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ABSTRACT. In this paper, we give certain characterization of saddle points for

a convex programming problem in some chain complete ordered vector space.

1, INTRODUCTION

In [6], Shizheng considered some characterization of saddle points for a certain
optimization problems in some ordered vector space as follows. Let $X$ be a vector
space, $Y$ a Dedekind complete ordered vector space, and $Z$ be an ordered vector
space. Consider the following convex programming problem:

(P) $\min\{f(x)\in X|g(x)\leq 0, x\in D\}$

where $f$ : $Darrow Y$ and $g:Darrow Z$ are cone convex operators. He characterized the
existence of saddle points of Lagrange function for optimization problem (P) based

on the existence of (1) order automorphisms of vector space; (2) subgradients of the
associated perturbing function; (3) directional derivative of the perturbing function,

respectively. For a mapping from a vector space to an ordered vector lattice, Zowe
also consider the characterization of saddle point for convex programming; see
[8, 9, 10].

In ordered vector space, we consider chain completeness which is more weak one
rather than Dedekind completeness. As examples of chain complete ordered vector
spaces, the algebraic dual of ordered vector space and the set of bounded self-adjoint

linear operators of Hilbert space are well-known; see [1, 2, 3, 7]. For analysis of
chain complete ordered vector spaces, Borwein [1, 2] consider the subgradient of

sublinear operator taking values on a partially ordered vector space. In [2], he

consider as another example of chain complete ordered vector spaces, Daniel spaces
and monotone complete ordered vector spaces.

In this paper, motivated by Borwein’s work, we characterize the existence of

optimization problem in chain complete ordered vector spaces. As an example of

our method, we consider a mapping taking value in a line (totally ordered set) in
$R^{2}.$

2. PRELIMINARIES

Firstly, we give preliminary terminology and notation used in this paper. Let $X,$

$Y$ and $Z$ be real vector spaces, $D$ a nonempty convex subset of $X$ , and $x,$ $y\in X.$
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We denote the algebraic dual space of $X$ by $X’$ ; the vector space of all linear
mapping from $X$ into $Y$ by $\mathcal{L}(X, Y)$ ; the origin of $X$ by $\{0_{X}\}$ ; the linear hull,
affine hull, and conical hull of $A$ by $L_{A},$

$\iota A$ , and cone(A) , respectively; the algebraic
interior, relatively algebraic interior, and algebraic closure of $A$ by cor(A), $iA$ , and
lin(A), respectively; the algebraic sum and algebraic difference of $A$ and $B$ by
$A+B$ $:=\{a+b|a\in A, b\in B\}$ and $A-B$ $:=\{a-b|a\in A, b\in B\}$ , respectively;
the line segment of $x$ and $y$ by $[x, y]$ ; the line segment of $x$ and $y$ without $\{y\}$ by
$[x, y)$ . Moreover, let $f$ be a function from $X$ into $Y$ and $x’\in X’$ . Then we denote
the composite function of $f$ and $x’$ by x’of; the dual pair of $x$ and $x’$ by $\langle x’,$ $x\rangle.$

Also we denote the set of all real numbers by $R;R\cup\{\infty\}$ by R. Let us consider a
proper convex cone $C_{Y}$ in $Y$ (that is, $C_{Y}\neq\emptyset,$ $C_{Y}\neq\{0_{Y}\},$ $C_{Y}\neq Y,$ $\lambda C_{Y}\subset C_{Y}$ for
all $\lambda\geq 0$ , and $C_{Y}+C_{Y}\subset C_{Y}$ ). Furthermore, a partial ordering on $Y$ with respect
to $C_{Y}$ is defined as follows:

$x\leq c_{Y}y$ if $y-x\in C_{Y}$ for $x,$ $y\in Y.$

It is well known that $\leq c_{Y}$ is reflexive and transitive. In particular, if $C_{Y}$ is pointed,
that is, $C_{Y}\cap(-C_{Y})=\{0_{Y}\}$ , then $C_{Y}$ is antisymmetric. Moreover, $\leq c_{Y}$ has invari-
able properties to vector space structures as translation and scalar multiplication.
In the sequel, we consider $(Y, \leq c_{Y})$ and $(Z, \leq c_{z})$ as a partially ordered vector space
where $C_{Y}$ and $C_{Z}$ are pointed proper convex cones, respectively. Let $L\subset Y$ be a
totally ordered linear subspace of $Y$ . Naturally $L$ is non-empty. Next, we recall
several definitions of order completeness.

Definition 1. Let $Y$ be a vector space ordered by a proper convex cone $C_{Y}$ . Then
$Y$ is said to be

(1) Dedekind complete if every nonempty subset of $Y$ which is bounded from
below has an infimum;

(2) chain complete if every nonempty chain of $Y$ which is bounded from below
has an infimum;

It is clear that if $Y$ is Dedekind complete, then it is chain complete. However,
the converse is not true in general. We say that a sequence $\{x_{n}\}$ of elements order
converges ( $0$-converges) to $x$ if there are sequences $\{p_{n}\}$ and $\{q_{n}\}$ such that $(\alpha)$

$p_{n}\leq c_{Y}x_{n}\leq c_{Y}q_{n}$ and $(\beta)p_{n}\nearrow x$ and $q_{n}\searrow x$ , where by $p_{n}\nearrow x$ we mean that
$\sup_{n\in N}p_{n}=x$ and by $q_{n}\searrow x$ that $\inf_{n\in N}q_{n}=x$ . A sequence $\{u_{n}\}\subset Y$ said
to be order converges to $u$ , if there exists $\{p_{k}\}\subset Y$ with $p_{k}\searrow 0$ and for any $k$

there exists $n_{k}$ such that $-p_{k}<u_{n}-u<p_{k}$ for any $n\geq n_{k}$ and we denote by
$o- \lim_{narrow\infty}u_{n}=u.$

In this paper we consider convex programming problem:

(MP) $\min\{f(x)\in X|g(x)\leq c_{z}0, x\in D\}$

where $f$ : $Darrow L$ and $g:Darrow Z$ are cone convex operators. We assume that there
exists $\overline{x}$ which is an optimal solution of (MP), that is, if $\overline{x}\in D,$ $g(\overline{x})\in-C_{Z}$ , and
$x\in D,$ $g(x)\in-Cz$ , then $f(\overline{x})\leq c_{Y}f(x)$ . We also defined the Lagrangian function
$\varphi$ : $D\cross \mathcal{L}^{+}(Z, L)arrow L$ of (MP) by

$\varphi(x,T)=f(x)+T(g(x))$ .

We say $(\overline{x},\overline{T})\in D\cross \mathcal{L}^{+}(Z, L)$ is a saddle point of $\varphi$ , if

$\varphi(\overline{x}, T)\leq c_{Y}\varphi(\overline{x},\overline{T})\leq c_{Y}\varphi(x, T$

234



SADDLE POINTS FOR CONVEX PROGRAMMING

for all $x\in D,$ $T\in \mathcal{L}^{+}(Z, L)$ . We also assume that positive cones $C_{Y},$ $C_{L}$ and
$C_{Z}$ , and its algebraic interiors $C_{Y}^{o},$ $C_{L}^{O}$ and $C_{Z}^{o}$ in $Y,$ $L$ and $Z$ , respectively, are
non-empty. Suppose that $C_{Z}$ is linearly closed and its interior point $C_{Z}^{o}$ is non-
empty, then saddle points $(\overline{x},\overline{T})$ of $\varphi$ implies that $\overline{x}$ is a optimum solution of (MP).
Conversely if $\overline{x}$ is a optimum solution and if there exists $\overline{T}\in \mathcal{L}(X, Y)$ such that
$(\overline{x},\overline{T})$ is a saddle points of $\varphi$ , then we say that (MP) satisfies saddle point criterion
at $x$ . By [8], we can consider a sufficient condition for (MP) satisfying saddle point
criterion:

$N=\{\lambda g(x)+z|x\in D, \lambda\in R_{+}\}\cup\{0\}$

is a linear subspace of $Z$ . In [10], Zowe also give a sufficient condition which is
similar to Slater’s condition.

3. SADDLE POINT CRITERION

In $L\cross Z$ , we denote

$A:= \bigcup_{x\in D}\{(f(x)_{9}(x))+C_{L}\cross C_{Z}\}.$

Lemma 2. $A$ is a convex set and its algebraic interior $A^{o}$ is non-empty. Moreover,
$(f(\overline{x}), 0)$ is algebraic boundary of A where $\overline{x}$ is $a$ optimal solution of $(MP)$ .

Proof. Since $f$ and $g$ are cone convex and proper cones $C_{L}$ in $L$ and $C_{Z}$ in $Z$ are
convex set, $A$ is convex set. Let $y_{0}\in C_{L}^{O}$ and $z_{0}\in C_{Z}^{o}$ . Then $\alpha$ $:=(f(x),9(x))+$
$(y_{0}, z_{0})\in A^{o}$ for any $x\in D$ . Let $y_{1}\in C_{L}$ and $z_{1}\in C_{Z}$ . Let $|k|\leq k_{1}$ . Then we
have $y_{0}+k\cdot y_{1}\in C_{L}$ where $k_{0}\in R$ with $k_{0}>0$ and $z_{0}+k\cdot z_{1}\in C_{Z}$ where $k_{1}\in R$

with $k_{1}>0$ . Thus if we take $|k| \leq\min(k_{0}, k_{1})$ , then we have

$(y_{0}, z_{0})+k(y_{1}, z_{1})=(y_{0}+ky_{1}, z_{0}+kz_{1})\in C_{L}\cross C_{Z}.$

Put $\beta$ $:=(y_{1}, z_{1})$ , then $\alpha+k\beta\in(f(x), g(x))+C_{L}\cross C_{Z}\subset A$ . Thus $\alpha\in A^{o}.$

Moreover, since $\overline{x}$ is optimum solution, we have

$\overline{\alpha}:=(f(\overline{x}), 0)=(f(\overline{x})_{9}(\overline{x}))+(0, -g(\overline{x}))\in\bigcup_{x\in D}(f(x),g(x))+C_{L}\cross C_{Z},$

and $\overline{\alpha}+k(-y0,0)\not\in A$ for all $k>$ O. Thus we have $\overline{\alpha}\not\in A^{o}$ . Since $\overline{\alpha}\in A$ and
$\overline{\alpha}\not\in A^{o}$ , we have $\overline{\alpha}\in\partial A$ . Then $\overline{\alpha}$ is an algebraic boundary solution of A. $\square$

Next we give an order automorphisms of vector space. First, we give a following
proposition by K\"othe [4, Section 17.2(1)].

Proposition 3. Let $X$ be vector $\mathcal{S}paces$ and $Y$ a Dedekind complete vector space.
Let $A$ be a convex subset of $Y$ and its algebraic interior $A^{o}$ is non-empty. Let $M$

be a linear manifold which contain no algebraic interior point of A. Then there
exists a hyperplane $H$ which contains $M$ and contain no boundary point of $A$ , thus
$A\not\subset H.$

Lemma 4. There exists $S\in \mathcal{L}^{+}(L\cross Z, L)$ such that

(3.1) $S( \overline{\alpha})=\inf S(A)$

(3.2) $S(y, z)=S_{1}(y)+S_{2}(z)$ ,

where $\overline{\alpha}=(f(\overline{x}), 0)$ , $S_{1}\in \mathcal{L}^{+}(L, L)$ , and $S_{2}\in \mathcal{L}^{+}(Z, L)$ .
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Proof. By Lemma 2 and Proposition 3 (K\"othe’s theorem), there exists a hyperplane
$H$ containing a which also contains no algebraic interior point of $A$ , thus $A\not\subset H.$

We put $H;=\{(y, z)|t(y, z)=u\}$ , where $t:L\cross Zarrow R$ is a linear functional and
$u=t(\overline{(}\alpha))$ . Since $\overline{x}$ is a optimal solution and $\overline{\alpha}=(f(\overline{x}), 0)$ is a algebraic boundary
point of $A$ , we have $t(A)\geq t(\overline{\alpha})$ . Since $\overline{\alpha}+(y, z)\in A$ , for all $(y, z)\in C_{Y}\cross C_{Z}$ , and
$t(\overline{\alpha}+(y, z))\geq t(\overline{\alpha})$ , $t(y, z)\geq 0$ . So that $t$ is a positive functional. Take $\beta\in L\backslash \{O\},$

define $S$ : $L\cross Zarrow L$ by $S(y, z)=t(y, z)\beta$ . It is easy to see that $S$ is a linear
operator and $S(A)=t(A)\beta\geq u\beta=S(\overline{\alpha})$ . Since $t$ is positive functional, $S$ is a
positive operator. Since $S(y, z)=S(y, 0)+S(0, z)$ , we define $S_{1}(y)=S(y, 0)$ and
$S_{2}(z)=S(O, z)$ , then we have equation (3.2). $\square$

Theorem 5. $(MP)$ satisfies saddle point criterion at $\overline{x}$ if and only if there exists
linear mapping $S\in \mathcal{L}^{+}(L\cross Z, L)$ as in (3.1) (3.2) such that $S_{1}$ is order homomor-
phism, that is, there exists $S_{1}^{-1}$ which is positive linear operator.

Proof. Since (MP) satisfies saddle point criterion at $\overline{x}$ , there exists $\overline{T}\in \mathcal{L}^{+}(Z, L)$

such that $(\overline{x},\overline{T})$ is a saddle point of $\varphi$ . Putting $S(y, z)$ $:=y+\overline{T}(z)$ , then we have
$S\in \mathcal{L}^{+}(Z\cross L, L)$ . We assume that $(y, z)\in A$ . Then there exists $x\in D$ such that
$(y, z)\geq(f(x),g(x))$ and

$S(y, z) c_{Y}\geq y+\overline{T}(z)_{C_{Y}}\geq f(x)+\overline{T}(g(x))$

$= \varphi(x,\overline{T})_{C_{Y}}\geq\varphi(x, T)_{C_{Y}}\geq\varphi(\overline{x}, 0)$

$=$ $f($諺 $)=S(\overline{\alpha})$ .

Since $Y$ is chain complete, then note that $S\in \mathcal{L}^{+}(Z\cross L, L)$ , we have $\inf S(A)=$

$S(\overline{\alpha})$ , where $\overline{\alpha}=(f(\overline{x}), 0)$ It is easy to see that $S$ is positive. We take $S_{1}$ is
identical operator of $L$ and $S_{2}=\overline{T}$ , then we have $S_{1}\in \mathcal{L}^{+}(L, L)$ , $S_{2}\in \mathcal{L}^{+}(Z, L)$

and $S(y, z)=S_{1}(y)+S_{2}(z)$ .
Conversely, if there exists $S\in \mathcal{L}^{+}(L\cross Z, L)$ such that for any $x\in D,$ $(f(x), g(x))\in$

$A$ , then we have

$S_{1}(f($房$))=S_{1}(f($あ $))+S_{2}$ (0) $=S(f(\overline{x}), 0)\leq c_{Y}S(f(x), g(x))=S_{1}(f(x))+S_{2}(g(x))$ ,

because $\inf S(A)=S(\overline{\alpha})=S(f(\overline{x}), 0)$ . Let $x=\overline{x}$ , then we have $0\leq c_{Y}S_{2}(g(\overline{x}))$ .
Moreover, since $\overline{x}$ is optimal solution, if $g(\overline{x})\leq 0$ , then $S_{2}(g(\overline{x}))\leq c_{Y}$ O. Thus
$S_{2}(g(\overline{x}))=0$ . Therefore

(3.3) $S_{1}(f(\overline{x}))+S_{2}(g(\overline{x}))\leq c_{Y}S_{1}(f(x))+S_{2}(g(x))$ .

Since $S_{1}$ is automorphism, we operate $S_{1}^{-1}$ to (3.3). We put $T=S_{1}^{-1}\circ S_{2}$ , then

$f(\overline{x})+\overline{T}(g(\overline{x}))\leq c_{Y}f(x)$ 十丁 (g(x)).

On the other hand, since for any $T\in \mathcal{L}^{+}(L, L)$ , $T(9(\overline{x}))\leq c_{Y}0$ , thus we have

f(廊) $+$ T(9(x-)) $\leq c_{Y}f(x)$ 十丁 (g(x)).

Then we have

$f(\overline{x})+T(g(\overline{x}))\leq c_{Y}f(\overline{x})+T(g(\overline{x}))\leq c_{Y}f(x)+\overline{T}(g(x))$ .

Put $\varphi(x, T)=f(x)+T(g(x))$ , then we have

$\varphi(\overline{x}, T)\leq c_{Y}\varphi(\overline{x},\overline{T})\leq c_{Y}\varphi(x, T$

Then $(\overline{x},\overline{T})$ is a saddle point of $\varphi(x, T)=f(x)+T(g(x))$ . 口

Let $Z_{1}:=g(D)+C_{Z},$ $C(z):=\{x\in D|g(x)\leq z\},$ $z\in Z_{1}$ , Then
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Proposition 6. $Z_{1}$ is convex set, $C_{Z}\subset Z_{1}$ and $C_{Z}^{o}\subset Z_{1}^{o}.$

Proof. It is clear from the definition. $\square$

Since $Y$ is chain complete ordered vector space (Daniell space), if $f(C(Z))$ has
lower bounded, then there exists $\inf f(C(Z))$ . We define $F:Darrow Y\cup\{\pm\infty\}$ by

$F(z)=\{\begin{array}{ll}\inf_{z\in Z_{1}}f(C(z)) if z\in Z_{1} and f(C(z)) has lower bound,-\infty if z\in Z_{1} and f(C(z)) does not have lower bound,\infty if z\not\in Z_{1}f(\overline{x}) if z=0\end{array}$

Lemma 7. If $f(C(z))$ has lower bound and $F(z)>-\infty$ , then $F$ is convex.

Proof. Let $z_{1},$ $z_{2}\in Z_{1},$ $k\in(O, 1)$ , $x_{1},$ $x_{2}\in C(Z)$ , $9(x_{1})\leq c_{Y}z_{1}$ and $g(x_{2})\leq c_{Y}z_{2}.$

Then we have

$g(kx_{1}+(1-k)x_{2})) \leq c_{Y} kg(x_{1})+(1-k)g(x_{2})$

$\leq c_{Y} kz_{1}+(1-k)z_{2}.$

Thus

$kx_{1}+(1-k)x_{2}\in C(kz_{1}+(1-k)z_{2})$ .

Since $f$ is convex, we have

$f(C(kz_{1}+(1-k)z_{2}))\leq c_{Y}kf(C(z_{1}))+(1-k)f(C(z_{2}))$ .

Fix $z_{1}$ and $z_{2}$ , and let $x_{1}$ and $x_{2}$ run through $C(z_{1})$ and $C(z_{2})$ , then we have

$F(kz_{1}+(1-k)z_{2})$

$\leq c_{Y}k\inf\{f(x)|x\in C(z_{1})\}+(1-k)\inf\{f(x)|x\in C(z_{2})\}$

$=kF(z_{1})+(1-k)F(z_{2})$ .

If $z_{1}\not\in Z_{1}$ or $z_{2}\not\in Z_{1}$ , then $F(z_{1})=\infty$ or $F(z_{2})=\infty$ , and if $kz_{1}+(1-k)z_{2}\not\in Z_{1},$

then either $z_{1}\not\in Z_{1}$ or $z_{2}\not\in Z_{1}$ as above. Then always we have

$F(kz_{1}+(1-k)z_{2})\leq c_{Y}kF(z_{1})+(1-k)F(z_{2})$ .

for all $k\in(O, 1)$ and $z_{1},$ $z2\in Z$ . Thus $F$ is convex. $\square$

We assume that $F(z)>-\infty$ . We recall the algebraic sub-differential of $F$ at $0$

to be the set

$\partial^{\alpha}F(O)=\{T\in \mathcal{L}(Z, Y)|T(z)\leq c_{Y}F(z)-F(0), z\in Z\}.$

Theorem 8. $(MP)$ satisfies saddle point criterion at $\overline{x}$ if and only if
(1) $F(z)>-\infty$ and $F(z)\in L$ for all $z\in Z$ ;
(2) $\partial^{\alpha}F(0)\neq 0.$

Proof. By Theorem 5, there exists linear mapping $S:L\cross Zarrow L$ such that

$S(y, z)=S_{1}(y)+S_{2}(z)$ , and $S_{1}(f(\overline{x}))=S(\overline{\alpha})\leq c_{Y}S(A)$ ,

where $S_{1}$ order automorphism from $L$ to $L$ and $S_{2}\in \mathcal{L}(Z, L)$ . Since $S_{2}\in \mathcal{L}(Z, L)$

and positive, then

(3.4) $S_{1}(f(x))\leq c_{Y}S_{1}(f(x))+S_{2}(z)$ ,

for all $z\in Z_{1}$ and $x\in C(z)$ . Let $S_{1}^{-1}$ act on (3.4) and denote $T:=S_{1}^{-1_{\circ}}S_{2}$ . We
have $f(\overline{x})-\overline{T}(z)\in L$ and $f(\overline{x})-\overline{T}(z)\leq c_{Y}f(x)$ . Therefore, $f(x)-\overline{T}(z)$ is an order
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bounded of $f(C(z))$ in $L$ . Since $L$ is chain in $Y$ and $Y$ is chain complete, there exists
infimum $\inf f(C(z))$ such that $- \infty<f(\overline{x})-\overline{T}(z)\leq c_{Y}\inf f(C(z))$ for all $z\in Z_{1}.$

Put $F(z)$ $:= \inf f(C(z))$ . Thus $-\overline{T}(z)\leq c_{Y}F(z)-F(O)$ , $-\overline{T}\in\partial^{\alpha}F(O)\neq\emptyset$ . we
have (1) and (2).

Next we assume that $T\in\partial^{\alpha}F(O)\neq 0$ , then $T(z)\leq c_{Y}F(z)-F(O)$ for all $z\in Z_{1}.$

Since $(y, z)\in A$ , there exists $x\in D$ such that $(y, z)\geq(f(x), g(x))$ . Therefore
(3.5) $y-f(\overline{x})\leq c_{Y}f(x)-f(\overline{x})\leq c_{Y}F(z)-F(O)\leq c_{Y}T(z)$ , $f(\overline{x})\leq c_{Y}y-T(z)$ .

Since $(f(\overline{x}), z)\in A$ for all $z\in C_{Z}^{+}$ , we have

$f(\overline{x})-T(z)\leq c_{Y}f(\overline{x}) , -T(z)\leq c_{Y}0, -T\in \mathcal{L}^{+}(Z, Y)$ .

Let $\overline{T}:=-T,$ $S(y, z)$ $:=y+\overline{T}(z)$ , so by (3.5), it implies that $S(\overline{\alpha})=f(\overline{x})\leq c_{Y}$

$S(A)$ , where $\overline{\alpha}=(f(\overline{x}), 0).$ By Theorem 5, we have the conclusion. 口

4. DIRECTIONAL DERIVATIVE

In this section we consider the directional derivative.
An operator $f$ : $D(f)\subset Xarrow Y$ is called a convex operator, if the domain of
definition $D(f)$ of $f$ is a non-empty convex subset of $X$ and if for all $x_{1},$ $x_{2}\in D(f)$

and all real $\lambda,$ $0\leq\lambda\leq l,$

$f(\lambda x_{1}+(1-\lambda)x_{2})\leq c_{Y}\lambda f(x_{1})+(1-\lambda)f(x_{2})$

Lemma 9. Let $Z$ be a real vector space, $Y$ an ordered vector space and $L\subset Y$ a
non-empty chain. Let $Z_{0}\subset Z$ be a linear subspace. Let $G:D(G)\subset Zarrow Y$ be a
convex operator, where $D(G)$ is a domain of $G$ , and $T_{0}$ : $Z_{0}arrow Y$ a linear operator
such that

$T_{0}(z)\leq G(z)$ , for all $z\in D(G)\cap Z_{0}.$

If $Y$ is chain complete, $D(G)\cap Z_{0}\neq\emptyset,$ $G(D(G))\in L$ and $T_{0}(Z_{0})\in L$ , then there
exists a linear operator $T$ form $X$ into $Y$ such that

$T(x)\in L$ for all $x\in Z,$ $T(x)=T_{0}(x)$ for all $x\in M$ and

$T(x)\leq c_{Y}G(x)$ for all $x\in D(G)$ .

Proof. The proof is similar to that of [10, Theorem 2.1] 口

Let $F(z)\geq-\infty$ for any $z\in Z$ . For any $z$ and $k_{1}\geq k_{2}>0$ , since $F$ is convex,
we have

$F(k_{2}z)=F(k_{1}^{-1}k_{2}(k_{1}z)+(1-k_{1}^{-1}k_{2})0)\leq c_{Y}k_{1}^{-1}k_{2}F(k_{1}z)+(1-k_{1}^{-1}k_{2})F(0)$ ,

and

$k_{2}^{-1}F(k_{2}z)-F(O))\leq c_{Y}k_{1}^{-1}F(k_{1}z)-F(O))$ .

Let

$M(z):=\{k^{-1}(F($肋$) -F(0))|k>0\}\subset\overline{Y}$

and

$dF(O, z)$ $:=0- \lim_{k\downarrow 0}\frac{1}{k}(F(kz)-F(O))$ ; see [5].

If $Y$ is Dedekind complete or $Y$ is totally ordered and chain complete, it is easy to
see that there exists $dF(O, z)\in\overline{Y}$ and $dF( O, z)=\inf M(z)$ for all $z\in Z.$
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Lemma 10. Suppose that $F(z)>-\infty$ for all $z\in Z.$ Then $dF(O, z)$ is a sublinear
operator from $Z$ into Y. Moreover we have $kdF(O, z)\leq c_{Y}dF(O, kz)$ for $k<0$ and
$F(z)-F(O)\geq dF(0, z)$ .

Proof. Since $F$ is convex operator, we have

$F((1-k)u+kv)\leq c_{Y}(1-k)F(u)+kF(v)$ for any $u,$ $v\in Z$ and $k\in(O, 1)$ .

We take $u=2tz_{1},$ $v=2tz_{2}$ and $k= \frac{1}{2}$ , then

$F(tz_{1}+tz_{2}) \leq c_{Y}\frac{1}{2}F(tz_{1})+\frac{1}{2}F(tz_{2})$ .

$t^{-1}(F(t(z_{1}+z_{2}))-F(0))\leq c_{Y}(2t)^{-1}(F(2tz_{1})-F(0))+(2t)^{-1}(F(2tz_{2})-F(0))$ .

$o-hmt^{-1}(F(t(z_{1}t\downarrow 0+z_{2}))-F(0))$

$\leq c_{Y}o-\lim_{t\downarrow 0}(2t)^{-1}(F(2tz_{1})-F(0))+0-\lim_{t\downarrow0}(2t)^{-1}(F(2tz_{2})-F(O))$ .

Thus we have

$dF(O, z_{1}+z_{2})\leq c_{Y}dF(O, z_{1})+dF(0, z_{2})$ .

Moreover if $k\geq 0$ , then

$dF( O, kz)=0-\lim_{t\downarrow 0}t^{-1}(F((kz))-F(O))$

$=0- \lim_{t\downarrow 0}k(kt)^{-1}(F(ktz)-F(0))=kdF(0, z)$ .

On the other hand let $k<0$ . Since

$0=dF(0,0)\leq c_{Y}dF(0, kz)+dF(0, -kz)$ ,

Thus

$kdF(O, z)=-dF(O, -kz)\leq c_{Y}dF(O, kz)$

and

$F(z)-F(O)=1^{-1}(F(z)-F(O))\in M(z)$ .

口

Theorem 11. $(MP)$ satisfies the saddle point criterion at $\overline{x}$ if and only if
(i) $F(z)>-\infty$ and $F(z)\in L$ for all $z\in Z.$

(ii) $dF(O,\overline{z})\in L$ for some $\overline{z}\in C_{Z}^{o}.$

Proof. Assume that (MP) satisfies saddle point criterion. By Theorem 8, (MP)
satisfies saddle point criterion at $\overline{x}$ if and only if (1) $F(z)>-\infty$ and $F(z)\in L$

for all $z\in Z;(2)\partial^{\alpha}F(O)\neq 0$ . If $T\in\partial^{\alpha}F(O)$ , then $T(z)\leq c_{Y}F(z)-F(O)$ for all
$z\in Z$ . Take any $\overline{z}\in z_{+}$ , then $z\in Z_{1}$ and $C(z)\neq\emptyset$ , so we have $F(\overline{z})<\infty$ and
$dF(O,\overline{z})\leq F(z)-F(O)<\infty$ . On the other hand, since $T(k\overline{z})\leq F(kz)-F(O)$

for all $k>0$ , we have $T($を$)=k^{-1}T(k \overline{z})\leq c_{Y}\frac{1}{k}(F(kz)-F(0))$ . $M(z)$ is bounded
from below and $M(z)\in L$ , there exists $\inf M(z)$ , $dF( O,\overline{z})=\inf$ M(を) $\in L$ and
$- \infty<T(\overline{z})\leq c_{Y}\inf M(\overline{z})$ . Thus we have (ii).

We prove the converse. We assume that $zZ_{Z}^{o}$ and $y_{0}$ $:=dF(O,\overline{z})\neq\infty$ . Let
$Z_{0}:=\{k\overline{z}|k\in R\}$ and $T_{0}:Z_{0}arrow Y$ defined by $T_{0}(k\overline{z})=ky_{0}$ . Now we consider $F$

as from $Z_{1}$ to $\overline{Y},$ $F$ is a convex operator as in Lemma 7. By assumption $F(z)\in L$
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for all $z\in Z_{1}$ . Let $G(z)$ $:=F(z)-F(O)$ , then $G$ is also a convex operator from $Z$

into $\overline{Y}$ with $G(z)\in L$ for all $z\in Z_{1}$ . For any $k\geq 0,$ $k\overline{z}\in Z_{1},$

$T_{0}(k\overline{z})=ky_{0}=kdF(0,\overline{z})=dF(0, k\overline{z})\leq c_{Y}F(k\overline{z})-F(0)=G(k\overline{z})$

and for any $k<0$ which satisfies $k\overline{z}\in Z_{1}\cap Z_{0}$ , from Lemma 10, we have $G(k\overline{z})=$

$F(k\overline{z})-F(O)$ and $ky_{0}=kdF(0,\overline{z})\leq c_{Y}dF(O,\overline{z})\leq c_{Y}F(k\overline{z})-F(O)$ . Hence we have
$T_{0}(z)\leq c_{Y}G(z)$ for all $z\in Z_{1}\cap Z_{0}$ . Since $Y$ is chain complete, $\overline{z}\in Z_{1}\cap Z_{0}\neq\emptyset,$

$G(Z_{1})\in L$ and $T_{0}(Z_{0})\in L$ , by Lemma 9, there exists a linear operator $T$ from $Z$

into $Y$ such that

$T(z)=T_{0}(z)$ for all $z\in Z_{0}$

and

$T(z)\leq c_{Y}G(z)=F(z)-F(O)$ for all $z\in Z_{1}.$

On the other hand for $z\not\in Z_{1},$ $F(z)=\infty$ . Thus we have

$T(z)\leq c_{Y}F(z)-F(O)$ for all $z\in Z.$

Thus $\partial^{\alpha}F(0)\neq\emptyset$ . Then the assertion holds from Theorem 8. 口

Example 12. Let $X=Y=D=R^{2},$ $Z=R,$ $C_{X}=C_{Y}=\{(x, y)\in R^{2}|x\geq$

$0,$ $y\geq 0\},$ $C_{Z}=R+\cup\{0\},$ $L=\{(x, x)\in R^{2}\},$ $g(x, y)=x^{2}+y^{2}$ . We denote the
mapping $f$ : $R^{2}arrow R^{2}$ be defined by the following matrix

(4.1) $(\begin{array}{ll}1 11 1\end{array})$

and $f(x, y)=(x+y, x+y)$ , $\overline{x}=0,$ $Z_{1}=g(D)+C_{Z}=R+\cup\{0\}.$

$F(z)=\{\begin{array}{ll}\inf_{z\in Z_{1}}f(C(z))=\{(-\sqrt{2}z, -\sqrt{2}z)\} if z\in Z_{1},\infty if z\not\in Z_{1}f(O, 0)=(0,0) if z=0\end{array}$

It is easy to see that $T_{k}$ : $karrow kz(k\leq-\sqrt{2})$ satisfies $T_{k}(z)\leq F(z)-F(O)$ for all
$z\in Z.$ $T_{k}\in\partial^{\alpha}F(O)\neq\emptyset$ , or $\overline{z}=1,$ $dF( O,\overline{z})=\inf\{k^{-1}(F(k\overline{z})-F(O))|k>0\}=$

$-\sqrt{2}$ . Therefore $(MP)$ satisfies the saddle point criterion as in Theorem 8 or 11,
but it does not satisfies Zowe’s condition, because $N=\{\lambda_{9(X)}+z|x\in D,$ $\lambda\in$

$R+\cup\{0\},$ $z\in C_{Z}\}=R_{+}U\{O\}$ is not a subsequence of $Z=R$. Moreover, it is not
satisfy Slater’s type condition, because $\{x\in D|g(x)<0\}=\emptyset.$
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