert, C. R. Acad. Sci. Paris Sér. A-B, 280 (1975), 1511– 1514.
- [2] S. Bochner and J. von Neumann, Almost periodic functions in groups. II, Trans. Amer. Math. Soc., 37 (1935), 21–50.
- F. E. Browder, Remarks on nonlinear interpolation in Banach spaces, J. Funct. Anal., 4 (1969), 390-403.
- [4] M. M. Day, Amenable semigroup, Illinois J. Math., 1 (1957), 509–544.
- [5] N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience, New York, 1958.
- [6] W. F. Eberlein, Abstract ergodic theorems and weak almost periodic functions, Trans. Amer. Math. Soc., 67 (1949), 217-240.
- [7] S. Goldberg and P. Irwin, Weakly almost periodic vector-valued functions, Dissertationes Math. (Rozprawy Mat.), 157 (1979), 1-42.
- [8] N. Hirano, K. Kido and W. Takahashi, Nonexpansive retractions and nonlinear ergodic theorems in Banach spaces, Nonlinear Anal., 12 (1988), 1269–1281.
- [9] O. Kada and W. Takahashi, Strong convergence and nonlinear ergodic theorems for commutative semigroups of nonexpansive mappings, Nonlinear Anal., 28 (1997), 495-511.
- [10] J. L. Kelley, General Topology, Van Nostrand, Princeton, 1955.
- [11] K. Kido and W. Takahashi, Mean ergodic theorems for semigroups of linear operators, J. Math. Anal. Appl., 103 (1984), 387-394.
- [12] U. Krengel and M. Lin, Order preserving nonexpansive operators in L₁, Israel. J. Math., 58 (1987), 170-192.
- [13] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta. Math., 80 (1948), 167–190.
- [14] H. Miyake, On almost convergence for vector-valued functions and its application, in Nonlinear Analysis and Convex Analysis (S. Akashi ed.), RIMS Kôkyûroku 1755 (2011), 68–75.
- [15] H. Miyake, On the existence of the mean values for commutative semigroups of Dunford-Schwartz operators on L^1 , Annual Meeting of the Mathematical Society of Japan, Kyoto, 2013.
- [16] H. Miyake and W. Takahashi, Vector-valued weakly almost periodic functions and mean ergodic theorems in Banach spaces, J. Nonlinear Convex Anal., 9 (2008), 255–272.
- [17] J. von Neumann, Almost periodic functions in a group, I, Trans. Amer. Math. Soc., 36 (1934), 445–492.
- [18] W. M. Ruess and W. H. Summers, Weak almost periodicity and the strong ergodic limit theorem for contraction semigroups, Israel J. Math., 64 (1988), 139–157.
- [19] W. M. Ruess and W. H. Summers, Ergodic theorems for semigroups of operators, Proc. Amer. Math. Soc., 114 (1992), 423–432.
- [20] H. H. Schaefer, Topological Vector Spaces, Springer-Verlag, New York, 1971.
- [21] W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc., 81 (1981), 253-256.
- [22] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.