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Abstract

This paper is a preliminary report of the forthcoming paper [21]. This paper
studies traveling fronts to the Allen-Cahn equation in $\mathbb{R}^{N}$ for $N\geq 3$ . We consider
$(N-2)$-dimensional smooth surfaces as boundaries of strictly convex compact sets in
$\mathbb{R}^{N-1}$ , and define an equivalence relation between them. We prove that there exists
a traveling front associated with a given surface and that it is asymptotically stable
for given initial perturbation. The associated traveling fronts coincide up to phase
transition if and only if the given surfaces satisfy the equivalence relation.

AMS Mathematical Classifications: $35C07,$ $35B20,$ $35K57$
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As a preliminary report of the forthcoming paper [21] we briefly state the results. We
study the following reaction-diffusion equation

$\frac{\partial u}{\partial t}=\triangle u+f(u) x\in \mathbb{R}^{N}, t>0$ ,
(1)

$u(x, 0)=u_{0} x\in \mathbb{R}^{N}.$

Here $\triangle=\sum_{j=1}^{N}D_{jj}$ with $D_{j}=\partial/\partial x_{j}$ and $D_{jj}=(\partial/\partial x_{j})^{2}$ for $1\leq j\leq N$ . Now $N\geq 3$ is a
given integer, and $u_{0}$ is a given bounded and uniformly continuous function from $\mathbb{R}^{N}$ to $\mathbb{R}.$

The assumption on $f$ is as follows.

(A1) $f\in C^{1}[-1, 1]$ satisfies $f(1)=0,$ $f(-1)=0,$ $f’(1)<0,$ $f’(-1)<0$ and

$\int_{-1}^{1}f(s)ds>0.$

(A2) There exists $a_{*}\in(-1,1)$ such that

$f(s)<0$ for all $s\in(-1, -a_{*})$ ,

$f(s)>0$ for all $s\in(-a_{*}, 1)$ .
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Figure 1: The graph of $f.$

See Figure 1. Equation (1) is called the Nagumo equation [15] or the unbalanced Allen-
Cahn equation [1]. For this equation, multi-dimensional traveling fronts have been studied
by many mathematicians. Two-dimensional $V$-form fronts are studied by Ninomiya and
myself [16, 17], Hamel, Monneau and Roquejoffre [8, 9] and Haragus and Scheel [10] and so
on. Cylindrically symmetric traveling fronts in $\mathbb{R}^{N}$ are studied by [8, 9]. Raveling fronts
of pyramidal shapes and convex polyhedral shapes are studied by [18, 19, 13, 20]. See [14]

for a related work. haveling fronts associated with strictly convex compact domain in
$\mathbb{R}^{2}$ with a smooth boundary are studied for the Allen-Cahn equation in $\mathbb{R}^{3}$ in [20]. The
purpose of this paper is to show that a strictly convex compact set in $\mathbb{R}^{N-1}$ with a smooth
boundary gives a traveling front in the Allen-Cahn equation in $\mathbb{R}^{N}$ by using a clear and
concise argument. Since the Allen-Cahn equation is one of the simplest reaction-diffusion
equations, the argument in this paper might be useful for studies on other reaction-diffusion
equations or reaction-diffusion systems that admit comparison principles.

The profile equation of a one-dimensional traveling front with speed $k$ is given by

$-\Phi"(y)-k\Phi’(y)-f(\Phi(y))=0 -\infty<y<\infty,$
(2)

$\Phi(-\infty)=1, \Phi(\infty)=-1.$

It is known that (2) has a solution $\Phi$ under (A1) and (A2), and it is unique up to translation.

One can refer to [2, 3, 11, 12, 6, 4] for instance. See Figure 2. Now (A1) gives $k>$ O.

Especially one has $k=\sqrt{2}a_{*}$ and $\Phi(x)=-\tanh(x/\sqrt{2})$ when $0<a_{*}<1$ and $f(u)=$

$-(u+1)(u+a_{*})(u-1)$ .
The Allen-Cahn equation by a moving coordinate system with speed $c$ toward the $x_{N^{-}}$

direction is given by

$(D_{t}-\Delta-cD_{N})w-f(w)=0 x\in \mathbb{R}^{N}, t>0,$
(3)

$w(x, 0)=u_{0}(x) x\in \mathbb{R}^{N}.$

Here we assume $c>k$ . We denote the solution of (3) by $w(x, t;u_{0})$ . The profile equation

of a traveling front in $\mathbb{R}^{N}$ is given by

$(-\triangle-cD_{N})v-f(v)=0 x\in \mathbb{R}^{N}$ . (4)
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Figure 2: A one-dimensional traveling front $\Phi.$

Here we put $x’=(x_{1}, \ldots, x_{N-1})\in \mathbb{R}^{N-1}$ and $x=(x’, x_{N})$ .
We extend $f$ as a function of class $C^{1}(\mathbb{R})$ with $f’(\mathcal{S})<0$ for $|s|>1$ . Setting

$\beta=\frac{1}{2}\min\{-f’(-1), -f’(1)\}>0,$

we choose $\delta_{*}\in(0,1/4)$ with

$-f’(s)>\beta$ if $|s+1|\leq 2\delta_{*}$ or $|s-1|\leq 2\delta_{*}.$

In this paper we assume $c>k$ . Let

$M = \max_{|s|\leq 1+\delta_{*}}|f’(s)|>0,$

$\sqrt{c^{2}-k^{2}}$

$m_{*} =$
$\overline{k}$ ’

and define $\theta_{*}\in(0, \pi/2)$ by
$\tan\theta_{*}=m_{*}.$

Let $n\geq 2$ be a given integer and $1et\{a_{j}\}_{j=1}^{n}$ be a set of unit vectors in $\mathbb{R}^{N-1}$ with $a_{i}\neq a_{j}$

for $i\neq j$ . Then $a_{j}=(a_{j}^{1}, \ldots, a_{j}^{N-1})$ satisfies

$|a_{j}|^{2}= \sum_{i=1}^{N-1}(a_{j}^{i})^{2}=1$ for all $1\leq j\leq n.$

Here we put $x’=(x_{1}, \ldots, x_{N-1})\in \mathbb{R}^{N-1}$ and $x=(x’, x_{N})=(x_{1}, \ldots, x_{N})\in \mathbb{R}^{N}$ with

$|x’|=\sqrt{\sum_{i--1}^{N-1}x_{i}^{2}}$ and $|x|=\sqrt{\sum_{i=1}^{N}x_{i}^{2}}$ , respectively. For $x’\in \mathbb{R}^{N-1}$ we set

$h_{j}(x’) = m_{*}(a_{j}, x$ (5)

$h(x’)$ $=$

l $\leq$j $\leq$nmax $h_{j}(x’)=m_{*} \max_{1\leq j\leq n}(a_{j}, x$ (6)
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Here $(a_{j}, x’)$ denotes the inner product of vectors $a_{j}$ and $x’$ . In this paper we call $\{(x’, x_{N})\in$

$\mathbb{R}^{N}|x_{N}\geq h(x’)\}$ a pyramid. Setting

$\Omega_{j}=\{x’\in \mathbb{R}^{N-1}|h(x’)=h_{j}(x’)\}$

for $j=1$ , . . . , $n$ , we have
$\mathbb{R}^{N-1}=\bigcup_{j=1}^{n}\Omega_{j}.$

We denote the boundary of $\Omega_{j}$ by $\partial\Omega_{j}$ . Now we put

$S_{j}=\{x\in \mathbb{R}^{N}|x_{N}=h_{j}(x’)$ for $x’\in\Omega_{j}\}$

for each $j$ , and call $\bigcup_{j}^{n}S_{j}\subset \mathbb{R}^{N}$ the lateral faces of a pyramid. We put

$\Gamma_{j}=\{x\in \mathbb{R}^{N}|x_{N}=h_{j}(x’)$ for $x’\in\partial\Omega_{j}\}$

for $j=1$ , . . . , $n$ . Then $\bigcup_{j=1}^{n}\Gamma_{j}$ represents the set of all edges of a pyramid. For $\gamma>0$ let

$D(\gamma)=\{x|$ dist $(x, \bigcup_{j=1}^{n}\Gamma_{j})>\gamma\}.$

Now we define $v(x)$ by

$\underline{v}(x)=\Phi(\frac{k}{c}(x_{N}-h(x’)))=\max_{1\leq j\leq n}\Phi(\frac{k}{c}(x_{N}-h_{j}(x’)))$ .

Figure 3: The graph of a level set of a pyramidal traveling front ([18, 19])

Pyramidal traveling fronts are stated as follows. See Figure 3. For the proof see [16] for
$n=2$ and see [13] for $n\geq 3.$
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Theorem 1 ([16], [13]) Let $h$ be given in (6). Let $V$ be defined by

$V(x)= \lim_{tarrow\infty}w(x, t;\underline{v})$ for all $x\in \mathbb{R}^{N}.$

Then $V$ satisfies
$(-\triangle-cD_{N})V-f(V)=0 x\in \mathbb{R}^{N}$ . (7)

with

$\lim_{\gammaarrow\infty}\sup_{x\in D(\gamma)}|V(x)-\underline{v}(x)|=0,$

$-1<\underline{v}(x)<V(x)<1 forallx\in \mathbb{R}^{N}.$

Figure 4: The graph of a level set of $U.$

Cylindrically symmetric traveling front $U(r, z)$ satisfies

$(-D_{rr}- \frac{N-2}{r}D_{r}-D_{zz}-cD_{z})U-f(U(r, z))=0$ , for $r>0,$ $z\in \mathbb{R}$ , (8)

$U_{r}(0, z)=0$ for $z\in \mathbb{R},$

$U(0,0)=0.$

Here $D_{r}U=\partial U/\partial r,$ $D_{rr}U=\partial^{2}U/\partial r^{2},$ $D_{z}U=\partial U/\partial z$ and $D_{zz}U=\partial^{2}U/\partial z^{2}$ . See Figure 4.
The following is the main assertion in this paper.

Theorem 2 ([21]) Let $g\in C^{2}(S^{N-2})$ satisfy $g(\xi)>0$ for all $\xi\in S^{N-2}$ . Assume that
$D_{g}=\{r\xi|0\leq r\leq 9(\xi), \xi\in S^{N-2}\}$ is a convex compact set in $\mathbb{R}^{N-1}$ and all principal
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Figure 5: The graph of a level set of $\tilde{U}.$

curuatures of $\partial D_{g}=\{g(\xi)\xi|\xi\in S^{N-2}\}$ are positive at every point of $\partial D_{g}$ . Then there

exists a unique solution $\tilde{U}$ to

$(- \sum_{i=1}^{N}\frac{\partial^{2}}{\partial x_{i}^{2}}-c\frac{\partial}{\partial x_{N}})\tilde{U}-f(\tilde{U})=0 in\mathbb{R}^{N}$ , (9)

$\lim_{sarrow\infty}\sup_{|x|\geq s}|\tilde{U}(x)-\min_{\xi\in S^{N\underline{2}}}U(|x’-g(\xi)\xi|, x_{N})|=0$ . (10)

Let $g_{j}$ satisfy the assumption stated above and let $\tilde{U}_{j}$ be the associated solution for $j=1$ , 2,

respectively. One has

$\tilde{U}_{2}(x_{1}, \ldots, x_{N-1}, x_{N})=\tilde{U}_{1}(x_{1}, \ldots, x_{N-1}, x_{N}-\zeta)$ (11)

for some $\zeta\in \mathbb{R}$ if and only if $g_{1}\sim g_{2}.$

Let $\mathcal{G}$ be the set of all $g$ that satisfies the assumption of Theorem 2. Let $D_{9}$ be as in

Theorem 2 for $g\in \mathcal{G}$ . We define an equivalence relation in $\mathcal{G}$ . Roughly speaking, we define
$g_{1}\sim g_{2}$ if and only if one can expand $D_{91}$ with a constant width and the expanded one
equals $D_{g_{2}}$ or one can expand $D_{g_{2}}$ with a constant width and the expanded one equals $D_{g_{1}}.$

See Figure 6.
Let $g\in C^{2}(S^{N-2})$ satisfy $g(\xi)>0$ for all $\xi\in S^{N-2}$ . We set

$C_{g} = \{g(\xi)\xi|\xi\in S^{N-2}\},$

$D_{g} = \{r\xi|0\leq r\leq g(\xi), \xi\in S^{N-2}\},$
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and have $C_{g}=\partial D_{g}\subset \mathbb{R}^{N-1}$ . For some neighborhood of $g(\xi)\xi\in C_{g}$ with $\xi\in S^{N-2}$ we
write $C_{g}$ as $(y, \psi(y))$ with $\psi(y^{0})=0$ and $\nabla\psi(y^{0})=0$ , where $y=(y_{1}, \ldots,y_{N-2})$ . Here we
put $g(\xi)\xi=(y^{0}, \psi(y^{0}))$ with $y^{0}\in \mathbb{R}^{N-2}.$

Let $v(y)$ be the unit normal vector of $C_{g}$ at $(y, \psi(y))$ pointing from $D_{9}$ to $\mathbb{R}^{N-1}\backslash D_{g}.$

We have

$v(y)= \frac{1}{1+|\nabla\psi(y)|^{2}}(^{-\nabla\psi(y)}1)$ ,

where
$\nabla\psi(y)=t(D_{1}\psi(y), \ldots, D_{N-2}\psi(y))$ .

The eigenvalues $\kappa_{1}(y^{0})$ , . . . , $\kappa_{N-2}(y^{0})$ of the Hessian matrix

$-D^{2}\psi(y^{0})=-(D_{ij}\psi(y^{0}))_{1\leq i,j\leq N-2}$

are the principal curvatures of $C_{9}$ at $(y^{0}, \psi(y^{0}))$ . We take the basis of $\mathbb{R}^{N-1}$ as the eigen-
vectors of the Hessian matrix. Using this principal coordinate system, we have

$-D^{2}\psi(y^{0})=$ diag ( $\kappa_{1}(y^{0}), \ldots, \kappa_{N-2}(y^{0}))$

and
$D_{j}v_{i}(y^{0})=\kappa_{i}(y^{0})\delta_{ij} 1\leq i, j\leq N-2.$

We define $\mathcal{G}$ by

{ $g\in C^{2}(S^{N-2})|g\geq 0$ , all principal curvature of $C_{9}$ are positive at every point of $C_{g}$ }.

For any $g\in \mathcal{G}$ and $a\geq 0$ we define $g_{1}=\tau_{a}g$ by

$C_{g_{1}}=\{x’\in C_{g}\cup(\mathbb{R}^{N-1}\backslash D_{9})|$ dist $(x’, C_{9})=a\}.$

See Figure 6.
Then we have the following lemma.

Lemma 1 For any $a\geq 0,$ $\tau_{a}$ is a mapping in $\mathcal{G}$ . Moreover one has

$\tau_{b}(\tau_{a}g)=\tau_{b+a}g$ (12)

for any $a\geq 0,$ $b\geq 0$ and $g\in \mathcal{G}.$

Now we define an equivalence relation $g_{1}\sim g_{2}$ for $g_{1},$
$g_{2}\in \mathcal{G}$ . We define $g_{1}\sim g_{2}$ if and

only if one has either $g_{1}=\tau_{a}g_{2}$ or $g_{2}=\tau_{a}g_{1}$ for some $a\geq 0$ . We will show that $\mathcal{G}/\sim$ gives
a traveling front of (1).

Theorem 2 says that each element of a quotient set $\mathcal{G}/\sim$ gives an $N$-dimensional
traveling front $\tilde{U}$ in the Allen-Cahn equation. Figure 5 shows the graph of a level set
$\{x\in \mathbb{R}^{N}|\tilde{U}(x)=-a_{*}\}.$

We choose $\eta>0$ large enough such that we have

$\eta>_{1}\max_{\leq j\leq N-2\xi\in}m_{S^{N-2}}\frac{1}{\kappa_{j}(\xi)}$
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Figure 6: The graphs of $C_{g}$ and $C_{g_{1}}.$

and $D_{9}$ is included in the closure of a circumscribed ball of $C_{9}$ at $g(\xi)\xi$ with radius $\eta$ for
every $\xi\in S^{N-2}$ . Let $\nu(\xi)$ be the unit normal vector of $C_{g}$ at $g(\xi)\xi$ pointing from $D_{g}$ to
$\mathbb{R}^{N-1}\backslash D_{g}$ for $\xi\in S^{N-2}.$

Now we define a weak subsolution $\underline{v}(x)$ as

$\underline{v}(x’, x_{N})=\xi S^{N\underline{2}}\max_{\in}U(|x’-g(\xi)\xi+\eta\nu(\xi)|, x_{N}+m_{*}\eta)$ for all $(x’, x_{N})\in \mathbb{R}^{N}$ . (13)

The stability of $\tilde{U}$ is as follows.

Corollary 3 (Stability [21]) Let $\underline{v}$ and $\tilde{U}$ be as in (13) and Theorem 2, $re\mathcal{S}$pectively. Let
a bounded and uniformly continuous function $u_{0}$ satisfy

$\lim_{Rarrow\infty}\sup_{|x|\geq R}|u_{0}(x)-\tilde{U}(x)|=0,$

$\underline{v}(x)\leq u_{0}(x)\leq 1$ for all $x\in \mathbb{R}^{N}.$

Then one has
$\lim_{tarrow\infty}\sup_{x\in R^{N}}|w(x, t;u_{0})-\tilde{U}(x)|=0.$

This work is supported by JSPS Grant-in-Aid for Scientific Research (C), Grant Number
26400169.
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