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(SADDLE POINTS FOR CONVEX PROGRAMMING IN CHAIN
COMPLETE PARTIALLY ORDERED VECTOR SPACES)

TOSHIKAZU WATANABE, ISSEl KUWANO, TAMAKI TANAKA, AND SYUUJI YAMADA

ABSTRACT. In this paper, we give certain characterization of saddle points for
a convex programming problem in some chain complete ordered vector space.

1. INTRODUCTION

In [6], Shizheng considered some characterization of saddle points for a certain
optimization problems in some ordered vector space as follows. Let X be a vector
space, Y a Dedekind complete ordered vector space, and Z be an ordered vector
space. Consider the following convex programming problem:

(P) min{f(z) € X | g(z) <0,z € D}

where f : D = Y and g : D — Z are cone convex operators. He characterized the
existence of saddle points of Lagrange function for optimization problem (P) based
on the existence of (1) order automorphisms of vector space; (2) subgradients of the
associated perturbing function; (3) directional derivative of the perturbing function,
respectively. For a mapping from a vector space to an ordered vector lattice, Zowe
also consider the characterization of saddle point for convex programming; see
[8, 9, 10].

In ordered vector space, we consider chain completeness which is more weak one
rather than Dedekind completeness. As examples of chain complete ordered vector
spaces, the algebraic dual of ordered vector space and the set of bounded self-adjoint
linear operators of Hilbert space are well-known; see [1, 2, 3, 7]. For analysis of
chain complete ordered vector spaces, Borwein [1, 2| consider the subgradient of
sublinear operator taking values on a partially ordered vector space. In [2], he
consider as another example of chain complete ordered vector spaces, Daniel spaces
and monotone complete ordered vector spaces.

In this paper, motivated by Borwein’s work, we characterize the existence of
optimization problem in chain complete ordered vector spaces. As an example of
our method, we consider a mapping taking value in a line (totally ordered set) in
R2.

2. PRELIMINARIES

Firstly, we give preliminary terminology and notation used in this paper. Let X,
Y and Z be real vector spaces, D a nonempty convex subset of X, and z,y € X.
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We denote the algebraic dual space of X by X’; the vector space of all linear
mapping from X into Y by L£(X,Y); the origin of X by {Ox}; the linear hull,
affine hull, and conical hull of A by L4, 'A, and cone(A), respectively; the algebraic
interior, relatively algebraic interior, and algebraic closure of A by cor(A), *A, and
lin(A), respectively; the algebraic sum and algebraic difference of A and B by
A+ B:={a+bla€ Abe B} and A— B := {a — bla € A,b € B}, respectively;
the line segment of = and y by [z,y]; the line segment of = and y without {y} by
[z,y). Moreover, let f be a function from X into Y and 2’ € X’. Then we denote
the composite function of f and z’ by z’ o f; the dual pair of z and z’ by (z/, z).
Also we denote the set of all real numbers by R; RU {co} by R. Let us consider a
proper convex cone Cy inY (that is, Cy # @, Cy # {0y}, Cy #Y, ACy C Cy for
all A > 0, and Cy + Cy C Cy). Furthermore, a partial ordering on Y with respect
to Cy is defined as follows:

z<c,y if y—ze€Cy for z,ycv.

It is well known that <c,, is reflexive and transitive. In particular, if Cy is pointed,
that is, Cy N(~Cy) = {0y}, then Cy is antisymmetric. Moreover, <¢, has invari-
able properties to vector space structures as translation and scalar multiplication.
In the sequel, we consider (Y, <¢, ) and (Z, <¢,) as a partially ordered vector space
where Cy and C7z are pointed proper convex cones, respectively. Let L C Y be a
totally ordered linear subspace of Y. Naturally L is non-empty. Next, we recall
several definitions of order completeness.

Definition 1. Let Y be a vector space ordered by a proper convex cone Cy. Then
Y is said to be

(1) Dedekind complete if every nonempty subset of Y which is bounded from
below has an infimum;

(2) chain complete if every nonempty chain of Y which is bounded from below
has an infimum;

It is clear that if Y is Dedekind complete, then it is chain complete. However,
the converse is not true in general. We say that a sequence {z,} of elements order
converges (o-converges) to z if there are sequences {p,} and {g,} such that (a)
Pn <Cy Tn <cy qn and (B) p, = and ¢, \, x, where by p, ~ = we mean that
SUP,ecn Pn = % and by ¢, \, T that inf,cy g, = . A sequence {u,} C Y said
to be order converges to wu, if there exists {px} C Y with p; \, 0 and for any k
there exists ny such that —py < u, —u < pi for any n > ny and we denote by
o-—lim, o u, = u.

In this paper we consider convex programming problem:

(MP) min{f(z) € X | g(z) <¢, 0,z € D}

where f : D — L and g : D — Z are cone convex operators. We assume that there
exists Z which is an optimal solution of (MP), that is, if £ € D, g(Z) € —Cz, and
z € D, g(z) € —Cgz, then f(Z) <c, f(z). We also defined the Lagrangian function
¢ :D x LY(Z,L) — L of (MP) by

¢(z,T) = f(z) + T(g(z)).
We say (Z,T) € D x L*(Z, L) is a saddle point of ¢, if
ga(:?:, T) SCY ‘P(f, T) SCY QO(:U, T)
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forall z € D, T € Lt(Z,L). We also assume that positive cones Cy, Cr and
Cz, and its algebraic interiors C¢, C¢ and C% in Y, L and Z, respectively, are
non-empty. Suppose that Cz is linearly closed and its interior point C% is non-
empty, then saddle points (Z, T) of ¢ implies that Z is a optimum solution of (MP).
Conversely if Z is a optimum solution and if there exists T € L£(X,Y) such that
(z,T) is a saddle points of ¢, then we say that (MP) satisfies saddle point criterion
at z. By [8], we can consider a sufficient condition for (MP) satisfying saddle point
criterion:

N={)\g(z)+z|ze D,Ie R }U{0}

is a linear subspace of Z. In [10], Zowe also give a sufficient condition which is
similar to Slater’s condition.

3. SADDLE POINT CRITERION

In L x Z, we denote
A= J{(f(2),9(2) + CL x Cz}.
zeD
Lemma 2. A is a convez set and its algebraic interior A° is non-empty. Moreover,

(f(Z),0) is algebraic boundary of A where T is a optimal solution of (M P).

Proof. Since f and g are cone convex and proper cones Cr, in L and Cz in Z are
convex set, A is convex set. Let yo € C¢ and 2o € C%. Then a := (f(z),9(z)) +
(yo,20) € A® for any z € D. Let y; € Cp and 2z; € Cz. Let | k |< k;. Then we
have yo + k - y1 € Cr where kg € R with ko >0 and zp + k-2, € Cz where k1 € R
with k; > 0. Thus if we take |k| < min(ko, k1), then we have
(yo,zo) + k(yl,zl) = (yo + kyy, 20 + kzl) e Cr xCz.
Put 8 := (y1,#1), then a + k8 € (f(x),9(z)) + Cr, x Cz C A. Thus a € A°.
Moreover, since Z is optimum solution, we have
&= (f(),0) = (f(Z),9(Z)) + (0, —9(Z)) € Uzen(f(2),9(2)) + CL X Cz,

and & + k(—yo,0) ¢ A for all kK > 0. Thus we have @ ¢ A°. Since @ € A and
a ¢ A°, we have & € OA. Then & is an algebraic boundary solution of A. |

Next we give an order automorphisms of vector space. First, we give a following
proposition by Kothe [4, Section 17.2(1)].

Proposition 3. Let X be vector spaces and Y a Dedekind complete vector space.
Let A be a convex subset of Y and its algebraic interior A° is non-empty. Let M
be a linear manifold which contain no algebraic interior point of A. Then there
exists a hyperplane H which contains M and contain no boundary point of A, thus
AZH.

Lemma 4. There exists S € LT(L x Z, L) such that
(3.1) S(a) =inf S(A4)

(3.2) S(y, 2) = S1(y) + Sa2(2),
where & = (f(Z),0), S1 € LY(L,L), and So € LT(Z,L).
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Proof. By Lemma 2 and Proposition 3 (Kothe’s theorem), there exists a hyperplane
H containing & which also contains no algebraic interior point of A, thus A € H.
We put H; = {(y, 2) | t(y,2) = u}, where t : L x Z — R is a linear functional and
u = t((@)). Since 7 is a optimal solution and @ = (f(Z),0) is a algebraic boundary
point of A, we have t(A) > t(a). Since &+ (y, z) € A, for all (y,z) € Cy x Cz, and
t(a+(y, z)) > t(a), t(y, z) > 0. So that ¢ is a positive functional. Take 8 € L\ {0},
define S : L x Z — L by S(y,z) = t(y,2)B. It is easy to see that S is a linear
operator and S(A) = t(A)B > uB = S(&). Since t is positive functional, S is a
positive operator. Since S(y, z) = S(y,0) + S(0, z), we define S;(y) = S(y,0) and
S2(z) = S(0, 2), then we have equation (3.2). O

Theorem 5. (MP) satisfies saddle point criterion at T if and only if there exists
linear mapping S € LY (L x Z,L) as in (3.1) (3.2) such that Sy is order homomor-
phism, that is, there exists ST 1 which is positive linear operator.

Proof. Since (MP) satisfies saddle point criterion at Z, there exists T e £Y(Z,L)
such that (Z,T) is a saddle point of ¢. Putting S(y, z) := y + T(z), then we have
S € L1(Z x L,L). We assume that (y, 2) € A. Then there exists € D such that

(v, 2) 2 (f(2), g(x)) and
S(.2) oy2 y+T(2)cy 2 fz) +T(g9(x))

= (p(.’B, T) Cyz ‘P(x7T) Cy > QO(E, 0)

= f(@)=S5(a).
Since Y is chain complete, then note that S € L*(Z x L, L), we have inf S(4) =
S(@), where & = (f(Z),0) It is easy to see that S is positive. We take S is
identical operator of L and Sy = T, then we have S; € L*(L,L), S; € L1(Z,L)
and S(y, 2) = S1(y) + S2(2).

Conversely, if there exists S € LT (LxZ, L) such that for any z € D, (f(z), g(z)) €

A, then we have
51(£(z)) = 5:1(f(2)) + 52(0) = S(£(2),0) <cy S(f(2),9(z)) = S1(f(2)) + S2(9(x)),

because inf S(A) = S(a) = S(f(Z),0). Let z = Z, then we have 0 <¢, S2(g(Z)).
Moreover, since Z is optimal solution, if g(Z) < 0, then S2(9(Z)) <¢, 0. Thus
S2(g9(Z)) = 0. Therefore

(3.3) S1(f(Z)) + S2(9(2)) <cy S1(f(2)) + Sa(g(x))-
Since §; is automorphism, we operate S;! to (3.3). We put T = S0 S,, then
f(@) +T(9(%)) <cy f(z)+T(g9(x)).
On the other hand, since for any T € L*(L, L), T(9(Z)) <cy 0, thus we have
(@) +T(9(z)) <cy f(z)+T(9()).
Then we have
f()+T(9(Z)) <cy f() +T(9(2)) <oy f(z)+T(9(2)).
Put ¢(z,T) = f(z) + T(9(x)), then we have
‘p(i"T) <cy QO(E’ T) <cy (p((L’, T)
Then (,7) is a saddle point of p(x,T) = f(z) + T(g(z)). a
Let Z; := g(D) + Cz, C(z) := {x € D | g(z) < 2}, 2 € Z;, Then
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Proposition 6. Z; is convez set, Cz C Z; and C% C Z7.
Proof. 1t is clear from the definition. O

Since Y is chain complete ordered vector space (Daniell space), if f(C(Z)) has
lower bounded, then there exists inf f(C(Z)). We define F': D — Y U {£o0} by

inf,ez f(C(2)) ifz€ Z; and f(C(z)) has lower bound,

F(z) = —00 if z € Z; and f(C(z)) does not have lower bound,
- X0 if 2 ¢ Zl
f(z) ifz=0

Lemma 7. If f(C(2)) has lower bound and F(z) > —oo, then F is convez.

Proof. Let 21,22 € Zy, k € (0,1), 1, z2 € C(Z), g(z1) <oy 21 and g(z2) <cy 22
Then we have

glkz1 + (1 - k)x2)) <oy kg(z1)+ (1 —k)g(z2)
<oy kzi+(1—k)z.
Thus
kz;+ (1 — k)ze € C(kzy + (1 — k)22).
Since f is convex, we have
f(Ckz1 + (1 = k)22)) <cy kf(C(21)) + (1 - k) f(C(22))-
Fix z; and 29, and let z; and x5 run through C(z;) and C(z3), then we have
F(kzy + (1 — k)z2)
<cy kinf{f(z) |z € C(z1)} + (1 — k)inf{f(z) | z € C(22)}
=kF(z1)+ (1 — k)F(22).

 If 21 ¢ Zy or 23 ¢ Z1, then F(z1) = 0o or F(z3) = oo, and if kz; + (1 — k)22 & Z1,
then either zy ¢ Z; or 29 ¢ Z; as above. Then always we have

F(k21 + (1 — k)ZQ) <cy kF(Zl) + (1 — k‘)F(zg)
for all k € (0,1) and 2,22 € Z. Thus F is convex. a

We assume that F(z) > —oo. We recall the algebraic sub-differential of F" at 0
to be the set
0°F(0) ={T € L(Z,Y) | T(2) <cy F(2) - F(0),z € Z}.
Theorem 8. (MP) satisfies saddle point criterion at T if and only if
(1) F(z) > —o0 and F(z) € L for all z € Z;
(2) 0*F(0) # 0.

Proof. By Theorem 5, there exists linear mapping S : L x Z — L such that
S(y, 2) = S1(y) + S2(2), and S1(f(7)) = 5(@) <oy S(4),
where S; order automorphism from L to L and Sy € £(Z,L). Since Sz € L(Z, L)
and positive, then
(34) S1(f(2)) <cy S1(f(=)) + Sa2(2),

for all z € Z; and z € C(2). Let_,S’l_1 act on (3.4) and denote 7" := S7lo S, We
have f(Z) —T(z) € L and f(z) —T(z) <¢, f(z). Therefore, f(x)—T(z) is an order
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bounded of f(C(z)) in L. Since L is chain in Y and Y is chain complete, there exists
infimum inf f(C(z)) such that —co < f(Z) — T(z) <, inf f(C(2)) for all z € Z;.
Put F(z) := inf f(C(2)). Thus —T(z) <¢, F(z) — F(0), =T € 8*F(0) # 0. we
have (1) and (2).

Next we assume that T' € 0*F(0) # 0, then T'(2) <¢, F(2)—F(0) for all z € Z;.
Since (y, z) € A, there exists ¢ € D such that (y, z) > (f(z),g(z)). Therefore -

(3.5) y— f(Z) <c¢y f(z) - f(Z) <oy F(2) = F(0) <cy T(2),f(Z) <oy y — T(2).
Since (f(Z),z) € A for all z € C, we have

f(@) -T(2) Scy f(&), -T(2) <oy 0, -TE€L(ZY).
Let T := —T, S(y,2) := y + T(z), so by (3.5), it implies that S(a) = f(Z) <c,
S(A), where & = (f(Z),0). By Theorem 5, we have the conclusion. O

4. DIRECTIONAL DERIVATIVE

In this section we consider the directional derivative.
An operator f : D(f) € X — Y is called a convex operator, if the domain of
definition D(f) of f is a non-empty convex subset of X and if for all z;, x> € D(f)
and all real A\, 0 < XA < I,

fQz1+ (1= AN)z2) <oy Af(z1) + (1= A)f(z2)

Lemma 9. Let Z be a real vector space, Y an ordered vector space and L CY a
non-empty chain. Let Zg C Z be a linear subspace. Let G: D(G) C Z - Y be a
convex operator, where D(G) is a domain of G, and Ty : Zy — Y a linear operator
such that

To(z) < G(2), forall ze€ D(G)N Zy.

If'Y is chain complete, D(G) N Zy # 0, G(D(G)) € L and To(Zo) € L, then there
exists a linear operator T form X into Y such that

T(z) € L for allz € Z,T(z) = To(z) for all z € M and
T(z) <cy, G(z) for all x € D(Q).

Proof. The proof is similar to that of [10, Theorem 2.1] a

Let F(z) > —oo for any z € Z. For any z and k; > ky > 0, since F is convex,
we have

F(kyz) = F(kT'ka(k12) + (1 — k7T k2)0) <y ki tkoF(k12) + (1 — kT 'k2) F(0),
and
k3 F(kez) — F(0)) <cy kT1F(k1z) — F(0)).
Let
M(z) = {k'(F(kz) — F(0)) |k >0} CY
and

AF(0,2) i= 0~ lim %(F(kz) _ P(0)); see [5].

If Y is Dedekind complete or Y is totally ordered and chain complete, it is easy to
see that there exists dF(0,2) € Y and dF(0, z) = inf M(z) for all z € Z.
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Lemma 10. Suppose that F(z) > —oc for all z € Z. Then dF (0, z) is a sublinear
operator from Z into Y. Moreover we have kdF(0,2) <¢, dF(0,kz) for k <0 and
F(z) — F(0) > dF(0, 2).

Proof. Since F is convex operator, we have
F((1-k)u+kv) <o, (1—k)F(u)+kF(v) forany uw,ve Z and ke (0,1).
We take u = 2tz;, v = 2tz and k = %, then

1 1
F(tZl + tZQ) <cy §F(t21) + iF(tzz).

t~HF(t(z + 22)) — F(0)) <¢y (28)"1(F(2tz1) — F(0)) + (2t) "1 (F(2tz5) — F(0)).
0o— ltif(r)lt_l(F(t(zl + 2z3)) — F(0))
<cy 0— £i$(2t)“1(F(2tzl) — F(0)) +0~— ltigl(Qt)‘l(F(%zz) — F(0)).

Thus we have
dF (0,21 + 22) <cy dF(0,21) + dF(0, 22).
Moreover if k > 0, then
dF(0,k2) = o = lim ¢~ (F((k2) ~ F(0)

=0-— ltijg k(kt)"1(F(ktz) — F(0)) = kdF (0, 2).

On the other hand let k£ < 0. Since

0=4dF(0,0) <¢, dF(0,kz) + dF(0,—kz),
Thus

kdF(0,z) = —dF(0, —kz) <¢, dF(0,kz)
and

F(2) = F(0) = 17Y(F(2) — F(0)) € M(=2).

Theorem 11. (MP) satisfies the saddle point criterion at T if and only if
(i) F(z) > —oo and F(2) € L for all z € Z.
(i) dF(0,2) € L for some z € C%.

Proof. Assume that (MP) satisfies saddle point criterion. By Theorem 8, (MP)
satisfies saddle point criterion at Z if and only if (1) F(2) > —oo and F(2) € L
for all z € Z; (2) 0*F(0) # 0. If T € 8*F(0), then T(z) <¢, F(z) ~ F(0) for all
z € Z. Take any Z € Z, then z € Z; and C(z) # 0, so we have F(Z) < oo and
dF(0,z) € F(z) — F(0) < co. On the other hand, since T'(kz) < F(kz) — F(0)
for all £ > 0, we have T'(z) = k™'T(kZ) <¢, %(F(kz) — F(0)). M(z) is bounded
from below and M(z) € L, there exists inf M(z), dF(0,Z) = inf M(2) € L and
—00 < T'(Z) <¢y inf M(Z). Thus we have (ii).

We prove the converse. We assume that Z € C% and yp := dF(0,Z) # co. Let
Zo:={kz|ke€ R} and Ty : Zy — Y defined by Ty(kZz) = kyo. Now we consider F
as from Z; to Y, F is a convex operator as in Lemma 7. By assumption F(z)e L
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for all z € Z;. Let G(z) := F(z) — F(0), then G is also a convex operator from Z
into Y with G(2) € L for all z € Z;. For any k > 0, kZ € Z,

Ty(kZ) = kyo = kdF (0, 2) = dF(0, kz) <¢c, F(kZ) — F(0) = G(kZ)

and for any k < 0 which satisfies kZ € Z; N Zy, from Lemma 10, we have G(kZ) =
F(kz)—F(0) and kyo = kdF(0,z) <¢, dF(0,%2) <¢, F(kZ)—F(0). Hence we have
To(z) <cy G(2) for all z € Z; N Zy. Since Y is chain complete, z € Z1 N Zy # 0,
G(Z,) € L and Ty(Zp) € L, by Lemma 9, there exists a linear operator T from Z
into Y such that

T(z) = Ty(z) for all z € Z,
and
T(z) <¢y G(2) = F(z) — F(0) for all z € Z;.
On the other hand for z ¢ Z;, F(z) = co. Thus we have
T(z) <¢y F(2) — F(0) for all z € Z.
Thus §*F(0) # 0. Then the assertion holds from Theorem 8. a

Example 12. Let X =Y =D =R% Z=R,Cx =Cy = {(z,y) € R* |z >
0,y >0}, Cz = Ry U{0}, L = {(z,z) € R?}, g(z,y) = 2% + y?>. We denote the
mapping f : R2 — R? be defined by the following matrix

4.1) G })

and f(z,y) =(z+y,z+y),T=0, 2, =9(D)+Cz = Ry U{0}..

infzezl f(C(z)) = {(-—\/-2_2, —\/iz)} if z € 73,
F(z) = o0 if 2z ¢ Z
#(0,0) = (0,0) if 2 =0

It is easy to see that Ty : k — kz(k < —+/2) satisfies Tx(2) < F(2) — F(0) for all
z€Z. T, € 0°F(0) # 0, or Z =1, dF(0,2) = inf{k~}(F(kz) — F(0)) | k > 0} =
—/2. Therefore (M P) satisfies the saddle point criterion as in Theorem 8 or 11,
but it does not satisfies Zowe’s condition, beécause N = {Ag(z) + 2 | x € D, ) €
R, U{0},z € Cz} = R4 U {0} is not a subsequence of Z = R. Moreover, it is not
satisfy Slater’s type condition, because {z € D | g(z) < 0} = 0.
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