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1 Introduction

Diffusion-driven instability (DDI) is a phenomenon in mathematical biology, which has
been often used to explain de novo pattern formation. The ideas on DDI have inspired

development of a vast number of mathematical models since the seminal paper of Taring
[14], providing some explanations on symmetry breaking and de novo pattern formation
during development, explaining shape of animal coat markings, and predicting oscillat-
ing chemical reactions.

In particular, the following reaction-diffusion system

$u_{t}=\epsilon^{2}\Delta u+f(u, v) , v_{t}=D\Delta v+g(u, v)$ ,

has been proposed as a mathematical model describing DDI. Here, the unknown func-
tions $u=u(x, t)$ and $v=v(x, t)$ are sometimes called an activator and an inhibitor,

respectively, and it is assumed that $0<\epsilon\ll D$ . DDI is a bifurcation that arises in a
reaction-diffusion system, when there exists a spatially homogeneous solution, which is
asymptotically stable with respect to spatially homogeneous perturbations, but unsta-
ble to spatially heterogeneous perturbations. Models with DDI describe then a process
of a destabilization of stationary spatially homogeneous steady states and evolution of
spatially heterogeneous structures towards spatially heterogeneous steady states.

There are some mathematical models of a pattern formation arising in processes
described by a system of a single reaction-diffusion equation coupled with an ordinary

differential equation (reaction-diffusion-ODE system). Such models arise when study-

ing coupling of the diffusive processes with processes which are localized in space, such
as, for example, growth processes [9, 10, 11, 13] or intracellular signaling [2, 3, 4, 15].
In the latter case, macroscopic reaction-diffusion-ODE models have been derived as a
homogenization limit of the models describing coupling of cell-localized processes with
cell-to-cell communication through diffusion in a cell assembly [12, 5]. The dynamics of
such models appear to be very different from that of classical reaction-diffusion models.
The systems coupling a single reaction-diffusion equation with ODEs may exhibit DDI.
However, in this case all Turing patterns are unstable, $i.e$ . the same mechanism which

destabilizes constant solutions, destabilizes also all continuous spatially heterogenous
stationary solutions [7, 8]. Simulations of different models of this form indicate forma-
tion of dynamical, multimodal and apparently irregular structures, the shape of which
depends strongly on initial conditions [1, 10, 11, 13]. Therefore, the existence and sta-
bility of spatially heterogeneous patterns arising in models exhibiting diffusion-driven
instability, but consisting of only one reaction-diffusion equation is an interesting issue.
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Our aim of this work is to give a systematic study on the dynamics of general reaction-
diffusion-ODE systems with a single diffusion operator. We would like to understand
what is DDI in the system, how DDI influences the dynamics of the system, and so on. In

this paper, first we shall discuss the instability of inhomogeneous stationary solutions.
It will be shown that a certain natural (autocatalysis) property of a system leads to
instability of all inhomogeneous stationary solutions. Next, we shall discuss a possible
large time behavior of solutions. To understand mechanisms of pattern formation in

reaction-diffusion equations, it is worth studying the limiting versions of the model
dynamics, for example by letting small or large diffusion coefficient tend to zero or
infinity, respectively, so that the reduced model is an approximation of the original

dynamics and, in particular, the phenomenon of pattern formation is preserved. Thus,

as a first step, we focus on a nonlocal problem related to a reaction-diffusion-ODE model,

and we will see that space inhomogeneous solutions of the problem become unbounded in
either finite or infinite time, even if space homogeneous solutions are bounded uniformly
in time.

These are joint works with Anna Marciniak-Czochra (University of Heidelberg),

Grzegorz Karch(University of Wroclaw) and Steffen H\"arting (Univresity of Heidelberg).

2 Instability of stationary solutions

We focus on the following two-equation system:

$u_{t}=f(u, v)$ , for $x\in\overline{\Omega},$ $t>0$ , (2.1)

$v_{t}=D\triangle v+g(u, v)$ for $x\in\Omega,$ $t>0$ (2.2)

in a bounded domain $\Omega\subset \mathbb{R}^{N}$ for $N\geq 1$ , with a sufficiently regular boundary $\partial\Omega,$

supplemented with the Neumann boundary condition for $v$ :

$\partial_{v}v=0$ for $x\in\partial\Omega,$ $t>0$ , (2.3)

where $\partial_{\nu}=\partial/\partial\nu$ and $v$ denotes the unit outer normal vector to $\partial\Omega$ , and initial data

$u(x, O)=u_{0}(x) , v(x, O)=v_{0}(x)$ . (2.4)

A constant $D>0$ is the diffusion coefficient, and the nonlinearities $f=f(u, v)$ and $g=$

$9(u, v)$ are arbitrary $C^{2}$-functions that satisfy certain natural (biologically motivated)
assumptions.

By a standard theory, the boundary value problem (2.1)-(2.4) has a unique local-in-

time solution $e.g$ . for every $u_{0},$ $v_{0}\in L^{\infty}(\Omega)$ .

2.1 Constant steady states

Theorem 2.1. Assume that the constant vector $(\overline{u},\overline{v})$ is $a$ (stationary) $\mathcal{S}$olution of the
initial boundary value problem for the reaction-diffusion-ODE system $(2.1)-(2.4)$ . If

$f_{u}(\overline{u},\overline{v})>0,$

then $(\overline{u},\overline{v})$ is an unstable solution of this problem.

If $(\overline{u},\overline{v})$ is stable solution of the corresponding ordinary differential equation, then
Theorem 2.1 provides a simple criterion for the diffusion-driven instability.
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2.2 Non-constant stationary solutions

We consider regular stationary solutions $(U, V)$ of problem $(2.1)-(2.3)$ , namely, we as-
sume that there exists a solution (not necessarily unique) of the equation $f(U(x), V(x))=$
$0$ that is given by the relation $U(x)=k(V(x))$ for all $x\in\Omega$ with a $C^{1}$-function $k=k(V)$ .
Thus, every regular stationary solution $(U, V)$ of the boundary value problem

$f(U, V)=0$ for $x\in\overline{\Omega}$ , (2.5)

$D\triangle V+g(U, V)=0$ for $x\in\Omega$ , (2.6)

$\partial_{\nu}V=0$ for $x\in\partial\Omega$ (2.7)

satisfies the elliptic problem

$D\triangle V+h(V)=0$ for $x\in\Omega$ , (2.8)

$\partial_{\nu}V=0$ for $x\in\partial\Omega$ , (2.9)

where
$h(V)=g(k(V), V)$ and $U(x)=k(V(x))$ . (2.10)

Each constant solution $(\overline{u},\overline{v})\in \mathbb{R}^{2}$ of problem $(2.1)-(2.4)$ is a particular case of regular
solutions.

The following theorem shows that regular stationary solutions appear to be unstable
solutions to problem $(2.1)-(2.4)$ under a simple assumption imposed on the first equation.

Theorem 2.2 (Instability of regular solutions). Let $(U, V)$ be a regular solution of
problem (3.5) $-(2.7)$ satisfying the following “autocatalysis condition

$f_{u}(U(x), V(x))>0$ for $allx\in\overline{\Omega}$ . (2.11)

Then, $(U, V)$ is an unstable solution the initial-boundary value problem $(2.1)-(2.4)$ .

Inequality (2.11) can be interpreted as an autocatalysis in the dynamics of $u$ at the
steady state $(U, V)$ . In a system of reaction-diffusion equations with a constant solution
having the DDI property, one expects stable patterns to appear around that constant
steady state. For the initial-boundary value problem for reaction-diffusion-ODE system
with a single diffusion equation $(2.1)-(2.4)$ , stationary solutions can be constructed in
the case of several interesting models. However, the DDI mechanism which destabilizes
constant solutions of such models, destabilizes also non-constant solutions.

2.3 Model examples

In some concrete models, the autocatalysis consisiton (2.11) can be checked easily.
Therefore, we obtain that all positive regular stationary solutions to the following sys-
tems are unstable.

2.3.1 Resource-consumer system

We consider positive solutions of the following system:

$u_{t}=-u+u^{2}v$ for $x\in$ St, $t>0$ , (2.12)

$v_{t}=D\triangle v-v-ku^{2}v+B$ for $x\in\Omega,$ $t>0$ , (2.13)
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where $D,$ $B$ and $k$ are positive constants, with the zero-flux boundary condition for $v.$

Here, every regular positive stationary solution $(U, V)$ of $(2.12)-(2.13)$ has to satisfy the
relation $U(x)=1/V(x)$ , and the function $f_{u}(U(x), V(x))$ satisfies

$f_{u}(U(x), V(x))=-1+2U(x)V(x)=1>0$ . for all $x\in\Omega.$

2.3.2 Model of early carcinogenesis

The following system is a reduced two-equation model of a receptor-based model of
cellular growth, which in turn was obtained rigorously in [8] based on a quasi-steady
state approximation of a three-equation system:

$u_{t}=( \frac{auw}{d_{b}+d+uw}-d_{c})u$ for $x\in\overline{\Omega},$ $t>0$ , (2.14)

$w_{t}=D \triangle w-d_{g}w-\frac{d_{b}}{d_{b}+d}u^{2}w+\kappa_{0}$ for $x\in\Omega,$ $t>0$ . (2.15)

Here, $a,$ $d_{c},$ $d_{b},$ $d_{g},$ $d,$ $D,$ $\kappa_{0}$ denote positive constants. We see that every positive regular
stationary solution satisfies the relation $U=\beta/W,$ $\beta=d_{c}(d_{b}+d)/(a-d_{c})$ , and the
autocatalysis condition (2.11) holds true because

$f_{u}(U, W)= \frac{aUW}{d_{b}+d+UW}-d_{c}+\frac{a(d_{b}+d)UW}{(d_{b}+d+UW)^{2}}=\frac{a(d_{b}+d)\beta}{(d_{b}+d+\beta}>0.$

2.4 Spectrum of the linearized operator

The proof of Theorem 2.2 involves analysis of a continuous spectrum of a linear operator
induced by the lack of diffusion in the destabilizing equation.

Let $(U, V)$ be a regular stationary solution of problem $(2.1)-(2.4)$ . Substituting

$u=U+\tilde{u}$ and $v=V+\tilde{v}$

into $(2.1)-(2.2)$ , we obtain the initial-boundary value problem for the perturbation $(\tilde{u},\tilde{v})$ :

$\frac{\partial}{\partial t}(\begin{array}{l}\sim u\sim v\end{array})=\mathcal{L}(\begin{array}{l}\sim u\sim v\end{array})+\mathcal{N}(\begin{array}{l}\sim u\sim v\end{array})$

$=(\begin{array}{l}0D\triangle\tilde{v}\end{array})+(\begin{array}{llll}f_{u}(U V) f_{v}(U V)g_{u}(U V) g_{v}(U V)\end{array})(\begin{array}{l}\sim u\sim v\end{array})+\mathcal{N}(\begin{array}{l}\sim u\sim v\end{array})$ (2.16)

with the Neumann boundary condition, $\partial_{\nu}\tilde{v}=$ O. In order to prove Theorem 2.2, it
suffices to study the spectrum $\sigma(\mathcal{L})$ of the linear operator $\mathcal{L}$ with the domain $\mathcal{D}(\mathcal{L})=$

$L^{2}(\Omega)\cross W^{2,2}(\Omega)$ . Let us define the constants

$\lambda_{0}=x\in in_{\frac{f}{\Omega}}f_{u}(U(x), V(x))>0$ and $\Lambda_{0}=su_{\frac{p}{\Omega}}f_{u}(U(x), V(x))x\in>0$
, (2.17)

where the positivity of $\lambda_{0}$ is a consequence of the autocatalysis condition (2.11). We can
prove that $\sigma(\mathcal{L})\subset \mathbb{C}$ consists of all numbers from the interval $[\lambda_{0}, \Lambda_{0}]$ and of a set of
(possibly complex) eigenvalues of $(\mathcal{L}, \mathcal{D}(\mathcal{L}))$ which are isolated points of $\mathbb{C}$ (See Figure
2.1).
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Figure 2.1: The spectrum $\sigma(\mathcal{L})$ is marked by thick dots and by the interval $[\lambda_{0}, \Lambda_{0}]$ in
the sector $\Sigma_{\delta,\omega_{0}}$ . The spectral gap is represented by the strip $\{\lambda\in \mathbb{C} : \mu\leq{\rm Re}\lambda\leq M\}$

without elements of $\sigma(\mathcal{L})$ .

In [8], we provide a rigorous proof of the nonlinear instability of steady states by using
some ideas, so-called Linearization principle, from studies of fluid dynamic equations. In
that setting, only the existence of a spectral gap of a linearization operator is required
to show the instability of steady states. We notice that the operator $\mathcal{L}$ satisfies the
(spectral mapping theorem”’ : $\sigma(e^{t\mathcal{L}})\backslash \{0\}=e^{t\sigma(\mathcal{L})}$ . Thus, due to the relation $|e^{z}|=e^{Raez}$

for every $z\in \mathbb{C}$ , the spectral gap condition holds true if for every $\lambda\in\sigma(\mathcal{L})$ , either
${\rm Re}\lambda\in(\kappa, \mu)$ or ${\rm Re}\lambda\in(M, \Lambda)$ .

Sketch of proof of Theorem 2.2.
Part $I$: Interval $[\lambda_{0}, \Lambda_{0}]$ . For each $\lambda\in[\lambda_{0}, \Lambda_{0}]$ , the operator

$\mathcal{L}-\lambda I:L^{2}(\Omega)\cross W^{2,2}(\Omega)arrow L^{2}(\Omega)\cross L^{2}(\Omega)$

defined by formula

$(\mathcal{L}-\lambda I)(\varphi, \psi)=((f_{u}-\lambda)\varphi+f_{v}\psi, D\Delta\psi+g_{u}\varphi+(g_{v}-\lambda)\psi)$ ,

where $f_{u}=f_{u}(U(x), V(x))$ , etc., cannot have a bounded inverse. Suppose that $(\mathcal{L}-$

$\lambda I)^{-1}$ exists and is bounded. Then, for a constant $K=\Vert(\mathcal{L}-\lambda I)^{-1}\Vert$ , we have

$\Vert\varphi\Vert_{L^{2}(\Omega)}+\Vert\psi\Vert_{W^{2,2}(\Omega)}$

$\leq K(\Vert(f_{u}-\lambda)\varphi+f_{v}\psi\Vert_{L^{2}(\Omega)}+\Vert D\triangle\psi+g_{u}\varphi+(9v-\lambda)\psi\Vert_{L^{2}(\Omega)})$

for all $(\varphi, \psi)\in L^{2}(\Omega)\cross W^{2,2}(\Omega)$ .
We observe that, for each $\lambda\in[\lambda_{0}, \Lambda_{0}]$ , there exists $x_{0}\in\overline{\Omega}$ such that $f_{u}(U(x_{0}), V(x_{0}))-$

$\lambda=$ O. Hence, for every $\epsilon>0$ there is a ball $B_{\epsilon}\subset\Omega$ such that $\Vert f_{u}-\lambda\Vert_{L}\infty(B_{\epsilon})\leq\epsilon.$

Then, for arbitrary $\psi\in C_{c}^{\infty}(\Omega)$ such that supp $\psi\subset B_{\epsilon}$ , we can choose $\varphi\in L^{2}(\Omega)$ such
that supp $\varphi\subset B_{\epsilon}$ and in such a way that $\triangle\psi+g_{u}\varphi+(g_{v}-\lambda)\psi=\zeta$ , where the function
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$\zeta\in L^{2}(\Omega)$ satisfies $\Vert\zeta\Vert_{L^{2}(\Omega)}\leq\epsilon\Vert\varphi\Vert_{L^{2}(\Omega)}$ . Using these functions $\varphi,$
$\psi$ , and $\zeta$ , we obtain

the estimate

$\Vert\varphi\Vert_{L^{2}(\Omega)}+\Vert\psi\Vert_{W^{2,2}(\Omega)}\leq K(2\epsilon\Vert\varphi\Vert_{L^{2}(\Omega)}+\Vert f_{v}\Vert_{L\infty(\Omega)}\Vert\psi\Vert_{L^{2}(\Omega)})$ . (2.18)

Hence, choosing $\epsilon>0$ sufficiently small, we obtain the estimate $\Vert\psi\Vert_{W^{2,2}(\Omega)}\leq K\Vert f_{v}\Vert_{L^{\infty}(\Omega)}\Vert\psi\Vert_{L^{2}(\Omega)},$

which, obviously, cannot be true for all $\psi\in C_{c}^{\infty}(\Omega)$ such that supp $\psi\subset B_{\epsilon}.$

Part II: $Eigenvalue\mathcal{S}$ . In the next step, we show that the remainder of the spectrum
of $(\mathcal{L}, D(\mathcal{L}))$ consists of a discrete set of eigenvalues $\{\lambda_{n}\}_{n=1}^{\infty}\subset \mathbb{C}\backslash [\lambda_{0}, \Lambda_{0}]$ , analyzing
the corresponding resolvent equations

$(f_{u}-\lambda)\varphi+f_{v}\psi=F$ in St (2.19)
$\triangle\psi+g_{u}\varphi+(9v-\lambda)\psi=G$ in $\Omega$ (2.20)

$\partial_{\nu}\psi=0$ on $\partial\Omega$ , (2.21)

with arbitrary $F,$ $G\in L^{2}(\Omega)$ . Here, one should notice that for every $\lambda\in \mathbb{C}\backslash [\lambda_{0}, \Lambda_{0}],$

one can solve equation (2.19) with respect to $\varphi$ . Thus, after substituting the resulting
expression $\varphi=(F-f_{v}\psi)/(f_{u}-\lambda)\in L^{2}(\Omega)$ into (2.20), we obtain the boundary value
problem

$\triangle\psi+q(\lambda)\psi=p(\lambda)$ for $x\in\Omega$ , (2.22)
$\partial_{v}\psi=0$ for $x\in\partial\Omega$ , (2.23)

where

$q( \lambda)=q(x, \lambda)=-\frac{g_{u}f_{v}}{f_{u}-\lambda}+g_{v}-\lambda$ and $p( \lambda)=p(x, \lambda)=G-\frac{g_{u}F}{f_{u}-\lambda}$ . (2.24)

For a fixed $\lambda\in \mathbb{C}\backslash [\lambda_{0}, \Lambda_{0}]$ , by the Fredholm alternative, either the inhomogeneous
problem $(2.22)-(2.23)$ has a unique solution $(so, \lambda is not an$ element $of \sigma(\mathcal{L})$ ) or else the
homogeneous boundary value problem

$\triangle\psi+q(\lambda)\psi=0$ for $x\in\Omega$ , (2.25)
$\partial_{\nu}\psi=0$ for $x\in\partial\Omega$ , (2.26)

has a nontrivial solution $\psi$ . Hence, it suffices to consider those $\lambda\in \mathbb{C}\backslash [\lambda_{0}, \Lambda_{0}]$ , for which
problem $(2.25)-(2.26)$ has nontrivial solution.

Part III: Nonlinear instability. Now, letting $\Phi=t(\tilde{u}, \gamma v, we$ write $the$ equation $(2.16)$

as the following:
$\Phi_{t}=\mathcal{L}\Phi+\mathcal{N}(\Phi) , \mathcal{N}(0)=0.$

Then, the operator $\mathcal{L}$ with the domain $D(\mathcal{L})=L^{2}(\Omega)\cross W^{2,2}(\Omega)$ generates an analytic
semigroup $\{e^{t\mathcal{L}}\}_{t\geq 0}$ of linear operators on $L^{2}(\Omega)\cross L^{2}(\Omega)$ , which satisfies the spectral
mapping theorem. Therefore, if the linear operator $\mathcal{L}$ has a spectral gap: for every
$\lambda\in\sigma(\mathcal{L})$ ,

${\rm Re}\lambda\in(\kappa, \mu)$ or ${\rm Re}\lambda\in(M, \Lambda)$ , (2.27)
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where $-\infty\leq\kappa<\mu<M<\Lambda<\infty$ for some $M>0$ , and if the nonlinear term $\mathcal{N}$

satisfies the inequality

$\Vert \mathcal{N}(\Phi)\Vert_{L^{2}\cross L^{2}}\leq C_{0}\Vert\Phi\Vert_{L\cross L}\infty\infty\Vert\Phi\Vert_{L^{2}\cross L^{2}}$ (2.28)

for all $\Phi\in L^{\infty}(\Omega)\cross L^{\infty}(\Omega)$ satisfying $\Vert\Phi\Vert_{L^{\infty}\cross L^{\infty}}<\rho$ for some constants $C_{0}>0$ and

$\rho>0$ , then the trivial solution $\Phi_{0}\equiv 0$ is nonlinearly unstable in $L^{2}(\Omega)\cross L^{2}(\Omega)$ .

It is easy to see that (2.28) is satisfied. Concerning the spectral gap, we notice that

there exists $\delta\in(0, \pi/2]$ such that $\sigma(\mathcal{L})\subset\Sigma_{\delta,\omega_{0}}\equiv\{\lambda\in \mathbb{C} : |\arg(\lambda-\omega_{0})|\geq\pi/2+\delta\}.$

The part of the spectrum $\sigma(\mathcal{L})$ in the triangle $\Sigma_{\delta,\omega_{O}}\cap\{\lambda\in \mathbb{C} : {\rm Re}\lambda>0\}$ consists of all

numbers from the interval $[\lambda_{0}, \Lambda_{0}]$ with $\lambda_{0}>0$ and of a discrete sequence of eigenvalues

with accumulation points from the interval $[\lambda_{0}, \Lambda_{0}]$ , only. Thus, we can easily find

infinitely many $0\leq\mu<M\leq\lambda_{0}$ , for which the spectrum $\sigma(\mathcal{L})$ can be decomposed as
(2.27). $\square$

3 Blowup of solutions in finite or infinite time

In order to understand the large time behavior of solutions of $(2.1)-(2.4)$ , as a first step,

we consider the following nonlocal problem related to a reaction-diffusion-ODE model:

$u_{t}=f(u, \xi)$ , for $x\in$ St, $t>0$ (3.1)

$\xi_{t}=\int_{\Omega}g(u(x, t), \xi(t))dx$ for $t>0$ (3.2)

supplemented with the initial conditions

$u 0)=u_{0}\in L^{\infty}(\Omega) , \xi(0)=\xi_{0}\in \mathbb{R}$ . (3.3)

Here, $u=u(x, t)$ and $\xi=\xi(t)$ are unknown functions and $\Omega\subset \mathbb{R}^{n}$ is a bounded

measurable set. In the following, the symbol $|\Omega|$ denotes the Lebesgue measure of $\Omega$

and, without loss of generality, we assume that $|\Omega|=1$ . This problem $(3.1)-(3.3)$

is obtained from the initial-boundary value problem $(2.1)-(2.4)$ after passing with the

diffusion coefficient $D$ in second equation to the limit $Darrow\infty.$

Remark 3.1. It is well-known that for a system of two reaction-diffusion equations

$u_{t}=\epsilon\triangle u+f(u, v) , v_{t}=D\triangle v+g(u, v)$ , (3.4)

with $\epsilon>0$ and $D>0$ , a regular perturbation problem is obtained, under some con-
ditions, by passing to the limit $Darrow\infty$ . The obtained system of a reaction-diffusion
equation coupled to an ordinary differential equation with a nonlocal term (as the one

in (3.2)) is exhibiting dynamics qualitatively similar to that of the original reaction-

diffusion system with the diffusion coefficient $D$ being large. It is called a shadow

system. Let us emphasize that, in this work, we consider the shadow approximation of

system (3.4) with $\epsilon=0$ . Such systems give a singular limit of reaction-diffusion models

with small $\epsilon>0$ . Moreover, since they arise in modeling of processes with non-diffusing

components, as described above, it is important to understand how their dynamics differ

from dynamics of non-degenerated systems.
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We begin with studying stability properties of stationary solutions of the nonlocal
system $(3.1)-(3.2)$ . Here, a couple $(U,\overline{\xi})\in L^{\infty}(\Omega)\cross \mathbb{R}$ is called a stationary solution if

$f(U(x), \xi]=0$ almost everywhere in $\Omega$ , (3.5)

$\int_{\Omega}g(U(x), \xi]dx=0$ . (3.6)

Now, if equation (3.5) can be solved (locally and not necessarily uniquely) with respect
to $U(x)$ , we obtain that $U$ has to be constant on a subset of $\Omega.$

Theorem 3.2 (Instability of stationary solutions). Assume that there exists $\Omega_{1}\subset\Omega$

with $|\Omega_{1}|>0$ , a constant $\overline{u}\in \mathbb{R}$ , and a stationary solution $(U,\overline{\xi})$ of system $(3.1)-(3.2)$

such that $U(x)=\overline{u}$ for all $x\in\Omega_{1}$ . If the autocatalysis condition holds, $i.e$ . if

$f_{u}(\overline{u},\overline{\xi})>0$ , (3.7)

then $(U,\overline{\xi})$ is unstable solution of the nonlocal problem $(3.1)-(3.3)$ .

In our examples discussed in the following, autocatalysis condition is satisfied in
the case of all “nontrivial” stationary solutions, which can be checked in a simple way.
Thus, all such steady states are unstable and this instability arises due to nonlocal effects
in shadow problem $(3.1)-(3.3)$ , because constant stationary solutions are stable under
spatially homogeneous perturbations. A nonlocal effect caused by the integral over $\Omega$

in system $(3.1)-(3.2)$ may lead not only to the instability of steady states, but also to
a blowup of space-heterogeneous solutions, even in the case when space homogeneous
solutions are global-in-time and uniformly bounded on the time half-line $[0, \infty$). We
describe this blowup phenomenon in the case of two problems with nonlinearities which
are well-known in mathematical biology. For proofs of theorems below and more details,
please refer to [6].

3.1 Resource-consumer type nonlinearity

We consider the following system with resource-consumer type nonlinearity:

$u_{t}=-u+u^{2}\xi$ , for $x\in\overline{\Omega},$ $t>0$ (3.8)

$\xi_{t}=-\xi-k\xi\int_{\Omega}u^{2}(x, t)dx+B$ for $t>0$ (3.9)

$u(x, 0)=u_{0}(x) , \xi(0)=\xi_{0}$ , (3.10)

where $k,$ $B\in \mathbb{R}$ are fixed positive parameters.
Our instability Theorem 3.2 implies that all nontrivial stationary solutions are un-

stable, a question arises as to what is the long-time behavior of solutions to the initial
value problem for system $(3.8)-(3.10)$ . First, we emphasize in the following proposition
that space homogeneous nonnegative solutions ( $i.e$ when $u$ does not depend on x) are
global-in-time and bounded.
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Proposition 3.3. All solutions $(u, \xi)=(u(t), \xi(t))$ of the following initial value problem

for ordinary differential equations

$\frac{d}{dt}u=-u+u^{2}\xi, \frac{d}{dt}\xi=-\xi-ku^{2}\xi+B$ (3.11)

$u(O)=u_{0}\geq 0, \xi(0)=\xi_{0}\geq 0$ (3.12)

are nonnegative, global-in-time, and uniformly bounded for $t>0.$

Proof. We observe that

$\frac{d}{dt}(ku(t)+\xi(t))=-(ku(t)+\xi(t))+B.$

Hence, as long as $u(t)$ and $\xi(t)$ are nonnegative, they have to be uniformly bounded for
$t>0.$ $\square$

Our main result on system $(3.8)-(3.10)$ is to show that a space inhomogeneity of
initial data may leads not only to instability but also to a blowup in finite time of the
corresponding solution.

Theorem 3.4. For fixed $x_{0}\in\overline{\Omega}$ and assume that $u_{0}\in C(\Omega)$ satisfies

$u_{0}(x_{0})=1$ and $0\leq u_{0}(x)<1$ for $x\neq x_{0}$

and

$A_{0} \equiv\int_{\Omega}(\frac{u_{0}(x)}{1-u_{0}(x)})^{2}dx<\infty$ . (3.13)

Assume also that

$\min\{\xi_{0}, \frac{B}{1+kA_{0}}\}>1.$

Then, the cowesponding solution of the system

$u_{t}=-u+u^{2} \xi, \xi_{t}=-\xi-k\xi\int_{\Omega}u^{2}(x, t)dx+B$

blows up in a finite time at $x_{0}.$

Remark 3.5. The number $A_{0}$ defined in (3.13) is finite if, for example, there exist con-
stants $C>0$ and $\ell\in(0, n/2)$ such that $u_{0}(x)\leq u_{0}(x_{0})-C|x_{0}-x|^{\ell}$ for all $x\in\Omega.$

Proof of Theorem 3.4. For fixed $\xi(t)$ and for each $x\in\overline{\Omega}$ , we solve the equation $u_{t}=$

$-u+u^{2}\xi$ :

$u(x, t)= \frac{e^{-t}}{\frac{1}{u_{0}(x)}-\int_{0}^{t}\xi(s)e^{-s}ds}.$

Note that

$T_{\max}= \sup\{t>0$ : $\int_{0}^{t}\xi(s)e^{-s}ds<1\}$
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because $u_{0}(x_{0})=1$ and $0\leq u_{0}(x)<1$ for $x\neq x_{0}$ . Hence, we have an estimate up to
the blowup point:

$u(x, t) \leq\frac{e^{-t}}{\frac{1}{u_{0}(x)}-1}=\frac{u_{0}(x)e^{-t}}{1-u_{0}(x)}$ for all $(x, t)\in\Omega\cross[O, T_{\max}$ ).

Next, using the estimate of $u(x, t)$ we deduce from the equation for $\xi$ the following
differential inequality

$\xi_{t}\geq-(1+kA_{0})\xi+B$ for all $t\in[0, T_{\max}$),

which implies the lower bound

$\xi(t)\geq\min\{\xi_{0},$ $\frac{B}{1+kA_{0}}\}$ for all $t\in[0, T_{\max}$ ).

Thus, we obtain the lower bound

$\int_{0}^{t}\xi(s)e^{-s}ds\geq(1-e^{-i})\min\{\xi_{0}, \frac{B}{1+kA_{0}}\},$

where the right-hand side is equal to 1 for some $t_{0}>0.$ $\square$

3.2 Model of early carcinogenesis

Next, we describe an unbounded behavior of solutions $u=u(x, t)$ and $\xi=\xi(t)$ to the
following nonlocal problem

$u_{t}=( \frac{au\xi}{1+u\xi}-d)u$ for $x\in\overline{\Omega},$ $t>0$ , (3.14)

$\xi_{t}=-\xi-\xi\int_{\Omega}u^{2}dx+\kappa_{0}$ for $t>0$ . (3.15)

where $a,$ $d,$ $\kappa_{0}$ are positive constants, and we assume $a>d$ . Moreover, we supplement
this system with nonnegative initial conditions

$u(O, x)=u_{0}(x) , \xi(0)=\xi_{0}$ . (3.16)

Model $(3.14)-(3.15)$ is a shadow-type reduction of $(2.14)-(2.15)$ . Contrary to the previ-
ous example, nonnegative solutions to the initial value problem $(3.14)-(3.16)$ are always
global-in-time.

Proposition 3.6. Assume that $u_{0}\in L^{\infty}(\Omega)$ is nonnegative and $\xi_{0}>$ O. Then the
initial value problem $(3.14)-(3.16)$ has a unique, global-in-time, nonnegative solution
$u\in C([O, \infty L^{\infty}(\Omega))$ , $\xi\in C^{1}([0, \infty)$ . If $u_{0}\in C(\Omega)$ then $u\in C(\Omega\cross[0,$ $\infty$ This
solution satisfies equation (3.14) in a classical sense because $u(x, \cdot)\in C^{1}([0, \infty))$ for
every $x\in\Omega$ . Moreover, it satisfies the following pointwise estimates

$0\leq u(x, t)\leq e^{(a-d)t}u_{0}(x)$ and $0< \xi(t)\leq\max\{\xi_{0}, \kappa_{0}\}$ (3.17)

for all $x\in\Omega$ and $t\geq 0$ . Moreover, the ‘total mass” of $u(x, t)$ is bounded:

$\sup_{t>0}\int_{\Omega}u(x, t)dx<\infty$ . (3.18)
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Sketch of the proof of Proposition 3.6. It is sufficient to prove the estimate (3.17) to

obtain nonnegative and unique local-in-time solutions to problem $(3.14)-(3.16)$ .
Using in equation (3.14) the inequality $u\xi/(1+u\xi)\leq 1$ , valid for a nonnegative

solution $(u, \xi)$ , we obtain the differential inequality $u_{t}\leq(a-d)u$ which implies first
estimate in (3.17). The second one in (3.17) is a direct consequence of the inequality
$\xi_{t}\leq-\xi+\kappa_{0}$ resulting form (3.15) for nonnegative $\xi.$

To show property (3.18), we use a differential inequality $u_{t}\leq au^{2}\xi-du$ obtained
from equation (3.14) with $u\xi\geq$ O. Integrating this inequality over $\Omega$ and using the
equation for $\xi$ in (3.15), we have got the estimate

$\frac{d}{dt}(\int_{\Omega}udx+a\xi)\leq-d\int_{\Omega}udx-a\xi+a\kappa_{0}$

(3.19)
$\leq-\min\{1, d\}(\int_{\Omega}udx+a\xi)+a\kappa_{0},$

which implies that $\int_{\Omega}u(t)dx+a\xi(t)$ is bounded for $t>0$ , because the constants $a$ and
$d$ are positive.

Details of an analogous proof in the case of a reaction-diffusion-ODE system corre-
sponding to $(3.14)-(3.15)$ can be found in [7, Sec. 3]. $\square$

Next, we discuss space homogeneous solutions of the shadow problem $(3.14)-(3.16)$ .

Proposition 3.7. If $u_{0}(x)\equiv\overline{u}_{0}\geq 0$ is independent $ofx$ , then the corresponding solution

of $(3.14)-(3.16)$ is independent $ofx$ as well. Thus, $for|\Omega|=1$ , the function $u(x, t)=u(t)$

and $\xi=\xi(t)$ satisfy the following system of ordinary differential equations

$\frac{d}{dt}u=(\frac{au\xi}{1+u\xi}-d)u, \frac{d}{dt}\xi=-\xi-\xi u^{2}+\kappa_{0}$ , (3.20)

which after supplementing with initial data $\overline{u}_{0}>0$ and $\xi_{0}>0$ , has a unique global-in-
time positive solution $(\overline{u}(t), \xi(t))$ . This solution is bounded for $t>0.$

Proof. The differential inequality $du/dt\leq au^{2}\xi-du$ yields the estimate

$\frac{d}{dt}(u(t)+a\xi(t))=-du(t)-a\xi(t)+a\kappa_{0}\leq-\min\{1, d\}(u(t)+a\xi(t))+a\kappa_{0}.$

Hence, the sum $u(t)+a\xi(t)$ is bounded on $[0, \infty$ ). $\square$

Proposition 3.6 implies that there is no solution blowing up in finite time, and, from
Proposition 3.7, nonnegative space homogeneous solutions are bounded. Now, we can
prove that an unbounded growth of solutions to the problem $(3.14)-(3.16)$ as $tarrow+\infty.$

Theorem 3.8. Let $a$ and $\kappa_{0}$ be large so that $2(a-d)\geq 1$ and $\kappa_{0}\geq 4a$ , and let $\lambda$ satisfy

$\frac{1}{2}\leq\lambda\leq 1-\frac{2a}{\kappa_{0}}.$

Assume that nonnegative initial conditions $u_{0}\in C(\Omega)\cap L^{\infty}(\Omega)$ and $\xi_{0}\in \mathbb{R}$ satisfy

$\xi_{0}\int_{\Omega}u_{0}^{2}(x)dx>\lambda\kappa_{0}$ and $0<\xi_{0}\leq(1-\lambda)\kappa_{0}$
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and suppose that the set

$\Omega_{*}\equiv\{x_{*}\in\Omega|u_{0}(x_{*})=\max_{x\in\Omega}u_{0}(x)\}$

has measure zero. Then,

$\sup_{t>0}u(x_{*}, t)=+\infty$ if $x_{*}\in\Omega_{*},$
$\sup_{t>0}u(x, t)<+\infty$ if $x\in\Omega\backslash \Omega_{*},$

$\inf_{t>0}\xi(t)=0.$

The proof of Theorem 3.8 is based on the following two lemmas.

Lemma 3.9. Under the assumptions of Theorem 3.8, the solution $(u(x, t), \xi(t))$ of
(3.14)-(3.16) satisfies

$\xi(t)\int_{\Omega}u^{2}(x, t)dx>\lambda\kappa_{0}$ and $0<\xi(t)\leq(1-\lambda)\kappa_{0}$

for all $t\geq 0.$

Lemma 3.10. Let the assumptions of Theorem 3.8 true. If $u(x, t)$ is bounded on $\Omega\cross$

$[0, \infty)$ , then
$u(x, t)arrow 0$ exponentially as $tarrow\infty$

for every $x\in\Omega\backslash \Omega_{*}.$

Sketch of proof of Theorem 3.8. First, we show that $u(x_{*}, t)arrow+\infty$ as $tarrow+\infty$ for
every $x\in\Omega_{*}$ . Suppose that $u=u(x, t)$ is bounded on $\Omega\cross[0, \infty$). Thus, by Lemma
3.10, we see that $u(x, t)arrow 0$ as $tarrow\infty$ for every $x\in\Omega\backslash \Omega_{*}$ . Applying the Lebesgue

dominated convergence theorem we have

$\int_{\Omega}u^{2}(x, t)dxarrow 0$ as $tarrow\infty,$

because $|\Omega_{*}|=$ O. This is, however, in contradiction with the inequality from Lemma
3.9. Hence, we conclude that $u(x, t)$ is unbounded for $t>0.$

Next, we show that $\sup_{t>0}u(x, t)<+\infty$ for all $x\in\Omega\backslash \Omega_{*}$ . Suppose $\sup_{t>0}u(x_{1}, t)=$

$+\infty$ for some $x_{1}\not\in\Omega_{*}$ . By the continuity of the initial data $u_{0}$ , the set

$\Omega_{1}\equiv\{x\in\Omega|u_{0}(x_{1})<u_{0}(x)<u_{0}(x_{*})\}$

has a positive measure. Moreover, we obtain

$u(x_{1}, t)<u(x, t)<u(x_{*}, t)$ for all $x\in\Omega_{1}$ and all $t\geq 0.$

These inequalities lead to a contradiction with the boundedness of mass:

$\sup_{t>0}\int_{\Omega}u(x, t)dx\geq\sup_{t>0}\int_{\Omega_{1}}u(x, t)dx\geq\sup_{t>0}u(x_{1}, t)|\Omega_{1}|=+\infty.$

$\square$
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