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1. PROBLEM AND BACKGROUND

In this section, we. state the problem to be investigated and give some
background motivations.

1.1. Problem. Let $\Omega\subset \mathbb{R}^{m}$ $(m\geq 1)$ be a bounded domain with
smooth boundary $\partial\Omega$ . We consider the following system of diffu-
sion equations under the Robin type boundary conditions for $u(t, x)=$

$(u_{1}(t, x),$
$\ldots,$

$u_{N}(t,$ $x$

(1) $\partial_{t}u=D\triangle u$ in $\Omega,$ $D\partial_{n}u=Ju$ on $\partial\Omega,$

where
$\bullet$ $\partial_{t}=\partial/\partial t$ is the partial derivative with respect to time $t$ ;
$\bullet$

$\triangle$ is the $m$-dimensional Laplace operator;
$\bullet$ $D=diag(d_{1}, \ldots, d_{N})$ is a diagonal diffusion matrix with $d_{j}>0$ ;
$\bullet$ $n$ is the unit outward normal vector field on $\partial\Omega$ ;
$\bullet$ $\partial_{n}=\partial/\partial n$ is the derivative along $n$ on the boundary;
$\bullet$ $D\partial_{n}u$ stands for (the vector of) fluxes at the boundary, and
$\bullet$ $J$ is an $N\cross N$ real matrix called the mass $tran\mathcal{S}fer$ matrix.

We emphasize that for diagonal $J$ the system (1) completely decou-
ples. This means that (1) reduces to $N$ sets of independent scalar
problems;

$\partial_{t}u_{i}=d_{i}\triangle u_{i}$ in $\Omega$ and $d_{i}\partial_{n}u_{i}=J_{ii}u_{i}$ on $\partial\Omega$ $(i=1,2, \ldots, N)$ .
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Therefore, interesting dynamic behavior of the solutions of (1), due to
its multicomponent nature, will arise only if $J$ is not diagonal.

The purpose of this article is to determine stability/instability of the
trivial solution $u\equiv 0\in \mathbb{R}^{N}$ of (1), in terms of diffusion and mass
transfer matrices $D$ and $J$ . We also pay attention to the role the
geometry of $\Omega$ plays. The relevant eigenvalue problem for our purpose
is

(2) $\lambda\phi=D\triangle\phi$ in $\Omega,$ $D\partial_{n}\phi=J\phi$ on $\partial\Omega.$

The complex number $\lambda\in \mathbb{C}$ is called an eigenvalue when (2) has a
nontrivial solution $\phi\not\equiv$ O. The eigenvalue problem (2) is obtained
from (1) by substituting the ansatz $u(t, x)=e^{\lambda t}\phi(x)$ . Therefore, if the
eigenvalues of (2) have negative real part then the trivial solution of
(1) is asymptotically stable. If, on the other hand, (2) has an eigenvalue
with ${\rm Re}\lambda>0$ then the system (1) is $un\mathcal{S}table.$

1.2. Background Motivations. The first motivation to study (1)
dates back to the period from late $1960$ ’s to early $1970$ ’s (see, [4, 7]
and reference therein). In chemical engineering community around
that period, the dynamics of inert materials diffusing in a container
$\Omega$ whose boundary $\partial\Omega$ is the site of catalytic reactions was of great
interest. Such a chemical setting is modeled by

(3) $\partial_{t}u=D\triangle u$ in $\Omega,$ $D\partial_{n}u=f(u)$ on $\partial\Omega,$

in which the flux $D\nabla u$ on the boundary is given by a nonlinear mapping
$f$ : $\mathbb{R}^{N}arrow \mathbb{R}^{N}$ modeling the mass transfer mechanisms. For the well-
posedness of (3), we refer to [1, 5]. The reaction terms in the bulk are
absent in this model, because the materials are non-reactive without
catalysts. It is easy to see:

$\bullet$ If $f(u^{*})=0$ , then $u(x)\equiv u^{*}$ is a uniform steady solution of
(3) for any diffusion matrix $D>0.$

$\bullet$ The linearization of (3) around $u=u^{*}$ gives rise to (1) in which
$J=\partial_{u}f(u^{*})$ .

The experimental community was interested in the stability properties
of the permanent concentration profiles (steady states) produced by
(3), and investigations of the dynamic behavior of (3), posed in 1-
dimensional intervals with $N=1$ , flourished in $1970$ ’s (see, [4, 7] and
reference therein).

Another motivation comes from models for biological cell activity.
For example, in an attempt to explain observations of oscillatory

behavior in biological cell activity, Levine and Rappel [15] proposed a
mathematical model, in which nonlinear chemical reactions take place

31



on the boundary of domain and reagents transport in the bulk dom-
inantly by diffusion and decay at certain rates. When relevant pa-
rameters are chosen appropriately, they have shown numerically that
oscillatory and non-oscillatory spatially inhomogeneous modes desta-
bilize even when diffusion rates of reagents are equal. Equal diffusivity
or near equal diffusivity is important in molecular biological systems
such as cells.

To be specific, the model in [15] is a two-component hypothetical
reaction-diffusion system where the reactions take place on the bound-
ing surface of some bulk region (presumably representing a biological
cell):

$\dot{u}_{m}=-r_{d}u_{m}+r_{a}u+a(u_{m}^{2}v_{m}-u_{m})$ ,
(4)

$v_{m}=-p_{d}v_{m}+p_{a}v+1-u_{m}^{2}v_{m}.$

In (4), $(u, v)$ and $(u_{m}, v_{m})$ , respectively, stand for the concentrations
of bulk species and surface-resident ones, and the first two terms on
the right hand sides represent the exchange process between the bulk
and surface-resident species, while the remaining terms are nonlinear
chemical interactions on the bounding surface. The equation in the
bulk (with no decay) is given by

(5) $\dot{u}=D_{u}\nabla^{2}u, \dot{v}=D_{v}\nabla^{2}v$

supplemented by the boundary conditions for the normal derivatives

$D_{u}\partial_{n}u=r_{d}u_{m}-r_{a}u,$

(6)
$D_{v}\partial_{n}v=p_{d}v_{m}-p_{a}v.$

Substituting (6) into (4), and neglecting the distinction between $(u, v)$

and $(u_{m}, v_{m})$ , we obtain, together with (5), the linear diffusion system
under dynamic boundary $condition\mathcal{S}$:

(7) $\{\begin{array}{l}\partial_{t}u=D_{u}\triangle u\partial_{t}v=D_{v}\triangle v\end{array}$ in $\Omega,$ $\{\begin{array}{l}\partial_{t}u+D_{u}\partial_{n}u=f(u, v)\partial_{t}v+D_{v}\partial_{n}v=g(u, v)\end{array}$ on $\partial\Omega.$

Levine and Rappel [15] also developed a numerical scheme based on
the phase-field method to investigate problem (4) $-(6)$ . With specific
parameter values for $r_{d},$ $r_{a},p_{d},p_{a}$ and $a$ , they numerically solved the ini-
tial value problem for the model and found out that oscillatory patterns
of Turing-type emerge even under equal diffusion case $D_{u}=D_{v}>$ O.
One of the purposes of this article is to explore a possible mathemat-
ical explanation of such events which may be reckoned unusual from
the viewpoint of the conventional Turing-instability mechanism.

Thus, we have been led to the following general model which incor-
porates diffusion, bulk reaction and non-linear fluxes on the boundary,
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together with dynamic boundary conditions.

$\partial_{t}u=D\triangle u+g(u,p)$ in $\Omega,$ $B\partial_{t}u+C\partial_{n}u=f(u, p)$ on $\partial\Omega$

whose well-posedness we again refer to [1, 5].
In this article, however, we focus our attention to the spacial cace

(3)where $g\equiv 0,$ $B\equiv 0$ and $C=D.$

2. SUFFICIENT CONDITIONS $F$ STABILITY AND INSTABILITY

In this section, sufficient conditions for the stability and instability
of the system (1) are given. There are two situations where the analysis
is rather elementary. These are presented in \S 2.1 and \S 2.2.

2.1. Variational Case. When the mass transfer matrix is symmetric,
the analysis simplifies substantially. In this situation, the eigenvalue
problem (2) turns out to be variational.

Theorem 2.1. Assume that $J$ is $a$ real symmetric matrix.

(i) For any positive diffusion matrix $D$ , the eigenvalues of (2) are
real, and the $corre\mathcal{S}$ponding e$igenfunction\mathcal{S}$ are real-valued.

(ii) If the eigenvalues of $J$ are negative, then the eigenvalues of (2)
are negative for any positive $diffu\mathcal{S}ion$ matrix $D.$

(iii) If $J$ has $k$ positive eigenvalues and $N-k$ negative eigenval-
ues (counting with multiplicity), then (2) has at least $k$ pos-
itive eigenvalues (counting with multiplicity) for any $p_{0\mathcal{S}}itive$

$diffu\mathcal{S}ion$ matrix D. Moreover, there $exist\mathcal{S}$ a positive $con\mathcal{S}tant$

$d^{*}(J, \Omega)>0$ , which depends only on $J$ and $\Omega,$ $\mathcal{S}O$ that (2) has
exactly $k$ positive $eigenvalue\mathcal{S}$ for any diffusion matrix satisfying
$\min\{d_{1}, . . . , d_{N}\}>d^{*}(J, \Omega)$ .

Theorem 2.1 says that for a symmetric mass transfer matrix $J$ the
stability of the trivial solution $0$ of (1) is completely determined by the
eigenvalues of $J$ . Namely,

the system (1) with symmetric $J$ is stable (unstable)
if and only if

$J$ is stable (unstable).

In this case, it turns out that the eigenvalue problem (2) is variational
(cf. \S 2.4 below), and the eigenvalues of (2) behaves similarly to those
for the reaction-diffusion system with the natural boundary value con-
ditions:

$\lambda\phi=D\triangle\phi+J\phi$ in $\Omega,$ $D\partial_{n}\phi=0$ on $\partial\Omega$
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whose eigenvalues are characterized in the variational manner by the
functional

$\mathfrak{G}(\phi) :=\int_{\Omega}\phi(x)\cdot J\phi(x)dx-\int_{\Omega}\sum_{k=1}^{N}d_{k}|\nabla\phi_{k}(x)|dx.$

If $0$ is an eigenvalue of $J$ with multiplicity $k$ , then we can show that
$0$ is an eigenvalue of (2) with multiplicity at least $k$ for any diagonal
diffusion matrix $D$ , which is true even for non-symmetric $J$ (see The-
orem 2.3 (i), below). However, there exist added multiplicities of the
$0$-eigenvalue for particular diagonal diffusion matrices $D$ determined by
$J$ and $\Omega$ , to be explained below in Theorem 2.3 (cf. \S 2.3 below). This
fact is related to the so called Turing-type destabilization for (1), to be
elucidated in \S 3. We refer to [25, 19, 17, 16, 18, 11, 12, 3, 20, 21, 22, 23,
26, 24, 27, 28] for Turing destabilization for multicomponent reaction-
diffusion systems under homogeneous Neumann boundary conditions.

2.2. Non-Variational Case. Another situation in which analysis goes
rather easy is the case where the diffusion rates are all equal.

Theorem 2.2. There $exist_{\mathcal{S}}$ a piecewise smooth curve in the complex
$\zeta$ -plane, $repre\mathcal{S}ented$ by ${\rm Re}\zeta=C({\rm Im}\zeta)$ such that $C$ is even, $satisfie\mathcal{S}$

$C(O)=0, C’(O)=0andC(s)>0(s\neq 0)$

and $depend_{\mathcal{S}}$ only on $\Omega$ . We then have the following:

Suppose that the diffusion rates are all equal,$\cdot$

$D=d\mathbb{I}_{N},$ $d>0.$

(a) If all eigenvalues $\alpha$ of $J$ satisfy ${\rm Re}\alpha<dC({\rm Im}\alpha/d)$ , then all
eigenvalues $\lambda$ of (2) satisfy ${\rm Re}\lambda<0.$

(b) If there exists an eigenvalue $\alpha$ of $J$ that satisfies ${\rm Re}\alpha>dC({\rm Im}\alpha/d)$ ,
then there exists an eigenvalue $\lambda$ of (2) $\mathcal{S}uch$ that ${\rm Re}\lambda>0.$

(c) If an eigenvalue $\alpha$ of $J$ satisfies ${\rm Re}\alpha=dC({\rm Im}\alpha/d)$ , then there
exists an eigenvalue $\lambda$ of (2) such that ${\rm Re}\lambda=0.$

Let us exhibit an example of the curve ${\rm Re}\zeta=C({\rm Im}\zeta)$ in the sim-
plest case $\Omega=(-1, +1)$ . In this case the function $C(s)$ is defined by
$C(s)= \min\{C_{0}(s), C_{1}(s)\}$ where $C_{0},$ $C_{1}$ have the following parametric
representations for ${\rm Im}\alpha\geq 0.$

$C_{0}:{\rm Re} \zeta=\frac{\sqrt{2\tau}}{2}\frac{\sinh\sqrt{2\tau}-\sin\sqrt{2\tau}}{\cosh\sqrt{2\tau}+\cos\sqrt{2\tau}},$ ${\rm Im} \zeta=\frac{\sqrt{2\tau}}{2}\frac{\sinh\sqrt{2\tau}+\sin\sqrt{2\tau}}{\cosh\sqrt{2\tau}+\cos\sqrt{2\tau}},$

$C_{1}:{\rm Re} \zeta=\frac{\sqrt{2\tau}}{2}\frac{\sinh\sqrt{2\tau}+\sin\sqrt{2\tau}}{\cosh\sqrt{2\tau}-\cos\sqrt{2\tau}},$ ${\rm Im} \zeta=\frac{\sqrt{2\tau}}{2}\frac{\sinh\sqrt{2\tau}-\sin\sqrt{2\tau}}{\cosh\sqrt{2\tau}-\cos\sqrt{2\tau}},$
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where $\tau\geq 0$ (note that the curve is symmetric with respect to the real
axis). These curves are depicted in Figure 1 (below), and one can also
show that

$C_{0}(s)= \frac{1}{3}s^{2}+O(s^{4})$ , $C_{1}(s)=1+ \frac{1}{5}\mathcal{S}^{2}+O(s^{4})$ for $\mathcal{S}\approx 0$

We note that the functions $C_{0}(s)$ , $C_{1}(\mathcal{S})$ are smooth. However, the two
curves defined by these functions intersects infinitely many times on the
complex $\zeta$-plane, and $C$ is defined as the minimum of these functions.
This is the reason why we say in Theorem 2.2 that $C$ is piecewise
smooth. The intersection of these first two curves seems to originate
from that the boundary of $\Omega=(-1, +1)$ has more than one connected
components.

Figure 1 The Curves ${\rm Re}\zeta=C_{k}({\rm Im}\zeta)(k=0,1)$ for $\Omega=(-1,1)$ .

We now make some comments on Theorem 2.2. When diffusion rates
are equal, the stability property of (1) is summarize as follows.

$\bullet$ The trivial solution $0$ is stable if the mass transfer matrix $J$ is
stable.

$\bullet$ However, the instability of $J$ does not necessarily imply the
instability of the trivial solution O.

$\bullet$ Theorem 2.2 (a) says that the diffusion has a stabilizing effect
to some extent, in the sense that the system (1) can be stable
for suitably unstable $J.$

$\bullet$ In order for (1) to be unstable, the mass transfer matrix $J$ has to
be sufficiently unstable in the sense that one of the eigenvalues
of $J$ satisfies the condition in Theorem 2.2 (b).

$\bullet$ If $N\geq 2$ and eigenvalues of a family of mass transfer matrix
$J=J_{p}$ cross the critical curve as the parameter $p$ varies, then
steady or oscillatory destabilizations of spatially heterogeneous
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modes occur, which may help us to understand the origin of the
numerical results obtained by Levine and Rappel [15].

If, on the other hand, we allow the diffusion rates $d_{1}$ , . . . , $d_{N}$ to be
different, then there exist stable mass transfer matrices for which (2)
has eigenvalues with positive real part for suitable diffusion matrices
$D.$

2.3. Zero Eigenvalue. To determine the stability or instability of (1),
it is crucial to detect critical eigenvalues $\lambda$ , i.e., those eigenvalues $\lambda$

that satisfy ${\rm Re}\lambda=0$ , of (2). Thanks to Theorem 2.2, we are able, at
least in abstract manners, to determine such critical eigenvalues when
diffusion rates are all equal. In this subsection, we provide necessary
and sufficient conditions for the existence of $0$-eigenvalue, a special
type of critical eigenvalues, in terms of the general diagonal diffusion
matrix $D$ , the mass transfer matrix $J$ and the Steklov $eigenvalue\mathcal{S}$ of
the Laplacian on $\Omega.$

Theorem 2.3 (Zero Eigenvalue $\lambda=0$). There exist positive $con\mathcal{S}tants$

$\nu_{k}>0(k\in \mathbb{N})$ , depending on the domain $\Omega$ , and $\nu_{0}=0$ with

$\nu_{0}=0<\nu_{1}\leq\nu_{2}\leq\ldots\leq\nu_{k}\leq\ldots,$
$\lim_{karrow\infty}\nu_{k}=\infty$ , if $m\geq 2,$

$\nu_{0}=0<\nu_{1}=\frac{2}{|\Omega|}<\infty$ , if $m=1$ and $\Omega$ is an interval

$\mathcal{S}uch$ that $\lambda=0$ is an eigenvalue of (2) if and only if
(8) $\det(\nu_{k}D-J)=0$ for $\mathcal{S}omek\in \mathbb{N}\cup\{0\}.$

More precisely, with the notation

$\Gamma_{k}$ $:=\{(d_{1}, \ldots,d_{N})\in(\mathbb{R}_{>0})^{N}|\det(v_{k}D-J)=0,$ $D=diag(d_{1},$
$\ldots,$

$d_{N}$

the following properties hold.

(i) If $0$ is an eigenvalue of $J$ with geometric multiplicity $\ell\geq 1$

and the corresponding eigenvectors being $e_{i}(i=1, \ldots, \ell)$ , then

for any diffusion matrix $D,$ $\lambda=0$ is an eigenvalue of (2) with
multiplicity at least $\ell$ , and $\phi(x)\equiv e_{i}(i=1, \ldots, \ell)$ are the
$corre\mathcal{S}$ponding 0-eigenfunctions.

(ii) If the diffusion matrix $satisfie\mathcal{S}D\in\Gamma_{k}\neq\emptyset$ for some $k\in \mathbb{N},$

then $\lambda=0$ is an eigenvalue of (2) and the corresponding eigen-

functions are of the form $v(x)\psi$ , where $\psi\neq 0$ is a $0$ -eigenvector

of $\nu_{k}D-J$ and $v(x)$ is a non-constant scalar function defined
on $\Omega.$
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(iii) Assume that $\Gamma_{k}\neq\emptyset$ for $\mathcal{S}omek\in \mathbb{N}$ and that $\lambda=0$ is a
simple eigenvalue of (2) at a regular point $(d_{1}^{0}, \ldots, d_{N}^{0})\in\Gamma_{k}.$

As $D=diag(d_{1}, \ldots, d_{N})$ transversely crosses $\Gamma_{k}$ at $(d_{1}^{0}, \ldots, d_{N}^{0})$ ,
an eigenvalue $\lambda$ of (2) transversely crosses $\lambda=0$ along the real
$axi_{\mathcal{S}}.$

Some comments on Theorem 2.3 now follow.
$\bullet$ The constants $\nu_{k}$ in Theorem 3 are actually the Steklov eigen-
values for the Laplacian on $\Omega.$

$\bullet$ There are infinitely many Steklov eigenvalues and $\nu_{k}arrow\infty$ as
$karrow\infty$ for $m\geq 2.$

$\bullet$ On the other hand, when $m=1$ and $\Omega$ is an interval, there are
only two Steklov eigenvalues $0=\nu_{0}<\nu_{1}=2/|\Omega|.$

$\bullet$ The scalar function $v(x)$ in Theorem 2.3 (ii) is the harmonic
extension of the Steklov eigenfunction $\rho_{k}$ corresponding to the
Steklov eigenvalue $\nu_{k}$ , i.e., $0=\triangle v$ in $\Omega$ and $v=p_{k}$ on $\partial\Omega.$

We denote the unique solution of this problem by $\hat{\rho}_{k}(x)$ .
$\bullet$ It is also easy to verify the equality $\nu_{k}\Gamma_{k}=v_{j}\Gamma_{j}$ between the
two sets for all pairs $j,$ $k\in \mathbb{N}.$

$\bullet$ Therefore, if $\Gamma_{j}$ is nonempty for some $j\in \mathbb{N}$ then $\Gamma_{k}$ is also
nonempty for all $k\in \mathbb{N}.$

$\bullet$ Theorem 2.3 (iii) implies that as the diagonal diffusion matrix
crosses one of $\Gamma_{k}$ $(k\in N)$ , a steady destabilization of Turing
type occurs in (1).

For our purpose in what follows, it is convenient to make a definition
concerning matrix stability (see, [13, 10

Definition 2.1. (i) A square matrix $J$ is said to be $\mathcal{S}$lrongly stable
if $J-D$ is stable for any nonnegative diagonal matrix $D.$

(ii) A square matrix $J$ is called Turing-stable, if it is stable and there
exists a positive diagonal matrix $D$ such that $\det(D-J)=0.$

Clearly, a strongly stable matrix is stable, and for a strongly stable
$J$ the sets $\Gamma_{k}(k\in \mathbb{N})$ are empty. This means that for strongly stable
$J$ , steady destabilization of Turing type never occurs.

Now, for a Turing-stable $J$ , the sets $\Gamma_{k}(k\in \mathbb{N})$ are nonempty, and
Theorem 2.2 implies that the system (1) is stable for $d_{1}=d_{2}=\cdots=$

$d_{N}>0$ . Theorem 2.3 (iii), on the other hand, says that as $(d_{1}, \ldots, d_{N})$

transversely crosses one of the critical hyper-surfaces $\Gamma_{k}$ at a regular
point for the first time starting from the diagonal $\{d_{1}=d_{2}\cdots=d_{N}>$

$0\}$ , an eigenvalue of (2) crosses $\lambda=0$ from negative to positive, which
renders the system (1) unstable. This observation is useful in \S 3.
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2.4. Outline of Proof. In this section, we give main ideas to prove
Theorems 2.1, 2.2 and 2.3.

2.4.1. Proof of Theorem 2.1. Let $\phi$ be a non-trivial solution of (2).
The equation and the boundary conditions in (2) imply

${\rm Re} \lambda\int_{\Omega}|\phi|^{2}dx=\frac{1}{2}\int_{\partial\Omega}\overline{\phi}\cdot(J+J^{T})\phi d\sigma-\int_{\Omega}\sum_{k=1}^{N}d_{k}|\nabla\phi_{k}|^{2}dx,$

${\rm Im} \lambda\int_{\Omega}|\phi|^{2}dx=\frac{1}{2i}\int_{\partial\Omega}\overline{\phi}\cdot(J-J^{T})\phi d\sigma.$

Note that eigenvalues and eigenfunctions are in general complex val-
ued. When $J$ is symmetric, from the second equation, we immediately
conclude $\lambda\in \mathbb{R}$ , and hence, the corresponding eigenfunction $\phi$ is $\mathbb{R}-$

valued, proving Theorem 2.1 (i). The real eigenpair $(\lambda, \phi)$ satisfies the
following.

(R) $\lambda\int_{\Omega}|\phi|^{2}dx=\int_{\partial\Omega}\phi\cdot J\phi d\sigma-\int_{\Omega}\sum_{k=1}^{N}d_{k}|\nabla\phi_{k}|^{2}dx.$

If the eigenvalues of $J$ are negative, then there exists a constant $C>0$

such that $\phi\cdot J\phi\leq-C|\phi|^{2}$ for $\phi\in \mathbb{R}^{N}$ , and hence (R) implies that

$\lambda\int_{\Omega}|\phi|^{2}dx\leq-C\int_{\partial\Omega}|\phi|^{2}d\sigma-\int_{\Omega}\sum_{k=1}^{N}d_{k}|\nabla\phi_{k}|^{2}dx<0,$

establishing (ii).
To prove (iii), we use the variational characterizations of the k-th

eigenvalue $\lambda_{k-1}$ and the $(k+1)$-th eigenvalue $\lambda_{k}$ . To begin with, we
use the following max-min characterization [9, 14] of $\lambda_{k-1}$ ;

$\lambda_{k-1}=\sup_{Y\in \mathcal{H}_{k}^{N}} (\inf\{\mathcal{R}^{(N)}(\phi) \phi\in Y, \Vert\phi\Vert_{L^{2}(\Omega)}=1\})$
,

where $\mathcal{H}_{k}^{N}$ is the set of $k$-dimensional subspaces of $[H^{1}(\Omega)]^{N}$ and

$\mathcal{R}^{(N)}(\phi)=\int_{\partial\Omega}\phi\cdot J\phi d\sigma-\int_{\Omega}\sum_{k=1}^{N}d_{k}|\nabla\phi_{k}|^{2}dx.$

Let us denote the eigenvalues and eigenvectors of $J$ , respectively, by

$\alpha_{1}\geq..$ . $\geq\alpha_{k}>0>\alpha_{k+1}\geq.$ . . $\geq\alpha_{N}$ and $e_{1}$ , .. . , $e_{k},$ $e_{k+1}$ , . . ., $e_{N},$

in which $\{e_{1}, . . . , e_{k}, e_{k+1}, . . . , e_{N}\}$ forms an orthonormal basis of $\mathbb{R}^{N}.$

We choose $Y=Y_{c}$ $:=\mathbb{R}e_{1}\oplus\cdots\oplus \mathbb{R}e_{k}\in \mathcal{H}_{k}^{N}$ in the characterization
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above, and obtain

$\lambda_{k-1}\geq\inf\{\mathcal{R}^{(N)}(\phi) \phi\in Y_{c}, \Vert\phi\Vert_{L^{2}(\Omega)}=1\}\geq\alpha_{k}|\partial\Omega|/|\Omega|>0,$

establishing that (2) has at least $k$ positive eigenvalues.
To prove that there exist exactly $k$ positive eigenvalues for large

diffusion rates, we use the following min-max characterization [9] of
$\lambda_{k}.$

$\lambda_{k}=\inf_{Y\in \mathcal{H}_{k}^{N}} (\sup\{\mathcal{R}^{(N)}(\phi) \phi\in Y^{\perp}, \Vert\phi\Vert_{L^{2}(\Omega)}=1\})$ ,

where $Y^{\perp}=\{\phi\in[H^{1}(\Omega)]^{N}|(\phi, \psi)_{L^{2}(\Omega)}=0\forall\psi\in Y\}$ is the $L^{2}-$

orthogonal complement of $Y$ . We choose again $Y=Y_{c}$ . Its orthogonal
complement $Y_{c}^{\perp}$ is given by

$Y_{c}^{\perp}=\hat{H}^{1}e_{1}\oplus\ldots\hat{H}^{1}e_{k}\oplus H^{1}e_{k+1}\oplus\ldots\oplus H^{1}e_{N},$

where

$\hat{H}^{1}=\{v\in H^{1}(\Omega)|\int_{\partial\Omega}vd\sigma=0\}, H^{1}=H^{1}(\Omega)$ .

In order to maximize the first term in $\mathcal{R}^{(N)}(\phi)$ , it is best to choose
$\phi\in\hat{H}^{1}e_{1}$ , i.e., $\phi=ve_{1}$ for some $v\in\hat{H}^{1}$ with $\Vert v\Vert_{L^{2}(\Omega)}=1$ . For this
choice of test function, we have

$\lambda_{k}\leq \mathcal{R}^{(N)}(\phi)=\alpha_{1}\int_{\partial\Omega}v^{2}d\sigma-\int_{\Omega}\sum_{j=1}^{N}d_{j}(e_{1}^{(j)})^{2}|\nabla v|^{2}dx$

$leq \alpha_{1}\int_{\partial\Omega}v^{2}d\sigma-d_{\min}\int_{\Omega}|\nabla v|^{2}dx,$

where $d_{\min}= \min\{d_{1}, . . . , d_{N}\}$ and $e_{k}^{(j)}$ stands for the j-th component
of $e_{k}$ . By using the characterization of the smallest non-zero Steklov
eigenvalue ([14, 6])

$\nu_{1}=\min\{\int_{\Omega}|\nabla v|^{2}dx/\int_{\partial\Omega}v^{2}d\sigma|v\in\hat{H}^{1},$ $\Vert v\Vert_{L^{2}}\neq 0\},$

we find that $\mathcal{R}^{(N)}(\phi)<0$ if $d_{\min}>\alpha_{1}/\nu_{1}$ . This implies that $\lambda_{k}<0$ for
diffusion matrices $D$ with $d_{\min}>\alpha_{1}/\nu_{1}$ . Hence, by choosing

$d^{*}(J, \Omega):=\alpha_{1}/v_{1},$

we establish Theorem 2.1 (iii).
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2.4.2. Proof of Theorem 2.2. Our proof crucially depends on the so
called Dirichlet-to-Neumann map. Let us begin with recalling the def-
inition and several properties of this map (see, [6]).

We consider Dirichlet boundary value problem for the $\mathbb{C}$-valued func-
tion $v(x)$ :

(9) $\lambda v(x)=\triangle v(x) x\in\Omega, v(x)=p(x) x\in\partial\Omega,$

where $p\in H^{3/2}(\partial\Omega)$ is a given function (Dirichlet data) and $\lambda\in \mathbb{C}$ is
considered as a parameter. Dirichlet-to-Neumann map is defined by
following the steps below.
Step 1: The problem (9) has a unique solution $v$ $\lambda,p$) $\in H^{2}(\Omega)$ for
each $p\in H^{3/2}(\partial\Omega)$ if $\lambda\in \mathbb{C}\backslash \sigma(\triangle_{Dir})$ .
Step2: The Dirichlet-to-Neumann map $\mathcal{T}(\lambda)$ : $H^{3/2}(\partial\Omega)arrow H^{1/2}(\partial\Omega)$

is defined by

(10) $(\mathcal{T}(\lambda)p)(x)=\partial_{n}v(x;\lambda,p) x\in\partial\Omega,$

Step 3: Eigenvalues of $\mathcal{T}(0):\nu_{0}=0<\nu_{1}\leq\nu_{2}\leq\ldots\leq\nu_{j}arrow\infty$ are
called the Steklov eigenvalues for the Laplacian $\triangle.$

Lemma 2.1. Let $\Sigma_{\mu}^{\theta}:=\{\lambda\in \mathbb{C}|\lambda\neq\mu, |\arg(\lambda-\mu)|\leq\pi-\theta\}$ for
$\mu\in \mathbb{R},$ $0<\theta<\pi$ , and $\mu_{0}:=\max\sigma(\triangle_{Dir})<0.$

(i) The operators $\mathcal{T}(\lambda)$ : $H^{3/2}(\partial\Omega)arrow H^{1/2}(\partial\Omega)$ are bounded uni-
formly with respect to $\lambda\in\Sigma_{\mu 0/2}^{\theta}.$

(ii) For each $\epsilon\in(0, \pi)$ , $d\mathcal{T}(\lambda/d)arrow 0$ as $darrow 0$ uniformly in
$\lambda\in\{\lambda\in \mathbb{C}||\arg\lambda|<\pi-\epsilon\}U\{0\}.$

(iii) The operator $\mathcal{T}(0)i\mathcal{S}\mathcal{S}elf$-adjoint with $re\mathcal{S}pect$ to the $L^{2}$ -inner
product

$\langle u, v\rangle:=\int_{\partial\Omega}u(x)v(x)d\sigma(x)$ .

(iv) For each $p\in H^{3/2}(\partial\Omega)$ , $\mathcal{T}(\lambda)pi_{\mathcal{S}}$ analytic in $\lambda\in\Sigma_{\mu 0/2}^{\theta}$ . In

particular, $\langle \mathcal{T}’(0)p,$ $p\rangle>0$ for any $p\in H^{3/2}(\partial\Omega),p\not\equiv 0$ , where
the prime means the derivative with $re\mathcal{S}pect$ to $\lambda.$

This Lemma will play roles in what follows.

Theorem 2.4. There exists a $piecewi_{\mathcal{S}}e$ smooth curve in the complex
$\zeta$ -plane, $repre\mathcal{S}ented$ by ${\rm Re}\zeta=C({\rm Im}\zeta)$ such that $C$ is even, satisfies

$C(O)=0, C’(0)=0andC(\mathcal{S})>0(s\neq 0)$

and depends only on $\Omega$ . We then have the following:
Suppose that $\mathcal{T}(\lambda)v=\zeta v$ has a nontrivial solution $v\not\equiv O$ for $\zeta\in \mathbb{C}.$

(a) If $\zeta \mathcal{S}ati\mathcal{S}fies{\rm Re}\zeta<C({\rm Im}\zeta)$ , then ${\rm Re}\lambda<0.$
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(b) If $\zeta sati_{\mathcal{S}}fies{\rm Re}\zeta>C({\rm Im}\zeta)$ , then there exists a $\lambda$ such that
${\rm Re}\lambda>0.$

(c) If $\zeta satisfie\mathcal{S}{\rm Re}\zeta=C({\rm Im}\zeta)$ , then there $exist\mathcal{S}$ a $\lambda$ such that
${\rm Re}\lambda=0.$

PROOF of Theorem 2.4. Our strategy for the proof is to character-
ize the eigenvalues $E(\lambda)$ of $\mathcal{T}(\lambda)$ for $\lambda\in \mathbb{C}\backslash \sigma(\triangle_{Dir})$ , as the analytic
continuation of the eigenvalues $\{\nu_{k}\}_{k=0}^{\infty}$ of $\mathcal{T}(0)$ . We then use the char-
acterizations to identify the threshold curve defined by ${\rm Re}\zeta=C({\rm Im}\zeta)$ .

$E\in \mathbb{C}$ is an eigenvalue of $\mathcal{T}(\lambda)$ if and only if $\mathcal{F}(\lambda, b, E)=0$ has
a nontrivial solution $b\neq 0$ , where $\mathcal{F}(\lambda, b, E)$ $:=\mathcal{T}(\lambda)b-Eb$ which is
defined for $\lambda\in \mathbb{C}\backslash \sigma(\triangle_{Dir})$ , $b\in H^{3/2}(\partial\Omega)$ with $b\not\equiv O.$

We employ the Lyapunov-Schmidt method as developed in Chapter
14 of [8]. For each $j\in\{0\}\cup \mathbb{N}$ , we decompose the space $H^{3/2}(\partial\Omega)$ and
the equation as follows:

$H^{3/2}(\partial\Omega)=[\rho_{j}]\oplus[\rho_{j}]^{\perp}$ and $\{\begin{array}{l}\mathcal{F}_{1}(\lambda,\hat{b}, E) = 0for \hat{b}\in[\rho_{j}]^{\perp}\mathcal{F}_{2}(\lambda,\hat{b}, E) = 0\end{array}$

in which

$\mathcal{F}_{1}(\lambda,\hat{b}, E):=\langle \mathcal{T}(\lambda)(\rho_{j}+\hat{b})-E(\rho_{j}+b\rho_{j}\rangle,$ $\mathcal{F}_{2}:=\mathcal{F}-\mathcal{F}_{1}\rho_{j}.$

Implicit function theorem applied to $\mathcal{F}_{2}=0$ near $(\lambda,\hat{b}, E)=(0,0, \nu_{j})$

show that there exists $\hat{b}(\lambda, E)$ defined near $(\lambda, E)=(0, v_{j})$ with the

following properties: (1) $\sqrt{}2(\lambda,\hat{b}(\lambda, E), E)=0$ for all $(\lambda, E)$ in a neigh-

borhood of $(\lambda, E)=(0, \nu_{j})$ ; (2) $\hat{b}(\lambda, E)$ is analytic in $(\lambda, E)$ ; (3) $\hat{b}$

satisfies $\hat{b}(0, v_{j})=0$ and $\partial_{E}\hat{b}(0, v_{j})=0$ . Moreover, $\partial_{\lambda}\hat{b}(0, \nu_{j})$ solves

$[\mathcal{T}(0)-\nu_{j}](\partial_{\lambda}\hat{b}(0, \nu_{j}))+\mathcal{T}’(0)\rho_{j}-\langle \mathcal{T}’(0)\rho_{j}, \rho_{j}\rangle\rho_{j}=0.$

Substituting $\hat{b}=\hat{b}(\lambda, E)$ , the equation $\mathcal{F}_{1}=0$ is equivalent to

$0=\mathcal{G}(\lambda, E):=\mathcal{F}_{1}(\lambda,\hat{b}(\lambda, E), E)$ .

The equation has the unique solution $E=E(\lambda)$ , since $\partial_{E}\mathcal{G}(0, \nu_{j})=-1.$

It is also easy to show that $E(\lambda)$ is analytic in $\lambda$ , satisfies $E(O)=v_{j}$

and $E’(O)=\langle \mathcal{T}’(0)\rho_{j},$ $\rho_{j}\rangle>0$ (cf. Lemma 2.1 (iv)). Substituting $E(\lambda)$

back into $\rho_{j}+\hat{b}(\lambda, E(\lambda))$ , we obtain the analytic family of eigenpair
$(E(\lambda), b(\lambda))$ for $\mathcal{T}(\lambda)$ , i.e., $\mathcal{T}(\lambda)b(\lambda)=E(\lambda)b(\lambda)$ with $b(\lambda)$ normalize
as $\Vert b(\lambda)\Vert_{L^{2}(\partial\Omega)}=1.$

We now analytically continue this $E(\lambda)$ for $\lambda\in \mathbb{C}\backslash \sigma(\triangle_{Dir})$ and call
the extended function $E_{j}(\lambda)$ . For any eigenvalue $E(\lambda)$ we continue it
to $\lambda=0$ , then $E(O)$ must be one of the Steklov eigenvalues $\nu_{j}(j=$

$0$ , 1, . .
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For each $j\in\{0\}\cup \mathbb{N}$ and $\tau\in \mathbb{R}$ , we define $C_{j}$ by

${\rm Re} E_{j}(i\tau)=C_{j}({\rm Im} E_{j}(i\tau))$ .

This means that we map the imaginary axis of $\lambda$-plane into $\zeta$-plane by
the function $E_{j}$ : $\lambda\mapsto E_{j}(\lambda)$ . It is easy to see that $E_{j}(\lambda)=E_{j}(\overline{\lambda})$ ,
and hence $C_{j}(s)(j=0,1, \ldots)$ are even functions. By setting $\tau=0$ , we
also have $C_{j}(0)=E_{j}(0)=v_{j}$ . To prove Theorem 2.4, let us define the
desired function by $C(s)= \inf\{C_{j}(s)|j\in\{0\}\cup \mathbb{N}\}$ . Then it follows
that statements (a), (b) and (c) of Theorem 2.4 hold for C. $\square$

By using the Theorem 2.4, we are now able to complete the proof of
Theorem 2.2 as follows.

Note that $\lambda\in \mathbb{C}\backslash (-\infty, 0)$ is an eigenvalue of (2) if and only if

(11) $(\begin{array}{lll}d_{l}\mathcal{T}(\frac{\lambda}{d_{1}}) 0 00 . 00 0 d_{N}\mathcal{T}(\frac{\lambda}{d_{N}})\end{array})\phi(x)-J\phi(x)=0, x\in\partial\Omega$

which is equivalent to $d\mathcal{T}(\lambda/d)\phi=J\phi$ for $D=d\mathbb{I}_{N},$ $d>0.$

By using the spectral decomposition of $J$ , one can show that $\lambda$ is an
eigenvalue of (2) if and only if

$d\mathcal{T}(\lambda/d)b=\alpha b$ on $\partial\Omega$

has a non-trivial solution $b\not\equiv O$ , where $\alpha$ is an eigenvalue of $J$ . We now
apply Theorem 2.4 with $(\lambda, \zeta)rightarrow(\lambda/d, \alpha/d)$ to complete the proof. $\square$

2.4.3. Proof of Theorem 2.3. We put $\lambda=0$ in (11), and obtain

(12) $D\mathcal{T}(O)\phi=J\phi$ on $\partial\Omega.$

Expanding $\phi$ in terms of the complete ortho-nomal system of eigen-
pairs $\{\rho_{j}, \nu_{j}\}_{j=1}^{\infty}$ of $\mathcal{T}(0)$ , this equation decouples as follows:

$\phi(x)=\sum_{j=0}^{\infty}\rho_{j}(x)\psi_{j} x\in\partial\Omega,$

$\sum_{j=0}^{\infty}\rho_{j}(x)(\nu_{j}D\psi_{j}-J\psi_{j})=0 x\in\partial\Omega,$

where $\psi_{j}\in \mathbb{C}^{N}$ $(j\in \mathbb{N})$ are constant vectors. Therefore, (12) has
nontrivial solutions if and only if there exists $k\in\{0\}\cup \mathbb{N}$ such that
$\nu_{k}D\psi_{k}-J\psi_{k}=0$ has a nontrivial solution $\phi_{k}\neq 0$ , which immediately
proves (i) and (ii).

Let us now proceed to the proof of (iii). Since $\lambda=0$ is a simple
eigenvalue of (11) for $D=D^{0}$ by the assumption in Theorem 2.3 (iii),
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where $D^{0}=diag(d_{1}^{0}, \ldots, d_{N}^{0})$ , Theorem 2.3 (ii) implies that there exists
$\psi\neq 0\in \mathbb{R}^{N}$ such that $(\nu_{k}D^{0}-J)\psi=0$ , and that the corresponding
eigenfunction is given by $\phi=\rho_{k}\psi$ . The simplicity of the eigenvalue
$\lambda=0$ means that $ker(v_{k}D^{0}-J)$ is spanned by $\psi$ and $\nu_{k}$ is a simple
eigenvalue of $\mathcal{T}(0)$ . Moreover, the kernel of $(\nu_{k}D^{0}-J)^{T}$ , the transpose
of $v_{k}D^{0}-J$ , is also one-dimensional and spanned by a nonzero vector
$\psi^{*}\in \mathbb{R}^{n}$ such that $\psi\cdot\psi^{*}=1$ (so normalized).

We will now show that the eigenvalue $\lambda$ of (11) is continued from
$\lambda=0$ to $\lambda\in \mathbb{R}$ in a neighborhood of $\lambda=0$ , by using again the
Lyapunov-Schmidt method [8]. Let us define an $L^{2}$-inner product on

the two Hilbert spaces $X=[H^{3/2}(\partial\Omega)]^{N}$ and $Y=[H^{1/2}(\partial\Omega)]^{N}$ by

$\langle u,$ $v \rangle:=\int_{\partial\Omega}u\cdot vd\sigma$ for $u,$ $v\in X,$ $Y.$

To ease presentation in the sequel, we denote the left hand side of
(11), with the identification $D=diag(d_{1}, \ldots, d_{N})$ , as follows.

$\mathcal{T}_{D}(\lambda)$ $:=$ diag ($d_{1} \mathcal{T}(\frac{\lambda}{d_{1}}),$ $d_{2} \mathcal{T}(\frac{\lambda}{d_{2}}),$

$\ldots,$
$d_{N} \mathcal{T}(\frac{\lambda}{d_{N}}))$ ,

and hence (11) is rewritten concisely as: $\mathcal{T}_{D}(\lambda)\phi-J\phi=0$ . The kernel
of $L=\mathcal{T}_{D^{0}}(0)-J=D^{0}\mathcal{T}(0)-J$ is spanned by $\rho_{k}\psi$ and the kernel
of its adjoint (with respect to the inner product introduced above)
$L^{*}=D^{0}\mathcal{T}(0)-J^{T}$ is spanned by $\rho_{k}\psi^{*}$ , since $\mathcal{T}(O)$ is self-adjoint (cf.
Lemma 2.1 (iii)). We now decompose the spaces $X,$ $Y$ as follows.

$X=[kerL]\oplus X_{1}, Y=[kerL^{*}]\oplus Y_{1}$

with $X_{1}=[kerL]^{\perp},$ $Y_{1}=imL=[kerL^{*}]^{\perp}$

We also denote by $Q$ : $Yarrow Y$ the orthogonal projection onto $Y_{1}.$

In order to show the solvability of $\mathcal{T}_{D}(\lambda)\phi-J\phi=0$ near $(\lambda, D, \phi)=$

$(0, D^{0}, \rho_{k}\psi)$ , we define the analytic mapping $\mathcal{F}:(-\epsilon, \epsilon)\cross V\cross X_{1}arrow Y$

for $(\lambda, D, \phi)\in(-\epsilon, \epsilon)\cross V\cross X_{1}$ by

$\mathcal{F}(\lambda, D, \phi):=\mathcal{T}_{D}(\lambda)(\rho_{k}\psi+\phi)-J(\rho_{k}\psi+\phi)\in Y,$

where $\epsilon>0$ is a small constant and $V$ is a neighborhood of $D=D^{0}.$

In the sequel, we always identify the matrix $D=diag(d_{1}, \ldots, d_{N})$ with
the vector $d=(d_{1}, \ldots, d_{N})^{T}$ . It is easy to see that $\mathcal{F}(\lambda, D, \phi)=0$ is
equivalent to

(13) $Q\mathcal{F}(\lambda, D, \phi)=0$

(14) $\langle,\overline{/\prime}(\lambda, D, \phi) , \rho_{k}\psi^{*}\rangle=0.$

Since $\mathcal{F}(0, D^{0},0)=0$ and $\partial_{\phi}Q\mathcal{F}(O, D^{0},0)=QL$ : $X_{1}arrow Y_{1}$ is an
isomorphism, the implicit function theorem implies that (13) is solvable
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in $\phi=\phi(\lambda, D)$ with

$\phi(0, D^{0})=0, \partial_{\lambda}\phi(0, D^{0})=-L_{1}^{-1}Q\mathcal{T}’(0)\rho_{k}\psi,$

$\partial_{d_{i}}\phi(0, D^{0})\hat{d}_{i}=-\nu_{k}(L_{1}^{-1}Q\rho_{k}\tilde{\psi}^{i})\hat{d}_{i} (i=1, \ldots, N)$ ,

where $L_{1}=QL|_{X_{1}}$ : $X_{1}arrow Y_{1}$ is isomorphic and $\tilde{\psi}^{i}\in \mathbb{R}^{n}$ is the
vector whose i-th component is the same as that of $\psi$ and all other
components are O. Substituting $\phi(\lambda, D)$ into (14), we find that $\lambda$ near
$\lambda=0$ is an eigenvalue of (11), if and only if $(\lambda, D)\in(-\epsilon, \epsilon)\cross V$ satisfies

(15) $F(\lambda, D):=\langle \mathcal{F}(\lambda, D, \phi(\lambda, D \rho_{k}\psi^{*}\rangle=0.$

Since $F(O, D^{0})=0$ and $\partial_{\lambda}F(O, D^{0})=\langle \mathcal{T}’(0)\rho_{k},$ $\rho_{k}\rangle\psi\cdot\psi^{*}=\langle \mathcal{T}’(0)\rho_{k},$ $\rho_{k}\rangle$

is positive thanks to Lemma 2.1 (iv), we apply the implicit function
theorem to $F(\lambda, D)=0$ , and obtain the solution $\lambda=\lambda(D)$ of (15)
which satisfies $\lambda(D^{0})=0$ and

(16) $\partial_{d}\lambda(D^{0})\hat{d}=-\frac{\nu_{k}}{\langle \mathcal{T}’(0)\rho_{k},\rho_{k}\rangle}\sum_{i=1}^{N}\psi^{i}\psi_{i}^{*}\hat{d}_{i},$

where $\psi=(\psi^{1}, \ldots, \psi^{N})^{T},$ $\psi^{*}=(\psi_{1}^{*}, \ldots, \psi_{N}^{*})^{T}$ and $\hat{d}=(\hat{d}_{1}, \ldots,\hat{d}_{N})^{T}.$

Notice that $\lambda(D)=0$ for $D\in\Gamma_{k}\cap V$ . This means that $\partial_{d}\lambda(D^{0})\hat{d}=0$

for all vectors $\hat{d}$ in the tangent space to $\Gamma_{k}$ at $D=D^{0}$ . On the other
hand, $\psi\cdot\psi^{*}=1$ implies that there exists at least one $i\in\{1, . . . , N\}$

so that $\psi^{i}\psi_{i}^{*}\neq 0$ . Therefore, (16) implies that $\lambda=\lambda(D)$ transversely
crosses $\lambda=0$ as $D$ transversely crosses $\Gamma_{k}$ at $D=D^{0}$ . This completes
the proof of Theorem 2.3 (iii).

2.4.4. Challenges. The proof displayed above for Theorem 2.2 raises
several challenges.

Our proof does not give explicit way to compute the function $C$ for a
given domain $\Omega$ . Since the main part of this function is determined by
$E_{0}(\lambda)$ , we would like, ideally, to find the analytic expression of $E_{0}(\lambda)$

by computing derivatives $E_{0}^{(n)}(O)$ for all integers $n\geq 0$ . We are able to
compute the first two derivatives as follows.

$E_{0}’(0)= \frac{|\Omega|}{|\partial\Omega|},$

$E_{0}"(0)= \frac{2}{|\partial\Omega|}(\int_{\Omega}v_{0}’+v_{0}dx)<0,$

where $v_{0}’,$
$v_{0}$ are the unique solutions of

$\triangle v_{0}’=1 in\Omega, v_{0}’=0 on\partial\Omega,$

$\triangle v_{0}=0 in\Omega, v_{0}=b_{1} on\partial\Omega,$
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and $b_{1}$ is such that

$\mathcal{T}(0)b_{1}=E_{0}’(0)-\partial_{n}v_{0}’$ on $\partial\Omega$ and $\int_{\partial\Omega}b_{1}d\sigma=0.$

Although continuing this kind of process seems to be rather intractable,
it is worthwhile pursuing and we also have to take into account that
the operator $\mathcal{T}(\lambda)$ has singularities on $\sigma(\triangle_{Dir})$ .

When the diagonal diffusion matrix $D$ is a positive multiple of the
identity matrix, we are able to conceptually determine critical eigen-
values in terms of the eigenvalues of the mass transfer matrix $J$ . For
nonidentical diffusion rates, the arguments employed in the proof of
Theorem 2.2 will not work. Hence, we need to change our viewpoint,
and ask how to determine the set of diffusion rates $d_{j}>0$ for which

$(\begin{array}{lll}d_{1}\mathcal{T}(\frac{i_{\mathcal{T}}}{d_{1}}) 0 00 . 00 0 d_{N}\mathcal{T}(\frac{i\tau}{d_{N}})\end{array})\phi(x)-J\phi(x)=0, x\in\partial\Omega$

has a non-trivial solution $\phi(x)$ for some $\tau\in \mathbb{R}$ . For each $\tau>0$ , such
a set of diffusion rates, if not empty, constitutes an $N-2$ dimensional
surfaces $\Gamma_{Hop}(\tau)$ , because such “determinant equals $0$ condition will
give rise to an equation for one complex variable, and hence to a set
of two real valued equations. Subsequently, we need to find conditions
on $J$ which imply $\Gamma_{Hop}(\tau)\neq\emptyset$ for some $\tau>0$ , and to describe the set
$\Gamma_{Hop}$ $:=\cup\{\Gamma_{Hop}(\tau)|\tau\in \mathbb{R}\}$ which presumably is $N-1$ dimensional.
In the simplest situation, we will exhibit this kind of argument, below
in \S 3.

3. DESTABILIZATION

The purpose of this section is to find Turing type of destabilization
mechanism in (1). The results obtained in Theorems 2.1 and 2.2 may
be summarized as follows.

The system (1) tends to be $\mathcal{S}table$ (resp. unstable) if $J$ is
stable (resp. unstable) and diffusion rates do not differ
substantially.

We now want to seek analogy with reaction-diffusion case. In [3],
Turing instability in the general $N$-component reaction-diffusion sys-
tem

(RD) $\partial_{t}u=D\triangle u+Au$ in $\Omega,$ $\partial_{n}u=0$ on $\partial\Omega$

is investigated under the natural boundary conditions, where $A$ is an
$N\cross N$ real matrix. A guiding principle for the instability to occur is
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proposed, and its validity is rigorously confirmed for $N=2$ , 3 in [3],
based upon and summarizing the previous results in [25, 19, 17, 16,
18, 11, 21, 22, 23, 26, 24, 27, 28] To explain the main feature of the
results of [3], we introduce some terminologies. For an $N\cross N$ matrix $A$

and a subset $I\subset\{1, . . . , N\}$ of indices, we denote by $A_{I}$ the principal
sub-matrix obtained from $A$ by choosing exactly rows and columns of
indices belonging to $I$ . If two sets of indices $I,$ $K\subset\{1, . . . , N\}$ satisfy
$I\cup K=\{1, . . . , N\}$ and $I\cap K=\emptyset$ , then the corresponding sub-matrices
$A_{I}$ and $A_{K}$ are called complementary in the full matrix $A.$

When $A$ is stable and contains an unstable sub-matrix $A_{I}$ with its
complementary partner being $A_{K}$ , the matrix $A$ is rearranged as

$A=(\begin{array}{ll}A_{I} BC A_{K}\end{array})$

Then (RD) is written as

$(\begin{array}{l}\partial_{t}v\partial_{t}w\end{array})=(\begin{array}{ll}D_{I}\triangle+A_{I} BC D_{K}\triangle+A_{K}\end{array})(\begin{array}{l}vw\end{array}),$ $u=(\begin{array}{l}vw\end{array}),$

and the guiding principle says that the trivial solution of (RD) desta-
bilizes if the diffusion rates in $D_{I}$ are sufficiently small compared with
the diffusion rates in $D_{K}$ . In other words, it is summarized as follows.

If the $diffu\mathcal{S}ion$ effect of an unstable $subsy_{\mathcal{S}}tem$ in a $\mathcal{S}ta-$

ble full $sy_{\mathcal{S}}tem$ is sufficiently weak compared with the

diffusion effect of its complementary partner, then the

diffusion-induced instability (Turing instability) occurs.

In \S 3.2 we will establish, to some extent, the validity of this guiding
principle for (1). We also show in \S 3.3 that unstable systems for equal
diffusivity are stabilized when the diffusion effects of a stable subsystem
is weak compared with that of its complementary partner. Such a sta-
bilization phenomenon does not occur in the reaction-diffusion system
(RD).

3.1. Reduced System. To apply the analogy to (1), let us decompose
$J$ as follows.

$J=(\begin{array}{ll}J_{I} BC J_{K}\end{array}) I\cup K=\{1, 2, . . . , N\}, I\cap K=\emptyset,$

so that $(J_{I}, J_{K})$ constitutes a complementary pair in $J$ . Using this, we
find that (11) is equivalent to

(11E) $(\begin{array}{ll}\mathcal{T}_{D_{I}}(\lambda) 00 \mathcal{T}_{D_{K}}(\lambda)\end{array})(\begin{array}{l}vw\end{array})=(\begin{array}{ll}J_{I} BC J_{K}\end{array})(\begin{array}{l}vw\end{array})$
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where

$\phi=(\begin{array}{l}vw\end{array}),$ $\mathcal{T}_{D_{L}}(\lambda)=$ diag ($d_{\ell}\mathcal{T}(\lambda/d_{\ell}))_{\ell\in L}$ $L=I,$ $K.$

If $J$ is stable and the diffusion rates $d_{1}$ , . . . , $d_{N}$ do not differ substan-
tially, then all the eigenvalues of (11E) have negative real part. If
$\det J_{I}\neq 0$ , then (11E) formally converges to

(17) $\mathcal{T}_{D_{K}}(\lambda)w=(J_{K}-CJ_{I}^{-1}B)w$ a$s$ $D_{I}arrow 0.$

When $J$ is stable and $J_{I}$ is $un\mathcal{S}table$ , is $J_{K}^{*}=J_{K}-CJ_{I}^{-1}B$ unstable? If
$J_{J}^{*}$ is unstable, then the reduced system will be unstable, hence Turing
type instability must have taken place in the process of taking limit
$D_{I}arrow 0.$

This suggests (but does not prove) that (2) has eigenvalues with pos-
itive real part when the diffusion rates in $D_{I}$ are sufficiently small. This
remind us of Turing instability. The line of reasoning so far is help-
ful to detect Turing type mechanism in (1), but it does not rigorously
prove that such a mechanism exists. The reason is that (11E) does
not necessarily converge to its reduced system (17) as $D_{I}arrow 0$ , since
the process of taking the limit $D_{I}arrow 0$ is a singular perturbation prob-
lem, and some critical pieces of information may be lost in the limit.
Despite of this, we are still able to prove the existence of Turing type
destabilization, by showing that $D=diag(D_{I}, D_{K})$ crosses the family
of hyper-surfaces $\{\Gamma_{k}\}_{k=1}^{\infty}$ infinitely many times as $D_{I}arrow 0$ in case the
dimension of $\Omega$ is greater than 1.

When $m=1$ and $\Omega=(-1, +1)$ , we have a simple example of Turing
type Instability.

Theorem 3.1. Consider (1) with $m=1,$ $N=2,$ $\Omega=(-1, +1)$ , and
let $J$ satisfy

$J=(\begin{array}{ll}p qr s\end{array}),$ $p<0,$ $\mathcal{S}>0$ , tr $J<0,$ $\det J>0.$

(i) For all $d_{2}\geq d_{1}>0$ , the system (1) $i\mathcal{S}$ stable.
(ii) As $d_{2}arrow 0$ , the $\mathcal{S}y_{\mathcal{S}}tem(2)$ converges to the reduced $sy_{\mathcal{S}}tem$

$d_{1}\mathcal{T}(\lambda/d_{1})u=J_{1}^{*}u$ with $J_{1}^{*}=\det J/s>0.$

(iii) For each fixed $d_{1}\leq\det J/s_{f}$ as $d_{2}arrow 0(1)$ becomes destabilized
through an oscillatory mode.

(iv) For each fixed $d_{1}>\det J/s,$ $a\mathcal{S}d_{2}arrow 0$ the $\mathcal{S}ystem(1)$ becomes
$de\mathcal{S}$tabilized through $a$ steady mode or through an oscillatory
mode.
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PROOF of Theorem 3.1. The Dirichlet-to-Neumann map $\mathcal{T}(\lambda)$ is
explicitly given by the $2\cross 2$ matrix:

$\mathcal{T}(\lambda)(\begin{array}{l}v(-1)v(+1)\end{array}):=\frac{\sqrt{\lambda}}{\sinh 2\sqrt{\lambda}}(\cosh 2\sqrt{\lambda}-2\cosh 2\sqrt{\lambda}-2)(\begin{array}{l}v(-1)v(+1)\end{array})$

In terms of the matrix $\mathcal{T}(\lambda)$ , the problem (11) with $J$ being given as
above has nontrivial solution if and only if the $4\cross 4$ matrix

$\det(\begin{array}{llll}d_{l}\mathcal{T}(\lambda/d_{l})- p\mathbb{I}_{2} -qI_{2} -rI_{2} d_{2}\mathcal{T}(\lambda/d_{2})- s\mathbb{I}_{2}\end{array})=0$

is singular, where $\mathbb{I}_{2}$ is the $2\cross 2$ identity matrix. Applying elementary
row (or column) operations on the $4\cross 4$ matrix, this condition is further
recast as the singularity condition of the $2\cross 2$ matrix

$\det[d_{1}d_{2}\mathcal{T}(\lambda/d_{1})\mathcal{T}(\lambda/d_{2})-\{pd_{2}\mathcal{T}(\lambda/d_{2})+\mathcal{S}d_{1}\mathcal{T}(\lambda/d_{1})\}$

$+(ps-qr)I_{2}]=$ O.

This is equivalent to

(18) $[(t_{1}^{+}-p)(t_{2}^{+}-\mathcal{S})-qr][(t_{1}^{-}-p)(t_{2}^{-}-s)-qr]=0,$

where

$t_{j}^{+}=d_{j}\sqrt{\lambda/d_{j}}\coth\sqrt{\lambda/d_{j}}, t_{j}^{-}=d_{j}\sqrt{\lambda/d_{j}}\tanh\sqrt{\lambda/d_{j}},$

from which we easily find

(19) $d_{j}arrow 0hmt_{j}^{\pm}=0,$ $\lim_{\lambdaarrow 0}t_{j}^{-}=0$ and $\lambdaarrow 0hmt_{j}^{+}=d_{j}$ for $j=1$ , 2.

To determine the steady destabilization curve in the first quadrant
of the $d_{1^{-}}d_{2}$ plane, we let $\lambdaarrow 0$ in (18). By using (19), then, we obtain
the equation

$(d_{1}-p)(d_{2}-\mathcal{S})-qr=0$

for the steady destabilization curve. This curve intersects $d_{1}$ -axis at
$d_{1}=\det J/s$ and is meaningful (i.e., lies in the first quadrant) only for
$d_{1}>\det J/s$ while $d_{2}$ ranges in $0<d_{2}<\mathcal{S}$ and $d_{2}arrow s$ as $d_{1}arrow\infty.$

If we let $d_{2}arrow 0$ in (18) and use (19), then it follows that

$[t_{1}^{-}-\det J/\mathcal{S}][t_{1}^{+}-\det J/s]=$ O.

This equation for the eigenvalue $\lambda$ has
- infinitely many negative solutions;
- one positive solution if $d_{1}>\det J/\mathcal{S}$ ;
- two positive solutions if $d_{1}<\det J/s$ ;
- one positive solution and $\lambda=0$ if $d_{1}=\det J/s.$
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In any event, the reduced system $d_{1}\mathcal{T}(\lambda/d_{1})\phi=s\phi$ is unstable in the
sense that it has at least one positive eigenvalue $\lambda>0.$

The eigenvalues of the $2\cross 2$ matrix $J$ have negative real part under
the conditions in Theorem 3.1, and hence, Theorem 2.2 implies that
all the eigenvalues $\lambda$ of (2) satisfy ${\rm Re}\lambda<0$ for $d_{2}=d_{1}>0$ . Therefore,
as $d_{2}$ decreases from $d_{2}=d_{1}$ to $d_{2}=0$ , some eigenvalues cross the
imaginary axis in $\mathbb{C}$ from ${\rm Re}\lambda<0$ to ${\rm Re}\lambda>0.$

If $d_{1}>\det J/s$ , the crossing across the imaginary axis ${\rm Re}\lambda=0$

is either through $\lambda=0$ or a pair of complex conjugate eigenvalues
cross the imaginary axis, possibly several times back and forth, and
eventually one pair of complex conjugate eigenvalues remain in the
right half plane, which finally collide on the positive real axis and one
of them return to the negative real axis through $\lambda=0$ while the other
remain on the positive real axis.

On the other hand, if $d_{1}<\det J/s$ , eigenvalues $\lambda$ cannot cross the
origin, and hence a pair of non-zero complex conjugate eigenvalues have
to cross the imaginary axis at least once. This completes the proof of
Theorem 3.1. $\square$

3.2. Turing type destabilization. Consider the $3\cross 3$ matrix:

$A=(\begin{array}{lll}a_{11} a_{12} a_{13}a_{21} a_{22} a_{23}a_{3l} a_{32} a_{33}\end{array})$

There are three 1-component sub-systems;

$A_{1}=(a_{11}) , A_{2}=(a_{22}) , A_{3}=(a_{33})$ .
There are three 2-component sub-systems;

$A_{12}=(\begin{array}{ll}a_{1l} a_{12}a_{21} a_{22}\end{array}),$ $A_{13}=(\begin{array}{ll}a_{ll} a_{13}a_{31} a_{33}\end{array}),$ $A_{23}=(\begin{array}{ll}a_{22} a_{23}a_{32} a_{33}\end{array})$

Stability or instability of l-or 2-component subsystems are charac-
terized as follows.

For 1-component systems, $A_{i}$ is

stable, if $a_{ii}<0$ ; neutral if $a_{ii}=0$ ; un table, if $a_{ii}>0.$

For 2-component systems, $A_{ij}$ is

stable, if tr $A_{ij}<0,$ $\det A_{ij}>0$ ;
type-l unstable, if tr $A_{ij}>0,$ $\det A_{ij}>0$ ;
type-2 $un\mathcal{S}table$ , if tr $A_{ij}<0,$ $\det A_{ij}<0$ ;
type-3 unstable, if tr $A_{ij}>0,$ $\det A_{ij}<0.$
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Thanks to the nomenclature, we now concisely state Turing type desta-
bilization theorem for 3-component systems on general smooth bounded
domains $\Omega.$

Theorem 3.2 (Turing type mechanism). When $\Omega\subset \mathbb{R}^{m}(m\geq 2)$ is
a bounded smooth domain, we have the following:

(i) Assume that
-the $3\cross 3$ matrix $J$ is stable $(\det J<0)$ ;

the $\mathcal{S}$ubsystem J is unstable $(\det J_{1}=a_{11}>0)$ .
Then for each $d_{2},$ $d_{3}>0$ fixed with $d_{2}$ and $d_{3}$ being not $sub_{\mathcal{S}}tan-$

tially different, (1) is stable for $d_{1}\approx d_{2}\approx d_{3}$ , and undergoes
Turing type destabilization as $d_{1}arrow 0.$

(ii) $As\mathcal{S}ume$ that
-the $3\cross 3$ matrix $J$ is stable $(\det J<0)$ ;
-the matrix $J_{23}i\mathcal{S}$ type-2 or Type-3 unstable $(\det J_{23}<0)$ .

Then for each $d_{1}>0$ fixed, (1) is stable for $d_{1}\approx d_{2}\approx d_{3}$ , and
undergoes Turing type destabilization as $D_{23}arrow 0.$

(iii) Assume that
-the $3\cross 3$ matrix $J$ is stable $(\det J<0)$ ;
-the matrix $J_{23}$ is type-l unstable $(tr J_{23}>0, \det J_{23}>0)$

and has two positive eigenvalues
Then for each $d_{1}>0$ fixed, (1) is stable for $d_{1}\approx d_{2}\approx d_{3}$ , and
undergoes Turing type destabilization as $D_{23}arrow 0.$

PROOF of Theorem 3.2. The idea of proof is the same for the
statements (i) (ii) and (iii). We show that the surfaces $\{\Gamma_{k}\}_{k\in N}$ in
the first octant of the $d_{1}d_{2}d_{3}$-space are located between the diagonal
$\{d_{1}=d_{2}=d_{3}\}$ and either the $d_{2}d_{3}$-plane (for (i) ) or $d_{1}$-axis (for (ii)
and (iii)). Therefore, $(d_{1}, d_{2}, d_{3})$ crosses infinitely many members of
the family of $\mathcal{S}leady$ destabilization surfaces $\{\Gamma_{k}\}_{k\in N}$ as the appropriate
diffusion rates ($d_{1}$ in (i) and $d_{2},$ $d_{3}$ in (ii) and (iii)) approach O.

To prove (i) note that

$\det J_{23}^{*}=\frac{\det J}{\det J_{1}}<$ O.

Hence, $J_{23}^{*}$ is either type-2 or type-3 unstable, which implies that one
of the eigenvalues of $J_{23}^{*}$ is positive. Therefore, the reduced system

$\mathcal{T}_{D_{23}}(\lambda)w=J_{23}^{*}w$

has eigenvalues with positive real part. By looking into the config-
uration of $\Gamma_{k}$ , we conclude that $(d_{1}, d_{2}, d_{3})$ traverses infinitely many
members of $\{\Gamma_{k}\}_{k\in N}$ as $d_{1}arrow 0.$
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(ii) In this case, the reduced system is $d_{1}\mathcal{T}(\lambda/d_{1})\phi=J_{1}^{*}\phi$ where

$J_{1}^{*}= \frac{\det J}{\det J_{23}}>0,$

which means that (1) is unstable due to Theorem 2.1. If $j\in \mathbb{N}$ is
the largest number with the property $d_{1}<J_{1}^{*}/\nu_{j}$ , then the number of
positive $eigenvalue\mathcal{S}\lambda$ of the reduced system is $j+1$ . Therefore, as
$D_{23}arrow 0,$ $(d_{1}, d_{2}, d_{3})$ goes through all $\Gamma_{k}$ with $k\geq j.$

(iii) In this case, the reduced system is $d_{1}\mathcal{T}(\lambda/d_{1})\phi=J_{1}^{*}\phi$ where

$J_{1}^{*}= \frac{\det J}{\det J_{23}}<0.$

The reduced system is stable and contains no sign of instability. Nev-
ertheless, we are able to prove that (1) undergoes Turing type destabi-
lization by closely examining the surfaces $\{\Gamma_{k}\}.$

3.3. Anti-Turing Mechanism. In this subsection, we$\cdot$present a sta-
bilization mechanism in (1). The reaction-diffusion system (RD) does
not possess such a mechanism.

In the system (1), assume that $J$ is unstable and that $J_{I}$ and $J_{J}$ are
complementary in $J$ with $J_{I}$ stable. Under this situation, we know from
the results in \S 2 that (1) tends to be unstable for equal diffusion rates.
If we let $D_{I}arrow 0$ so that $\max\{d_{i}|i\in I\}\ll\min\{d_{j}|j\in J\}$ , then
does (1) becomes stable? We show that the answer to this question
is affirmative for (1). The key to establish such result is that the full
system (11E) converges to its reduced system (11), provided that $J_{i}$ is
stable (instead of being unstable). As regard to the last statement, we
refer to Lemma 3.1 and its proof in [2].

Our first result is for the 2-component system $(N=2)$ .

Theorem 3.3 (Anti-Turing mechanism for $2\cross 2$ systems). Let $J$ be
a $2\cross 2$ matrix.

(i) Assume that
$-J$ is type-l unstable and has real eigenvalues;
$-J_{1}i\mathcal{S}\mathcal{S}lable (i.e., a_{11}<0)$ .

Then for each $d_{2}>0$ fixed, (1) is $un\mathcal{S}table$ for $d_{1}=d_{2}$ and
$become\mathcal{S}$ stabilized as $d_{1}arrow 0.$

(ii) If, $A_{\mathcal{S}\mathcal{S}}ume$ that
$-J$ is either type-2 or type-3 unstable;
$-J_{1}$ is stable $(i.e., a_{11}<0)$ .

Then for each $d_{2}>0$ fixed (1) $i\mathcal{S}$ unstable for $d_{1}=d_{2}$ and re-
mains $un\mathcal{S}table$ as $d_{1}arrow 0$ , i. e., there is no anti-Turing mech-
anism.
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PROOF of Theorem 3.3. We use the fact stated above that (1) is
stable (or unstable) for $D_{i}\approx 0$ if its reduced system (17) is stable
(unstable).

(i) Since $J$ is unstable and has real eigenvalues, Theorem 2.2 implies
that (1) is unstable for $d_{1}=d_{2}$ . The reduced problem is $d_{2}\mathcal{T}(\lambda/d_{2})w=$

$J_{2}^{*}w$ with

$J_{2}^{*}=\underline{\det J}<0,$

$a_{11}$

hence, it is stable. According to Lemma 3.1 of [2], we conclude that
(1) becomes stabilized as $d_{1}arrow 0.$

(ii) When $J$ is type-2 or type-3 unstable, then $\det J<0$ . Therefore,
$J$ has at least one positive eigenvalue, and Theorem 2.2 implies that
(1) is unstable for $d_{1}=d_{2}$ . Moreover, we have

$J_{2}^{*}= \frac{\det J}{a_{11}}>0$

which implies that the reduced system (17) is unstable, hence (1) re-
mains unstable for $d_{1}\approx 0.$ $\square$

We now show that statements similar to Theorem 3.3 remains true
for 3-component system (1), as follows.

Theorem 3.4 (Anti-Turing mechanism for $3\cross 3$ matrix). Let $J$ be a
$3\cross 3$ real matrix.

(i) Assume that
- the matrix $J$ has two positive and one negative eigenvalues

$(\det J<0)$ ;
- the $\mathcal{S}$ubmatrix J is stable.

Then for each $d_{1}>0$ fixed, (1) $i\mathcal{S}$ unstable for $d_{1}\approx d_{2}\approx d_{3}$ and
becomes stabilized as $darrow 0$ in $D_{23}=d\mathbb{I}_{2}.$

(ii) Assume that
$-J$ has two positive and one negative eigenvalues $(\det J<$

$0$

- the $\mathcal{S}$ubsystem J $i\mathcal{S}$ stable $(a_{11}<0)$ ;
$-\det J_{12}+\det J_{13}>0.$

Then for each $d_{2}\approx d_{3}>0$ fixed, (1) $i\mathcal{S}$ unstable for $d_{1}\approx d_{2}\approx d_{3}$

and becomes stabilized as $d_{1}arrow 0.$

PROOF of Theorem 3.4. The idea of proof being identical to that
of Theorem 3.3, we only show that the reduced system (17) is stable.

(i) In this case, the reduced system (17) is a scalar problem

$d_{1}\mathcal{T}(\lambda/d_{1})\phi=J_{1}^{*}\phi$ , where $J_{1}^{*}= \frac{\det J}{\det J_{23}}<$ O.
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Hence, the eigenvalues $\lambda$ of the reduced system are negative.
(ii) In this case, the reduced matrix $J_{23}^{*}$ satifies

$\det J_{23}^{*}=\underline{\det J}_{>0},$

$a_{11}$

tr $J_{23}^{*}= \frac{1}{a_{11}}(\det J_{12}+\det J_{13})<0,$

which imply that $J_{23}^{*}$ is stable. Hence, for $d_{2}\approx d_{3}$ the eigenvalues $\lambda$ of
$\mathcal{T}_{D_{23}}(\lambda)w=J_{23}^{*}w$ have negative real part. $\square$
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