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Abstract

Pattern formation can be understood as an outcome of competing short range and long range inter-
actions. This principle is demonstrated with a minimal, geometric model that assigns the free energy
to each partition of a domain into two disjoint sets. The two sets represent the two components of a
binary system. The free energy consists of two terms: a short range term that is the perimeter between
the two sets, and a long range term that is given by a nonlocal quantity. The nonlocal term behaves as:
an inhibitor that limits growth and spreading. Because of this property, the system is termed a binary
inhibitory system. The free energy functional is naturally defined on the class of Cacciopolli sets with a
fixed volume, where one can also define the notion of stationary points. When the preblem is posed in
one dimension, all stationary points can be found. In higher dimensions, many stationary points have
been discovered.

A pattern observed in the physical world is a stationary point with additional properties. First, it
must be stable in some sense; second it must be somewhat periodic. Typically a physical pattern is
an assembly of many copies of a geometric object. An example is a stationary assembly of discs. The
construction of this assembly involves several intricate ideas, which can be applied to other stationary
assemblies.

Recent studies also deal with a ternary inhibitory system of three components. The free energy of
this system is again a sum of a short interaction energy of perimeter and a long range nonlocal energy.
Unique in the ternary system is the phenomenon of triple junction where the three components come to
meet at the same place. In an appropriate parameter range, there is a stable stationary assembly of two
dimensional double bubbles.

1 A binary inhibitory system

Patterns appear in physical and biological systems as outcomes of self-organization principles. One finds
examples in morphological phases of block copolymers, animal coats, and skin pigmentation. Common in
these pattern-forming systems is that a deviation from homogeneity has a strong positive feedback on its
further increase. On its own, it would lead to an unlimited increase and spreading. Pattern formation
requires in addition a longer ranging confinement of the locally self-enhancing process.

Therefore at the minimum pattern formation requires two mechanisms: growth and inhibition. One of
the most elegant inhibitory systems is a sharp interface limit model derived from the Ohta-Kawasaki [21]
density functional theory. It was first introduced to the mathematical community by Nishiura and Ohnishi
[20]. The system is binary because it consists of two components. It is a geometric variational problem on
a bounded, open, and sufficiently smooth set $D$ of $\mathbb{R}^{n}$ This set is partitioned into two disjoint subsets $\Omega$
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and $D\backslash \Omega$ , each of which is occupied by one of the two components of the system. The free energy functional
takes the form

$\mathcal{J}_{B}(\Omega)=\frac{1}{n-1}\mathcal{P}_{D}(\Omega)+\frac{\gamma}{2}\int_{D}|(-\Delta)^{-1/2}(\chi_{\Omega}-\omega)|^{2}dx$ . (1.1)

for subsets $\Omega$ of $D$ of prescribed measure. Namely $\Omega$ is in

$\mathcal{A}=$ { $\Omega\subset D:\Omega$ is Lebesgue measurable and $|\Omega|=\omega|D|$ } (1.2)

where $\omega\in(0,1)$ is a parameter of the system. Here $|\Omega|$ and $|D|$ stand for the Lebesgue measures of $\Omega$ and
$D$ respectively. The constant $\frac{1}{n-1}$ in (1.1) and the half in $f2$ are not essential. We put them in (1.1) to have
a better looking Euler-Lagrange equation later.

Growth is generated by the first term in (1.1). Here $\mathcal{P}_{D}(\Omega)$ is the perimeter of $\Omega$ in $D$ . If $\Omega$ has $C^{1}$

boundary, then $\mathcal{P}_{D}(\Omega)$ is simply the area of the part of the boundary of $\Omega$ that is inside $D$ , i.e. the area of
$\partial\Omega\cap D$ . For a general Lebesgue measurable set $\Omega$ , the perimeter is defined by

$\mathcal{P}_{D}(\Omega)=\sup\{\int_{\Omega}divg(x)dx:9\in C_{0}^{1}(D, \mathbb{R}^{n}) , |g(x)|\leq 1\forall x\in D\}$ (1.3)

where $divg$ is the divergence of the $C^{1}$ vector field $g$ on $D$ with compact support and $|g(x)|$ stands for the
Euclidean norm of the vector $g(x)\in \mathbb{R}^{n}$ The reader who is familiar with BV functions will recognize that
$\mathcal{P}_{D}(\Omega)<0$ means that $\chi_{\Omega}$ , the characteristic function of $\Omega(\chi_{\Omega}(x)=1$ if $x\in\Omega$ and $\chi_{\Omega}(x)=0$ if $x\in D\backslash \Omega)$ ,
is a BV function in $D$ . If $\mathcal{P}_{D}(\Omega)<\infty,$ $\Omega$ is called a Caccioppoli set. See for instance [7, 9] for more on
BV functions and Caccioppoli sets. To make this term small, $\Omega$ likes to form a large region bounded by a
surface of small area. and shares the boundary with $D$ as much as possible.

The number $\gamma$ in (1.1) is a positive constant, the second parameter after $\omega$ . The second term in (1.1) is
responsible for inhibition. The operator $(-\Delta)^{-1/2}$ is defined by the Poisson’s equation. Given $f\in L^{2}(D)$

such that $\int_{D}f(x)dx=0$ , let $u$ be the solution of the following Poisson’s equation with the Neumann
boundary condition:

$-\Delta u=f$ in $D,$ $\partial_{n}u=0$ on $\partial D,$ $\int_{D}u(x)dx=0$ . (1.4)

In (1.4) $\partial_{n}$ stands for the outward normal derivative at $\partial D$ . Because the integral of $f$ is $0$ , the partial
differential equation with the boundary condition is solvable. The solution is unique up to an additive
constant. The condition $\int_{D}u(x)dx$ fixes this constant and gives us a unique solution. The map $farrow u$ from
the space of $\{f\in L^{2}(D) : \int_{D}f(x)dx=0\}$ to itself given above is the operator $(-\triangle)^{-1}$ Since this operator

is bounded, self-adjoint, and positive definite, it has a positive square root, which is $(-\triangle)^{-1/2}$ in (1.1). Like
$(-\Delta)^{-1},$ $(-\triangle)^{-1/2}$ is a nonlocal operator. For the second term in (1.1) to be small, the function $\chi_{\Omega}$ must
have frequent fluctuation.

Therefore the two terms in (1.1) have different preferences. On the other hand, the two terms are effective
at different length scales. The perimeter term is more central at a small length scale so it forces the boundary
of $\Omega$ to be everywhere close to a surface of constant mean curvature. The second term is more important at
a longer distance so that it often makes $\Omega$ to have a near periodic shape.

One can also study $\mathcal{J}_{B}$ with the periodic boundary condition. In other words take $D$ to be $\mathbb{R}^{n}/\Lambda$ , where
$\Lambda$ is a discrete subgroup of $\mathbb{R}^{n}$ isomorphic to $\mathbb{Z}^{n}$ This simplifies the problem somewhat because $\mathbb{R}^{n}/\Lambda$ has
no boundary. On the other hand there is translation invariance on $\mathbb{R}^{n}/\Lambda$ , and one often needs to find ways
to remove any degeneracy related to this invariance.

There is a related variational problem that allows the two components to mix. Instead of using a subset $\Omega$

of $D$ , one uses a function $u$ defined on $D$ that represents the concentration of one of the two components. If
$u(x)=1$ , then the point $x\in D$ is occupied by the first component; if $u(x)=0$ , then the point $x$ is occupied
by the second component; if $0<u(x)<1$ , then the point is taken by a mixture of the two components.
The situation $u(x)\not\in[0$ , 1$]$ is not physical and can be mathematically ruled out when one studies stationary
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points. The free energy of this more complex system is

$\mathcal{I}_{B,\epsilon}=\int_{D}[\frac{\epsilon^{2}}{2}|\nabla u|^{2}+\frac{u^{2}(1-u)^{2}}{4}+\frac{\epsilon\gamma}{2}|(-\Delta)^{-1/2}(u-\omega)|^{2}]dx$ (1.5)

where $u$ is in the admissible set

$\mathcal{A}_{I}=\{u\in H^{1}(D) : \frac{1}{|D|}\int_{D}u(x)dx=\omega\}$ . (1.6)

The additional parameter $\epsilon$ is positive. It is large if the temperature is high and small if the temperature is
low. A stationary point of $\mathcal{I}_{B,\epsilon}$ is a solution to the following integro-differential equation.

$-\epsilon^{2}\Delta u+u(u-1/2)(u-1)+\epsilon\gamma(-\Delta)^{-1}(u-\omega)=\lambda$ in $D,$ $\partial_{n}u=0$ on $\partial D,$ $\int_{D}u(x)dx=0$ . (1.7)

In this model there are no longer clearly defined interfaces separating the two components in a stationary
point. Instead, when $\epsilon$ is small, one can often identify regions whose width is of the order $\epsilon$ where the
function $u$ changes quickly between values close to $0$ and values close to 1, These regions are viewed as
interfaces, or more precisely, diffusive interfaces. The problem $\mathcal{I}_{B,\epsilon}$ is called a diffusive interface model.

De Giorgi’s Gamma-convergence theory connects $\mathcal{I}_{B,\epsilon}$ to $\mathcal{J}_{B}$ . As $\epsilonarrow 0,$ $\epsilon^{-1}\mathcal{I}_{B,\epsilon}$ Gamma-converges to
$\mathcal{J}_{B}$ . The reader may find the details of this story in [25]. One consequence of this theory is that as $\epsilonarrow 0,$

a global minimizer of $\mathcal{I}_{B,\epsilon}$ converges to a global minimizer of $\mathcal{J}_{B}$ . Conversely, if $\mathcal{J}_{B}$ has an isolated local
minimizer $\Omega$ , then for small $\epsilon,$

$\mathcal{I}_{B,\epsilon}$ has a local minimizer $u_{\epsilon}$ such that

$\int_{D}|u_{\epsilon}-\chi_{\Omega}|dxarrow 0$ as $\epsilonarrow 0$ . (1.8)

2 Global minimizer and first variation

I start this section by showing that $\mathcal{J}_{B}$ always has a global minimizer.

Theorem 2.1 There exists $\Omega_{*}\in \mathcal{A}$ such that

$\mathcal{J}_{B}(\Omega_{*})= inf\mathcal{J}_{B}(\Omega)$ .
$\Omega\in A$

Proof. The functional $\mathcal{J}_{B}$ is bounded from below by $0$ , so there exists a sequence of $\Omega_{j}$ in $\mathcal{A}$ such that

$\lim_{jarrow\infty}\mathcal{J}_{B}(\Omega_{j})=\inf_{\Omega\in A}\mathcal{J}_{B}(\Omega)$ . (2.1)

Recall that the BV norm is defined as follows. For any function $f\in L^{1}(D)$ , let

$[f]_{BV}= \sup\{\int_{D}f(x)divg(x)dx:g\in C_{0}^{1}(D,\mathbb{R}^{n}) , |g(x)|\leq 1\forall x\in D\}$ . (2.2)

Clearly $[f]_{BV}=\mathcal{P}_{D}(\Omega)$ if $f=\chi_{\Omega}$ . If $[f]_{BV}<\infty$ , we say that $f$ is a BV function (a function of bounded
variation) and define the BV norm of $f$ to be

$\Vert f\Vert_{BV}=[f]$ $BV$ $+\Vert f\Vert_{L^{1}(D)}.$ (2.3)

It follows from (2.1) that the $\chi_{\Omega_{j}}$ ’s have bounded BV norms.
By the compactness theorem of BV functions [7, Theorem 4, Page 176] there exists $u\in BV(D)$ such

that $\chi_{\Omega_{j}}arrow u$ in $L^{1}(D)$ . One can also assume that $\chi_{\Omega_{j}}(x)arrow u(x)$ at every $x\in D$ . Then $u(x)=0$ or 1 for

80



every $x$ , and one can identify $u$ with $\chi_{\Omega_{*}}$ for some measurable set $\Omega_{*}\subset D$ . The convergence $\chi_{\Omega_{j}}arrow\chi_{\Omega}$ . in
$L^{1}(D)$ also implies that $|\Omega_{*}|=\omega|D|$ , i.e. $\Omega_{*}\in \mathcal{A}$ . Next apply the lower semi-continuity of BV functions [7,
Theorem 1, Page 172] to conclude that $\chi_{\Omega_{r}}\in BV(D)$ and

$\mathcal{P}_{D}(\Omega_{*})\leq\lim_{jarrow}\inf_{\infty}\mathcal{P}_{D}(\Omega_{j})$ . (2.4)

Since $\chi_{\Omega_{j}}$ is uniformly bounded by 1, $\chi_{\Omega_{j}}arrow\chi_{\Omega_{*}}$ in $L^{1}(D)$ implies that $\chi_{\Omega_{j}}arrow\chi_{\Omega}$ . in $L^{2}(D)$ . Then
$(-\Delta)^{-1/2}(\chi_{\Omega_{j}}-\omega)arrow(-\Delta)^{-1/2}(\chi_{\Omega_{*}}-\omega)$ in $L^{2}(D)$ and

$\lim_{jarrow\infty}\int_{D}|(-\triangle)^{-1/2}(\chi_{\Omega_{j}}-\omega)|^{2}dx=\int_{D}|(-\triangle)^{-1/2}(\chi_{\Omega_{*}}-\omega)|^{2}dx$ . (2.5)

Combining (2.4) and (2.5) we deduce that

$\mathcal{J}_{B}(\Omega_{*})\leq\lim_{jarrow}\inf_{\infty}\mathcal{J}_{B}(\Omega_{j})$ . (2.6)

This shows that $\Omega_{*}$ is a minimizer of $\mathcal{J}_{B}$ in $\mathcal{A}.$

$\square$

It is difficulty to determine the exact shape of the global minimizer $\Omega^{*}$ We will see that in one dimension,
i.e. $D=(0,1)$ , a global minimizer is a periodic union of intervals; see Theorem 3.2. In higher dimensions,
this question. is far from being settled, although recent years have seen a number of results on this problem
[2, 41, 17, 4, 16, 10] for various ranges of $\omega$ and $\gamma$ , and some special shapes of $D.$

The functional $\mathcal{J}_{B}$ has a complicated landscape. The global minimizer is not the only object of interest.
This article is more about stationary points than global minimizers. Let $\epsilon_{0}>0$ and $\Phi$ : $\mathbb{R}^{n}\cross(-\epsilon_{0}, \epsilon_{0})arrow \mathbb{R}^{n}$

be a smooth function. $\Phi$ is termed a deformation of $D$ if

1. $\Phi(x, 0)=x$ for every $x\in \mathbb{R}^{n},$

2. $\Phi$
$\epsilon)$ : $\mathbb{R}^{n}arrow \mathbb{R}^{n}$ is one-to-one and onto for every $\epsilon\in(-\epsilon_{0}, \epsilon_{0})$ ,

3. $\Phi$ leaves $D$ invariant, i.e. for every $\epsilon,$ $\Phi(x, \epsilon)\in D$ if and only if $x\in D.$

Let $\Omega\in \mathcal{A}$ , such that $\mathcal{J}_{B}(\Omega)<\infty$ , and let $\Phi$ be a deformation. We say that $\Phi$ preserves the volume of
$\Omega$ if

$|\Phi(\Omega, \epsilon)|=|\Omega|, \forall\epsilon\in(-\epsilon_{0}, \epsilon)$ . (2.7)

The first variation of $\mathcal{J}_{B}$ under a volume preserving deformation $\Phi$ is

$\frac{d\mathcal{J}_{B}(\Phi(\Omega,\epsilon))}{d\epsilon}|_{\epsilon=0}$ (2.8)

Since $\Omega$ is a Caccioppoli set, i.e., $\mathcal{P}_{D}(\Omega)<\infty$ , the Riesz representation theorem asserts that the distributional
derivative $D\chi_{\Omega}$ can be regarded as a vector valued measure on $D$ . The total variation of this measure is a
real valued, finite measure, denoted by $|D\chi_{\Omega}|.$

There are various natural ways to define the boundary of a Cacciopolli set measure theoretically. For
instance one can use the support of the measure $|D\chi_{\Omega}|$ as the boundary of $\Omega$ . This support, denoted by
$supp(|D\chi_{\Omega} is$ defined $by its$ complement, $i.e.,$ supp ( $|D\chi_{\Omega}|)$ is the subset of $D$ whose complement in $D$ is

{ $x\in D:\exists\rho>0$ such that $B_{\rho}(x)\subset D$ and $|D\chi_{\Omega}|(B_{\rho}(x))=0$ }. (2.9)

In (2.9), $B_{\rho}(x)$ is the open ball centered at $x$ of radius $\rho.$

Another concept for a measure theoretic boundary of $\Omega$ is called the reduced boundary, denoted by $\partial^{*}\Omega.$

A point $x\in D$ is in $\partial^{*}\Omega$ if

1. $|D\chi_{\Omega}|(B_{\rho}(x)\cap D)>0$ for any $\rho>0,$
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2. the limit $\nu(x)=\lim_{\rhoarrow 0}\nu_{\rho}(x)$ exists where

$\nu_{\rho}(x)=\frac{D\chi_{\Omega}(B_{\rho}(x)\cap D)}{|D\chi_{\Omega}|(B_{\rho}(x)\cap D)},$

3. $|v(x)|=1.$

The reduced boundary $\partial^{*}\Omega$ is always a subset of $supp(|D\chi_{\Omega}$ but the converse is not always true. A simple
counter-example is a rectangle in a two dimensional $D$ . The four corner points are in $supp(|D\chi_{\Omega}|)$ but not
in $\partial^{*}\Omega$ . Of course, if the set $\Omega$ has $C^{1}$ boundary, then $\partial^{*}\Omega$ and $supp(|D\chi_{\Omega}|)$ all agree with the topological
boundary $\partial\Omega\cap D$ . I refer to [7, 9] for more on reduced boundaries.

Although $supp(|D\chi_{\Omega}|)\backslash \partial^{*}\Omega$ may not be empty, this set is always small. Actually the measure $|D\chi_{\Omega}|$ is
nothing but the $n-1$ dimensional Hausdorff measure restricted to $\partial^{*}\Omega$ :

$|D\chi_{\Omega}|(E)=H^{n-1}(E\cap\partial^{*}\Omega)$ (2.10)

for any $E\subset D$ . The unit vector $v(x)$ in the definition of the reduced boundary is the normal vector of
$\partial^{*}\Omega$ at $x$ , inward with respect to $\Omega$ . With this normal vector, one obtains a tangent space to $\partial^{*}\Omega$ at every
$x\in\partial^{*}\Omega.$

We introduce the term inhibitor variable, denoted $I_{\Omega}$ , for each $\Omega\in \mathcal{A}$ to be the solution of

$-\Delta I_{\Omega}=\chi_{\Omega}-\omega$ i $n$ $D,$ $\partial_{n}I_{\Omega}=0$ on $\partial D,$ $\int_{D}u(x)dx=0.$

In other words, $I_{\Omega}=(-\triangle)^{-1}(\chi_{\Omega}-\omega)$ .
Let

$X(x)= \frac{\partial\Phi(x,\epsilon)}{\partial\epsilon}|_{\epsilon=0}, \forall x\in \mathbb{R}^{n}$ (2.11)

be the infinitesimal vector field of a deformation $\Phi$ . Since $\Phi$ leaves $D$ invariant,

$X(x)\in T_{\partial D}(x) , \forall x\in\partial D$ , (2.12)

where $T_{\partial D}(x)$ is the tangent space of $\partial D$ at $x$ . Calculations show that

$\frac{d}{d\epsilon}|_{\epsilon=0}\mathcal{P}_{D}(\Phi(\Omega, \epsilon))=\int_{\partial’\Omega}div_{\partial^{r}\Omega}XdH^{n-1}$ (2.13)

Here $div_{\partial^{\bullet}\Omega}$ is the divergence on $\partial^{*}\Omega$ , made possible by the properties of the reduced boundary. More
precisely, with $X=(X_{1}, X_{2}, \ldots, X_{n})$ ,

$div_{\partial\Omega}X=\nabla_{j}^{\partial\Omega}X_{j}$ , (2.14)

where $\nabla_{j}^{\partial\Omega}$ is the j-th component of the gradient $\nabla^{\partial\Omega}$ on $\partial^{*}\Omega$ , namely,

$\nabla^{\partial\Omega}f=\sum_{k=1}^{n-1}D_{\tau_{k}}f\tau_{k}$ and $\nabla_{j}^{\partial\Omega}f=\nabla^{\partial\Omega}f\cdot e_{j}$ . (2.15)

Here $D_{\tau_{k}}$ is the usual directional derivative in $\mathbb{R}^{n}$ along the direction $\tau_{k}$ , the $\tau_{k}’ s(k=1,2, \ldots, n-1)$ form
an orthonormal basis of the tangent space of $\partial^{*}\Omega$ , and the $e_{j}$ ’s $(j=1,2, n)$ are the standard unit vectors
in $\mathbb{R}^{n}$ Also

$\frac{d}{d\epsilon}|_{\epsilon=0}\frac{1}{2}\int_{D}|(-\triangle)^{-1/2}(\chi_{\Phi(\Omega,\epsilon)}-\omega_{\epsilon})|^{2}dx=-\int_{\partial\Omega}I_{\Omega}\nu\cdot XdH^{n-1}$ (2.16)

where $\omega_{\Xi}=\frac{|\Phi(\Omega,\epsilon)|}{|D|}$ . Moreover

$\frac{d|\Phi(\Omega,\epsilon)|}{d\epsilon}|_{\epsilon=0}=-\int_{\partial\Omega}\nu\cdot XdH^{n-1}$ (2.17)
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See, for example [40], for the derivations of these formulas. Hence for a volume preserving deformation $\Phi$ of
$\Omega$ , the infinitesimal vector field $X$ satisfies

$\int_{\partial\Omega}v\cdot XdH^{n-1}=0$ . (2.18)

Motivated by (2.13)-(2.17), we say that a Cacciopolli set $\Omega\in \mathcal{A}$ is a stationary point of $\mathcal{J}_{B}$ if

$\int_{\partial^{*}\Omega}(div_{\partial^{t}\Omega}X-I_{\Omega}\nu\cdot X)dH^{n-1}=0$ (2.19)

for every $X\in C^{\infty}(\mathbb{R}^{n}, \mathbb{R}^{n})$ that satisfies (2.12) and (2.18).
If $\Omega$ has $C^{2}$ boundary and does not share boundary with $D$ , then (2.19) is equivalent to the Euler-Lagrange

equation,
$H+\gamma I_{\Omega}=k, on\partial\Omega\cap D$ . (2.20)

In (2.20)} $H$ is the mean curvature of the surface $\partial\Omega\cap D$ , and the constant $\lambda$ is a Lagrange multiplier
corresponding to the constraint $|\Omega|=\omega|D|$ . If $\Omega$ shares boundary with $D$ , then one adds another condition
that

$\partial\Omega\cap D\perp\partial D$ (2.21)

where $\partial\Omega\cap D$ and $\partial D$ meet.
A stationary point with $C^{2}$ boundary is a called a regular stationary point. Whether $\mathcal{J}_{B}$ has non-regular

stationary points is a difficult open question. This article only deals with regular stationary points.

3 Stationary points

In one dimension, $D=(0,1)$ , all stationary points of $\mathcal{J}_{B}$ are known. For each positive integer $K$ let
$z_{1},$ $z_{2},$ $z_{K}\in(0,1)$ be given by

$z_{1}= \frac{1-\omega}{K}, z_{3}=z_{1}+\frac{2}{K}, Z_{5}=z_{3}+\frac{2}{K},$

and
$z_{2}= \frac{1+\omega}{K}, z_{4}=z_{2}+\frac{2}{K}, z_{6}=z_{4}+\frac{2}{K},$

$\cdots$ (3.1)

Also define $z_{1}’,$ $z_{2}’,$ $z_{K}’\in(0,1)$ by

$z_{1}’= \frac{\omega}{K}, z_{3}’=z_{1}’+\frac{2}{K}, z_{5}’\cdot=z_{3}’+\frac{2}{K},$
$\cdots$

and
$z_{2}’= \frac{2-\omega}{K}, z_{4}’=z_{2}’+\frac{2}{K}, z_{6}’=z_{4}’+\frac{2}{K}$ , (3.2)

For each $K$ we have two sets

$\Omega_{K}=(z_{1}, z_{2})\cup(z_{3}, z_{4})\cup(z_{5}, z_{6})\cup\ldots$ and $\Omega_{K}’=(0, z_{1}’)\cup(z_{2}’, z_{3}’)\cup(z_{4}’, z_{5}’)\cup\ldots$ (3.3)

It was proved by Ren and Wei [25] that the stationary points of $\mathcal{J}_{B}$ on $(0,1)$ are precisely these $\Omega_{K}$ ’s and
$\Omega_{K}’s.$

Theorem 3.1 ([25]) If $D=(0,1)$ , then $\Omega\in \mathcal{A}$ is a stationary point of $\mathcal{J}_{B}$ if and only if $\Omega$ is one of the
sets $\Omega_{K}$ and $\Omega_{K}’,$ $K=1$ , 2, $\cdots$ Moreover every stationary point is a local minimizer.
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The global minimizers of $\mathcal{J}_{B}$ on $(0,1)$ are also known. The energy of $\Omega_{K}$ and $\Omega_{K}’$ are equal, which we
denote by $J(K)$ . Calculations show that

$J(K)=K+ \frac{\gamma\omega^{2}(1-\omega)^{2}}{6K^{2}}$ . (3.4)

If we minimize $J$ among positive integers $K$ , there are two possibilities: (1) $J$ is minimized by one integer
$K_{*};(2)J$ is minimized by two consecutive integers $K_{*}$ and $K_{*}+1$ . The first case is generic.

Theorem 3.2 ([25]) If $J$ is minimized by one integer, $K_{*}$ , then $\mathcal{J}_{B}$ has two global minimizers: $\Omega_{K}$ . and
$\Omega_{K}’.$ ; if $J$ is minimized by two integers, $K_{*}$ and $K_{*}+1$ , then $\mathcal{J}_{B}$ has four global minimizers: $\Omega_{K}.,$ $\Omega_{K}’.$

’

$\Omega_{K.+1}$ , and $\Omega_{K.+1}’.$

The proofs of these theorems depend on the special structure of Caccioppoli sets in one dimension. $A$

Caccioppoli set $\Omega\subset(0,1)$ is, up to a set of Lebesgue measure $0$ , just a finite union of intervals. It can be
identified by the endpoints of the intervals. Say there are $K$ endpoints denoted by $x_{1},$ $x_{2},$ $x_{K}\in(0,1)$ .
They are the interfaces separating $\Omega$ from $(0,1)\backslash \Omega$ . Then the measure $|D\chi_{\Omega}|$ isjust the sum of delta measures
centered at $x_{k},$ $k=1$ , 2, $K$ , namely

$|D \chi_{\Omega}|=\sum_{k=1}^{K}\delta_{x_{k}}$ . (3.5)

Within the class of Caccioppoli sets in $\mathcal{A}$ with $K$ endpoints the energy $\mathcal{J}_{B}$ is a function of $x_{1},$ $x_{2},$ $x_{K}$ . For
a stationary point, the equation (2.20) becomes a system of equations for these$\cdot$

$x_{k}’ s$ . One can solve these
equations and find two solutions, which are exactly (3.1) and (3.2).

To discuss whether a stationary point is a local minimizer, one needs a topology on $\mathcal{A}$ . The natural
topology is given by the $L^{1}(D)$ norm; namely, for $\Omega,$ $\Omega’\in \mathcal{A}$ the distance between the two sets is

$d( \Omega, \Omega’)=\int_{D}|\chi_{\Omega}-\chi_{\Omega’}|dx$ . (3.6)

Under this topology, in one dimension, the subclass of Cacciopolli sets in $\mathcal{A}$ has an unusual structure, so
that all stationary points of $\mathcal{J}_{B}$ are local minimizers. There are no other type stationary points.

The functional $\mathcal{J}_{B}$ on a higher dimensional set $D\in \mathbb{R}^{n},$ $n\geq 2$ , is a much more difficult problem. One
can certainly extend the one dimensional stationary points $\Omega_{K}$ and $\Omega_{K}’$ trivially to a stationary point on a
rectangle

$D=(0,1)\cross(0, w)$ (3.7)

where $w>0$ is the width. They would be good candidates for the stripe pattern observed in the lamellar
phase of diblock copolymers, provided one can show that they were stable in $D$ . It turns out that with given
$\omega,$ $\gamma$ and $K$ , the stability of $\Omega_{K}$ and $\Omega_{K}’$ depends on the width $w$ of the rectangle $w.$

There are several works addressing this issue, where stability is discussed from different perspectives.
First, Ren and Wei [27] considered the diffusive interface problem (1.5). It was shown in [25] by De Giorgi’s
$Gamma_{r}$convergence theory, that near each $\Omega_{K}$ (or $\Omega_{K}’$ ) of Theorem 3.1, there exists a local minimizers
$U_{\epsilon,K}$ , or $U_{\epsilon,K}’$ , of $\mathcal{I}_{B,\epsilon}$ . When such a local minimizer on $(0,1)$ is trivially extended to a stationary point on
$(0,1)\cross(0, w)$ , one can study its stability from the eigenvalue problem

$- \epsilon^{2}\Delta\phi+(3U_{\epsilon_{)}K}^{2}-3U_{\epsilon,K}-\frac{1}{2})\phi+\epsilon\gamma(-\Delta)^{-1}\phi=\lambda\phi+Const.$ , (3.8)

$\partial_{n}\phi=0$ on $\partial D,$ $\int_{D}\phi(x)dx=0.$

In [27] the authors found asymptotic formulas for all the eigenvalues in terms of the small parameter $\epsilon$ . It
turns out that only when $w$ is small, all the eigenvalues are positive. If $w$ is large, one can find a negative
eigenvalue, and consequently $U_{\epsilon,K}$ is unstable.
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Knowing the dependence of the eigenvalues on $\gamma$ , the authors were able to find bifurcation solutions
as $\gamma$ crosses some critical values [31]. These solutions have wiggled interfaces. They are the first real two
dimensional solutions.

Next, Choksi and Sternberg [6] considered the second variation of $\mathcal{J}_{B}$ . Let $\Omega\in \mathcal{A}$ be a Caccioppoli set,
and a deformation $\Phi$ be a volume preserving deformation mentioned in the last section. The second variation
of $\Omega$ along $\Phi$ is

$\frac{d^{2}\mathcal{J}_{B}(\Phi(\Omega,\epsilon))}{d\epsilon^{2}}|_{\epsilon=0}$ (3.9)

They proved that when $w$ is small, the second variation of $\Omega_{K}$ (or $\Omega_{K}’$ ) along any deformation $\Phi$ is non-
negative, and when $w$ is large, there is always some deformation $\Phi$ long which, the second variation is
negative. Actually they considered the periodic boundary condition case, but their result is also valid if the
domain is a rectangle in $\mathbb{R}^{n}$

In [1], Acerbi et $al$ showed that the positivity of the second variation at a regular stationary point indeed
implies that the stationary point is a local minimizer with respect to the metric given in (3.6). Using this
result, Morini and Sternberg showed in [16] that when the width $w$ is small, $\Omega_{K}$ and $\Omega_{K}’$ are local minimizers
on $(0,1)\cross(0, w)$ . Moreover, when $w$ is small, a global minimizer on $(0,1)\cross(0, w)$ must be the extension of
a global minimizer on $(0,1)$ .

Another one dimensional result was obtained by Ren and Wei [26] that there are stationary points on a
disc in $\mathbb{R}^{2}$ which are unions of concentric annuli. There are also solutions of wiggled interfaces bifurcating
out of these radial solutions [30].

The first higher dimensional result on a general domain, not by the bifurcation theory, was proved by Oshita
[22].

Theorem 3.3 ([22]) Let $D$ be a bounded and smooth domain in $\mathbb{R}^{2}$ There exists $\omega_{0}>0$ depending on $D$

only such that if $\omega<\omega_{0}$ , there is $\gamma_{0}>0$ so that when $\gamma<\gamma_{0},$ $\mathcal{J}_{B}$ admits a stationary point which is close

to a disc of radius $\sqrt{\frac{\omega|D|}{\pi}}$ and is centered near a global minimum of the junction $zarrow R(z, z)$ .

The function $R$ in this theorem is the regular part of Green’s function of $\triangle$ with the Neumann boundary
condition. Recall that the Green’s function, denoted $G(x, y)$ , is the solution of the following problem

$- \triangle G(\cdot, y)=\delta(\cdot-y)-\frac{1}{|D|}$ in $D,\cdot$ $\partial_{n}G$ $y)=0$ on $\partial D$ ; $\int_{D}G(x, y)$ $dx=0$ (3.10)

for each $y\in D\subset \mathbb{R}^{2}$ One can write $G$ as a sum of two terms:

$G(x, y)= \frac{1}{2\pi}\log\frac{1}{|x-y|}+R(x, y)$ . (3.11)

The first term $\frac{1}{2\pi}\log\frac{1}{|x-y|}$ is the fundamental solution of the Laplace operator in two dimensions; the second
term $R$ is the regular part of the Green’s function, a smooth function of $(x, y)\in D\cross D$ . It is known that

$R(z, z)arrow\infty$ , as $zarrow\partial D$ , (3.12)

so the function $zarrow R(z, z)$ has a global minimum in $D.$

The idea of Oshita’s work is to view the nonlocal part of $\mathcal{J}_{B}$ as a small perturbation of the perimeter
term in $\mathcal{J}_{B}$ . Then a disc centered at any general point $\xi\in D$ is a stationary point of the perimeter functional
according to the isoperimetric inequality. With the addition of a small nonlocal term, one can make a small
perturbation to the disc and find a set that almost solves (2.20). By “almost solves”’ we mean that this set is
stationary with respect to all but two deformations. These two deformations are related to the translations
of the set. However if one adjusts the center of the disc $\xi$ in $D$ , it turns out that there is a special place $\xi^{*}$

in $D$ such that if the disc is centered at $\xi^{*}$ , then the perturbed disc is a stationary point with respect to all
deformations. Asymptotically $\xi^{*}$ converges to a minimum of $zarrow R(z, z)$ as $\gammaarrow 0.$
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The next breakthrough came in [33] by Ren and Wei. They observed that a disc is not only a stationary
point of the perimeter functional, it is also stationary with respect to the singular part of the nonlocal energy.
Recall that in (2.20), the function $I_{\Omega}$ can be written, with the help of Green’s function, as

$I_{\Omega}(x)= \int_{\Omega}G(x, y)dy$ . (3.13)

But by (3.11) we have

$I_{\Omega}(x)= \int_{\Omega}\frac{1}{2\pi}\log\frac{1}{|x-y|}dy+\int_{\Omega}R(x, y)dy$ . (3.14)

If we take $\Omega$ to be a disc $B_{\rho}$ of radius $\rho$ , centered at any $\xi\in D$ and insert it into the equation (2.20), then
the curvature $H$ of the boundary of $B_{\rho}(\xi)$ is obviously $\frac{1}{\rho}$ , a constant. Moreover, the first term of $I_{B_{\rho}},$

$\int_{B_{\rho}(\xi)}\frac{1}{2\pi}\log\frac{1}{|x-y|}dy,$

is also constant for all $x\in\partial B_{\rho}(\xi)$ . Only the term

$\int_{B_{\rho}(\xi)}R(x_{\rangle}y)dy$

is not constant on $\partial B_{\rho}(\xi)$ . Based on this observation, Ren and Wei showed that an approximate disc exists
as a stationary point for a much larger range of the parameter $\omega$ and $\gamma.$

Theorem 3.4 ([33]) Let $\rho>0$ be such that $\pi\rho^{2}=\omega|D|$ . For any $\eta>0$ there exists $\delta>0$ such that if $\rho$

and $\gamma$ satisfy

1). $\gamma\rho^{3}<12-\eta$ , 2 $\gamma\rho^{4}<\delta$ , 3). $\rho<\sqrt{\frac{\omega_{0}|D|}{\pi}},$

then $\mathcal{J}_{B}$ admits a stationary point that is close to a disc of radius $\rho$ , and is centered near a minimum of
$zarrow R(z, z)$ . In some sense, this stationaw point is stable.

Here $\omega_{0}$ is the same as the one in Theorem 3.3. So to have a disc-like stationary point, $\gamma$ does not have to
be small. If $\omega$ is small enough, we can again have a disc-like stationary point even if $\gamma$ is large.

The claim of stability lies in the proof of the theorem. First, take a disc of radius $\rho$ and place it inside
$D$ with the center being $\xi$ . At this point, $\xi$ is arbitrary and is not where the center of the solution is. Next,

we perturb the disc by a function $\phi(\theta)$ , so that the boundary of the perturbed disc is parametrized by

$\theta\in \mathbb{S}^{1}arrow\sqrt{\rho^{2}+2\phi(\theta)}e^{i\theta}$ (3.15)

In (3.15), $\mathbb{S}^{1}$ is the unit circle, or the interval $[0, 2\pi]$ with identified endpoints. We write $e^{i\theta}$ for $(\cos\theta, \sin\theta)$

for simplicity. The function $\thetaarrow\sqrt{\rho^{2}+2\phi(\theta)}$ is really the radius variable in the polar coordinates centered
at $\xi$ . We do not use the radius variable to describe perturbation, but use the variable $\thetaarrow\phi(\theta)$ because the
constraint $|\Omega|=\omega|D|$ is a simple affine condition

$\int_{0}^{2\pi}\phi(\theta)d\theta=0$ (3.16)

in terms of $\phi$ . Another condition on $\phi$ is that

$\int_{0}^{2\pi}\phi(\theta)\cos\theta d\theta=\int_{0}^{2\pi}\phi(\theta)\sin\theta d\theta=0$ . (3.17)

This ensures that the set perturbed by $\phi$ is (centered’) at $\xi$ . We denote this set by $\Omega_{\phi}.$
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Since our set $\Omega_{\phi}$ is centered at an arbitrary point $\xi$ , it is not realistic to find a $\phi$ so that $\Omega_{\phi}$ solves (2.20).
Instead we look for a $\phi$ that solves the $(projected”$ equation, namely $H(\partial\Omega_{\phi})+\gamma I_{\Omega_{\phi}}$ is in the linear span of
$\{1, \cos\theta, \sin\theta\}$ . In other words we look for $\phi$ , and three numbers $\lambda,$ $A_{1}$ , and $A_{2}$ such that

$H(\partial\Omega_{\phi})+\gamma I_{\Omega_{\phi}}=\lambda+A_{1}\cos\theta+A_{2}\sin\theta$ . (3.18)

To solve this equation, we use the exact disc $B(\xi)$ centered at $\xi$ as an approximate solution. It corresponds
to $\phi=$ O. We analyze the linearized operator of the equation (2.20) at $\phi=$ O. This linear operator turns
out to be invertible and positive definite. The equation (3.18) may be written in a fixed point form near the
approximate solution and is solved by the contraction mapping principle.

Denote this solution of (3.18) by $\phi^{*}$ and the corresponding set by $\Omega_{\phi^{*}}$ . Recall that our starting point
is a fixed center $\xi$ , so this $\phi^{*}$ also depends on $\xi$ . We emphasize this dependence by writing $\phi^{*}=\phi^{*}$ $\xi$ )
and $\Omega_{\phi^{\bullet}}=\Omega_{\phi^{*}(\cdot,\xi)}$ . The final step is to show that there is a particular $\xi^{*}$ in $D$ such that when $\xi=\xi^{*}$ , the
corresponding $\phi^{*}$ $\xi^{*}$ ) and $\Omega_{\phi^{\nu}(\cdot,\xi^{*})}$ solves (3.18) with $A_{1}=A_{2}=0.$

To do this, one minimizes the energy of $\Omega_{\phi^{*}(\cdot,\xi)}$ with respect to $\xi$ . It turns out that since $\Omega_{\phi^{*}(\cdot,\xi)}$ was
found near the exact disc $B(\xi)$ , the energy of $\Omega_{\phi^{*}(\cdot,\xi)}$ is close to the energy of $B(\xi)$ . The energy of $B(\xi)$ can
be computed explicitly:

$\mathcal{J}_{B}(B(\xi))=2\pi\rho+\frac{\pi^{2}\gamma\rho^{4}}{2}[\frac{1}{2\pi}\log\frac{1}{\rho}+\frac{1}{8\pi}+R(\xi, \xi)+\frac{\rho^{2}}{4|D|}]$ . (3.19)

Clearly $\mathcal{J}_{B}(B(\xi))$ is minimized, with respect to $\xi$ , at a minimum of the function $\xiarrow R(\xi, \xi)$ . It also implies
that $\mathcal{J}_{B}(\Omega_{\phi^{*}(\cdot,\xi)})$ is minimized, with respect to $\xi$ , at a point $\xi^{*}$ which is close the minimum of $\xiarrow R(\xi, \xi)$ .
As a minimum, $\xi^{*}$ satisfies

$\frac{\partial \mathcal{J}_{B}(\Omega_{\phi^{*}(\cdot,\xi)})}{\partial\xi_{i}}|_{\xi=\xi^{*}}=0, i=1, 2$ . (3.20)

A careful reading of (3.20) shows that it implies that $A_{1}=A_{2}=0$ in (3.18) at $\xi=\xi^{*}$

This shows the existence of a stationary point. The stability of this point is ascertained from two facts.
First, we constructed a fixed point $\phi^{*}$ $\xi$ ) with the help of the ljnearized operator at the exact disc $B(\xi)$ .
One can show that this linear operator is similar to the one at $\Omega_{\phi^{*}(\cdot,\xi)}$ . Hence the latter linear operator
is also positive definite. This shows that among the perturbations satisfying (3.16) and (3.17), $\phi^{*}$ $\xi$ ) is
locally energy minimizing. We emphasize that $\phi^{*}(\cdot, \xi)$ is only locally energy minimizing. among these special
perturbations. Second, we minimized the energy of $\phi^{*}$ $\xi$ ) with respect to $\xi$ . As we vary $\xi,$ $\phi^{*}$ $\xi$ ) can be
viewed as a family of perturbations. These perturbations do not satisfy the condition (3.17), so they are
beyond the perturbations in the first step. Since $\phi^{*}$ $\xi^{*}$ ) is obtained from a minimum $\xi^{*}$ , our stationary
point locally minimizes in both steps. We therefore conclude that in this sense, $\phi^{*}$ $\xi^{*}$ ) is stable.

The sense of stability discussed above should be compared to the more standard notions of stability. One
can define a stationary point to be if it is a local energy minimizer with respect to the metric $d$ given in (3.6).
Or one can define a stationary point to be stable if $\mathcal{J}_{B}$ has positive second variation, (3.9), at the stationary
point along any deformation whose infinitesimal element is non-trivial. Although we expect that these three
notions of stability are more or less equivalent, the only known fact now is that the positivity of the second
variation implies the local minimality of the energy functional by Acerbi et $al[1]$ mentioned earlier.

For pattern formation problems, one really likes to find stationary points that are nearly periodic sets
of multiple components. A stationary point that models a pattern should be an assembly of many similar
geometric shapes. We call such a stationary point a stationary assembly. The single disc solutions in
Theorems 3.3 and 3.4 are not stationary assemblies.

Fortunately Ren and Wei discovered that the techniques they developed in [33] can be elaborated to
construct stationary assemblies. They showed that for each positive integer $K$ there is an assembly of $K$

small discs as a stationary point of $\mathcal{J}_{B_{\rangle}}$ when $\omega$ is small and $\gamma$ is in a particular range. To state this result,
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define a function $F$ by

$F( \xi_{1}, \xi_{2}, \xi_{K})=F(\xi_{1}, \xi_{2}, \xi_{K})=\sum_{k=1}^{K}R(\xi_{k}, \xi_{k})+\sum_{k=1}^{K}\sum_{l=1,l\neq k}^{K}G(\xi_{k}, \xi_{l})$ , (3.21)

where $\xi_{k}\in D$ , and $\xi_{j}\neq\xi_{k}$ if $j\neq k$ , with the help of Green’s function and its regular part. This function
tends to infinity if one $\xi^{k}$ approaches the boundary of $D$ or if two distinct $\xi^{k}$ and $\xi^{l}$ become too close, so $F$

always has a global minimum.

Theorem 3.5 ([32]) Let $K\geq 2$ be an integer and $\rho$ be such that $K\pi\rho^{2}=\omega|D|.$

1. For every $\eta>0$ there exists $\delta>0$ , depending on $\eta,$
$K$ and $D$ only, such that if

$\frac{1+\eta}{\rho^{3}\log\frac{1}{\rho}}<\gamma<\frac{12-\eta}{\rho^{3}}$ , (3.22)

and
$\rho<\delta$ , (3.23)

then there exists a stationary point, stable in some sense.

2. This stationary point is a union of $K$ sets, each of which is close to a disc of radius $\rho.$

3. Let the centers of these approximate discs be $\xi_{1}^{*},$ $\xi_{2}^{*}$ , $\cdots$ , $\xi_{K}^{*}$ . Then $\xi^{*}=$ $(\xi_{1}^{*},\xi_{2}^{*}, \xi_{K}^{*})$ is close to a
global minimum of the function $F.$

As in the previous case, one takes $K$ discs and place them inside $D$ with centers at $\xi_{1},$ $\xi_{2}$ , $\cdots$ , $\xi_{K}$ . However
unlike the last case, the radius of these discs is not fixed at $\rho$ . Instead we introduce $w_{1},$ $w_{2},$ $w_{K}$ , so that
the area of the k-th disc is $w_{k}$ . The $w_{k}$ ’s satisfy

$\sum_{k=1}^{K}w_{k}=K\pi\rho^{2}$ (3.24)

Perturbed each $B_{r_{k}}(\xi_{k})$ , the disc centered at $\xi$ of radius $r_{k}=\sqrt{arrow w\pi}$ , by a function $\phi_{k}$ to $\Omega_{\phi_{k}}$ . Each $\phi_{k}$

satisfies (3.16) and (3.17). One then finds $\phi^{*}=(\phi i, \phi_{2}^{*}, \phi_{K}^{*})$ such that the set $\Omega^{*}=\bigcup_{k=1}^{K}\Omega_{\phi_{k}}$. solves

$H(\partial\Omega_{\phi_{k}})+\gamma I_{\Omega_{\phi}}=\lambda_{k}+A_{1,k}\cos\theta+A_{2,k}\sin\theta$ (3.25)

on each $\partial\Omega_{\phi_{k}}.$

As before $\phi^{*}$ is not a solution of (2.20) yet. There are the terms $A_{1,k}\cos\theta$ and $A_{2,k}\sin\theta$ in (3.25).
Moreover the constants $\lambda_{k}$ there depend on $k$ , while the constant $\lambda$ in (2.20) does not. We use the $\xi_{k}$ ’s and
the $w_{k}$ ’s to fix these problems. Note that $\phi^{*}=\phi^{*}$ $\xi,$ $w$ ) depends on $\xi=(\xi_{1_{\rangle}}\ldots, \xi_{K})$ and $w=(w_{1}, \cdots, w_{K})$

One minimizes $\mathcal{J}_{B}(\phi^{*} \xi, w)$ ) with respect to $(\xi, w)$ . This energy is close to the energy of the approximate
solution $\bigcup_{k=1}^{K}B_{f}k(\xi_{k})$ , which is

$K 2 K$
$\mathcal{J}_{B}(\bigcup_{k=1}^{K}B_{r_{k}}(\xi_{k})) = \sum 2\pi r_{k}+\frac{\gamma\pi}{2}[\sum(\frac{r_{k}^{4}}{2\pi}\log\frac{1}{r_{k}}+\frac{r_{k}^{4}}{8\pi}+r_{k}^{4}R(\xi_{k_{\rangle}}\xi_{k}))$

$k=1 k=1$
$K K K$

$+ \sum\sum r_{k}^{2}r_{l}^{2}G(\xi_{k}, \xi_{l})+\sum\sum(\frac{r_{k}^{2}r_{l}^{4}}{8|D|}+\frac{r_{k}^{4}r_{l}^{2}}{8|D|})j.$ (3.26)

$k=1l\neq k k=1l=1$

When $\rho$ is small as in assumption (3.23) of Theorem 3.5 and the $r_{k}$ ’s are in a neighborhood of $\rho$ , the
leading order quantity of (3.26) is

$\sum_{k=1}^{K}2\pi r_{k}+\frac{\gamma\pi^{2}}{2}\sum_{k=1}^{K}\frac{r_{k}^{4}}{2\pi}\log\frac{1}{r_{k}}$ . (3.27)
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Figure 1: Left: a stationary assembly of $\mathcal{J}_{B}$ with 40 discs. Right: a stationary assembly of $\mathcal{J}_{T}$ with 40
double bubbles.

The lower bound $\frac{1+\eta}{\rho^{3}\log\frac{1}{\rho}}<\gamma$ ensures that (3.27) is locally minimized at $r_{1}=\ldots=r_{K}=\rho$ . One can take all

the $r_{k}$ ’s to be $\rho$ in (3.26) and minimize with respect to the $\xi_{k}’ s$ . This means minimizing $F$ of (3.21).
In conclusion, $\mathcal{J}_{B}(\Omega_{\phi^{*}(_{\rangle}\xi,w)})$ is minimized with respect to $(\xi, w)$ at $(\xi^{*}, w^{*})$ where $w^{*}=(w_{1}^{*}, \ldots, w_{K}^{*})$ and

each $w_{k}^{*}$ is close to $\pi\rho^{2}$ , and $\xi^{*}$ is close to a minimum of $F$ . At $(\xi^{*}, w^{*})$ we have the equations

$\frac{\partial \mathcal{J}_{B}(\phi^{*}(\cdot,’\xi,w))}{\partial\xi_{kj}}|_{(\xi,w)=(\xi^{s},w^{t})}=0,$ $\frac{\partial \mathcal{J}_{B}(\phi^{*}(\cdot,\xi,w))}{\partial w_{k}}|_{(\xi,w)=(\xi^{v},w^{v})}=\lambda,$ $k=1$ , $\cdots$ , $K,$ $j=1$ , 2. (3.28)

The constant $\lambda$ corresponds to the constraint (3.24) on the $w_{k}’ s$ . Using these equations we deduce that
in (3.25), when $(\xi, w)=(\xi^{*}, w^{*})$ , the $\lambda_{k}$ ’s are actually independent of $k$ , and the $A_{1,k}$ ’s and the $A$ $s$ all

vanish. This proves the theorem.

If $D$ is the unit disc, the Green’s function is known explicitly:

$G(x, y)= \frac{1}{2\pi}\log\frac{1}{|x-y|}+\frac{1}{2\pi}[\frac{|x|^{2}}{2}+\frac{|y|^{2}}{2}+\log\frac{1}{|x\overline{y}-1|}]-\frac{3}{8\pi}$ (3.29)

where $\overline{y}$ denotes the complex conjugate of $y\in D\subset \mathbb{R}^{2}\underline{\simeq}\mathbb{C}$ and $x\overline{y}$ is the complex product of $x$ and $\overline{y}.$

Consequently $F$ is also known explicitly. The left plot of Figure 1 shows a stationary point of $\mathcal{J}_{B}$ that is an
assembly of 40 discs. The locations of these discs are determined by numerically minimizing $F.$

This result has an analogy in three dimensions.

Theorem 3:6 ([34]) Let $D\subset \mathbb{R}^{3}$ be a bounded and smooth domain, $K$ be an integer, and $\rho$ be such that
$\frac{K4\pi\rho^{3}}{3}=\omega|D|.$

1. For every $\eta>0$ there exists $\delta>0$ , depending on $\eta,$
$K$ and $D$ only, such that if

$\frac{1.5+\eta}{\rho^{3}}<\gamma<\frac{15-\eta}{\rho^{3}}$ , (3.30)

and
$\rho<\delta$ , (3.31)

then there exists a stationary point, stable in some sense.

89



2. The stationary point is a union of $K$ sets, each of which is close to a ball of radius $\rho.$

3. The centers of the balls are determined by the analogous $F$ in three dimensions in the same way,

One subtle difference between the two dimensional case and the three dimensional case is that in the
three dimensions, the lower bound and the upper bound of $\gamma$ in (3.30) are of the same order, while the
corresponding bounds in two dimensions are of different orders. This difference can be ultimately attributed
to the difference in the fundamental solutions of $\Delta$ in two and three dimensions: one is $\frac{1}{2\pi}\log\frac{1}{|x|}$ and the

other is $\frac{1}{4\pi|x|}.$

4 The profile problem and ansatz solutions

As we mentioned earlier, Ren and Wei recognized in [33] that a disc is stationary with respect to the perimeter
term and the singular part of the Green’s function. The same idea was also used in [34] for a ball in the three
dimensional analogy. In this section we elaborate on this idea and consider a profile problem that consists
of the perimeter term and the singular part of the Green’s function.

This profile problem is posed on the entire space $\mathbb{R}^{n}$ Let $m>0$ . For each Lebesgue measurable set $\Omega$

with the fixed Lebesgue measure $m,$

$|\Omega|=m$ , (4.1)

define the energy

$\mathcal{K}_{B}(\Omega)=\frac{1}{n-1}\mathcal{P}(\Omega)+\frac{\gamma}{2}\int_{\Omega}\mathcal{N}(\Omega)(x)dx$ . (4.2)

In (4.2), $\mathcal{P}(\Omega)$ is the perimeter of $\Omega$ in $\mathbb{R}^{n}$ , given by (1.3) with $D$ being $\mathbb{R}^{n};\mathcal{N}(\Omega)$ is the Newtonian potential
of $\Omega$ given by

$\mathcal{N}(x)=\int_{\Omega}\Gamma(x-y)dy, \forall x\in \mathbb{R}^{n}$ (4.3)

Here $\Gamma$ is the fundamental solution of $\Delta$ in $\mathbb{R}^{n}$ , i.e.,

$\Gamma(x)=\{$ $\frac{\frac{1}{2\pi}\log\frac{1}{|x_{1}|}}{n(n-1)\alpha(n)|x|^{\mathfrak{n}-2}}$

if $n\geq 3,$

if $n=2,$
(4.4)

where $\alpha(n)$ is the volume of the unit ball in $\mathbb{R}^{n}$

A regular stationary point $\Omega$ of $\mathcal{K}_{B}$ satisfies

$H(\partial\Omega)+\gamma \mathcal{N}(\Omega)=\lambda$ (4.5)

on its boundary $\partial\Omega$ . Often times we use a solution of (4.5) as a building block to construct a stationary
assembly to (2.20), as in Theorems 3.4, 3.5, and 3.6. We call such a solution of the profile equation (4.5) an
ansatz solution. We know that the unit disc in $\mathbb{R}^{2}$ and the unit ball in $\mathbb{R}^{3}$ are ansatz solutions.

In order to make a stable stationary assembly of (2.20) from an ansatz, the ansatz itself must be stable.
For equation (4.5) the relevant concept here is the linearly stability. It turns out that the unit disc is linearly
stable if

$0<\gamma<12$ , (4.6)

The number 12 is a bifurcation point. For $\gamma$ near 12, (4.5) has an oval shaped bifurcation solution. This oval
solution may also be used as an ansatz for an oval shaped solution of $\mathcal{J}_{B}$ ; see Ren and Wei [35] for detail.
In three dimensions the unit ball is linearly stable if

$0<\gamma<15$ . (4.7)

Interestingly, there are other ansatz solutions of (4.5). Kang and Ren proved that in two dimensions
there is a ring like solution.
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Theorem 4.1 ([12]) There exists $\gamma_{0}>0$ such that if $\gamma>\gamma_{0}$ , equation $(4\cdot 5)$ admits a ring shaped solution
$\Omega=\{x\in \mathbb{R}^{2} : R_{1}<|x|<R_{2}\}$ and $|\Omega|=\pi$ . There is another value $\gamma_{1}$ (greater than $\gamma_{0}$) such that the ring
is linearly stable if $\gamma>\gamma_{1}$ and linearly unstable if $\gamma\in(\gamma_{0}, \gamma_{1})$ .

This ring ansatz was used by Kang and Ren in [13] to build a stationary assembly of rings, and also a
stationary assembly of both rings and discs. The first assembly is stable, but the second is not.

In three dimensions, the obvious analogy of a ring is a shell, that is the set bounded by two concentric
spheres. However it was proved in [24] by Ren that any shell solution of (4.5) must be linearly unstable. It
is not known at the moment whether (4.5) has any linearly stable solution in $\mathbb{R}^{3}$ , which is not a ball.

There is one solution found by Ren and Wei which may play a role in three dimensions.

Theorem 4.2 ([36]) When $\gamma$ is suficiently large, equation $(4\cdot 5)$ has an approximately torus shaped, tube
like solution in $\mathbb{R}^{3}$ of volume 1.

Let $f=f(\gamma)$ be a function given by its inverse

$\gamma=\underline{2}$

$f^{3} \log\frac{1}{2\pi^{2}f^{3}},$

Note $\lim_{\gammaarrow\infty}f(\gamma)=0$ . If $p_{\gamma}$ and $q_{\gamma}$ are the two radii of the torus solution $(p_{\gamma}>q_{\gamma})$ , then $2\pi^{2}p_{\gamma}q_{\gamma}^{2}=1$ and

$\lim_{\gammaarrow\infty}\frac{q_{\gamma}}{f(\gamma)}=1$ and $\lim_{\gammaarrow\infty}2\pi^{2}f^{2}(\gamma)p_{\gamma}=1$

A cross section of this ansatz is approximately a round disc of radius $q_{\gamma}$ . It is not known whether this
solution is linearly stable.

5 A ternary inhibitory system

The functional $\mathcal{J}_{B}$ of (1.1) can easily be generailzied to study inhibitory systems with more than two
componetns. We consider a three component system in this section. This ternary system was originally
derived by Ren and Wei in [28] from Nakazawa and Ohta’s density functional formulation for triblock
copolymers [19]. Again let $D$ be a bounded and open set of $\mathbb{R}^{n}$ Suppose that $\omega_{1}$ and $\omega_{2}$ are two positive
numbers such that $\omega_{1}+\omega_{2}<1$ . For two measurable subsets $\Omega_{1}$ and $\Omega_{2}$ of $D$ satisfying $|\Omega_{1}|=\omega_{1}|D|,$

$|\Omega_{2}|=\omega_{2}|D|$ , and $|\Omega_{1}\cap\Omega_{2}|=0$ , set $\Omega_{3}=D\backslash (\Omega_{1}\cup\Omega_{2})$ . The free energy of the system is

$\mathcal{J}_{T}(\Omega_{1}, \Omega_{2})=\frac{1}{2}\sum_{i=1}^{3}\mathcal{P}_{D}(\Omega_{i})+\sum_{i,j=1}^{2}\int_{D}\frac{\gamma_{ij}}{2}((-\triangle)^{-1/2}(\chi_{\Omega_{i}}-\omega_{i}))((-\Delta)^{-1/2}(\chi_{\Omega_{j}}-\omega_{j}))dx$ . (5.1)

Although experimentally an almost unlimited number of architectures can be synthetically accessed in
ternary systems like triblock copolymers [3, Figure 5 and the magazine’s cover], the mathematical study of
$\mathcal{J}_{T}$ is still in an early stage due to its complexity. Found by Ren and Wei in [29] is a one dimensional local
minimizer of $\mathcal{J}\tau$ , consisting of alternating $A,$ $B$ , and $C$ micro-domains. The functional $\mathcal{J}\tau$ is posed on the
unit interval with the periodic boundary condition there. The matrix $\gamma=[\gamma_{ij}]$ is assumed to be positive
definite in [29].

Another one dimensional stationary point, again a local minimizer of $\mathcal{J}\tau$ , was found by Choksi and Ren
in [5]. This time one eigenvaule of $\gamma$ is positive but the other one is $0$ whose eigenvector is $(\omega_{1}, \omega_{2})$ . It models
a diblock copolymer/homopolymer blend. Such a blend is a mixture of an $AB$ diblock copolymer with a
homopolymer of monomer species $C$ , where the species $C$ is thermodynamically incompatible with both the
$A$ and $B$ monomer species. In this blend there is a macroscopic phase separation into homopolymer-rich and
copolymer-rich domains followed by micro-phase separation within the copolymer-rich domains into $A$-rich
and $B$-rich subdomains. The stationary point has the ABAB $\cdots$ABACC$\ldots$

$C$ pattern.
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A new challenge in a higher dimensional ternary system is the phenomeno1l of triple junction, where
the three components come to meet. In two dimensions a triple junction occurs on points and in three
dimensions a triple junction occurs on curves.

Two dimensional results came only recently in [37, 38, 39] by Ren and Wei. The stationary points they
found are related to the fascinating structure of the double bubble; see Figure 2. This structure arises as
the optimal configuration of the two component isoperimetric problem. The usual isoperimetric problem is
a one component problem which asserts that the round sphere is the least-perimeter way to enclose a given
volume. For the two component isoperimetric problem, one finds two disjoint sets $E_{1}$ and $E_{2}$ in $\mathbb{R}^{n}$ of the
prescribed Lebesgue measures such that the size of $\partial E_{1}\cup\partial E_{2}$ is minimum. The double bubble is the unique
solution to this isoperimetric problem by the works of Foisy et $al[8]$ , Hutchings et $al[11]$ , and Reichardt
[23]. In two dimensions the planar double bubble is enclosed by three circular arcs that meet at two triple
junction points, or triple points. The angles between the arcs at a triple point are a11120 degrees.

To state Ren and Wei’s two dimensional results, introduce a fixed number $m\in(0,1)$ and a small $\epsilon$ so
that $\omega_{1}|D|=\epsilon^{2}m$ and $\omega_{2}|D|=\epsilon^{2}(1-m)$ . The area constraints $|\Omega_{1}|=\omega_{1}|D|$ and $|\Omega_{2}|=\omega_{2}|D|$ takes the
form

$|\Omega_{1}|=\epsilon^{2}m$ and $|\Omega_{2}|=\epsilon^{2}(1-m)$ . (5.2)

Instead of $\omega_{1}$ and $\omega_{2},$
$\epsilon$ becomes one parameter of our problem. The fixed number $m$ measures the relative

area of $|\Omega_{1}|$ vs $|\Omega_{2}|$ since $\frac{|\Omega_{1}|}{|\Omega_{2}|}=\frac{m}{1-m}.$

The other parameter is the matrix $\gamma$ . It must be positive definite and satisfy a uniform positivity
condition. Namely, there exists $\iota>0$ so that $\iota\overline{\overline{\lambda}}(\gamma)\leq\overline{\lambda}(\gamma)$ where $\overline{\lambda}(\gamma)$ and $\overline{\overline{\lambda}}(\gamma)$ are the two eigenvalues of
$\gamma$ such that $0<\overline{\lambda}(\gamma)\leq\overline{\overline{\lambda}}(\gamma)$ . The matrix $\gamma$ must also have a lower bound and an upper bound.

Theorem 5.1 ([39]) Let $D$ be a bounded and connected open set of $\mathbb{R}^{2}$ with smooth boundary, $m\in(0,1)$ ,
$n\in \mathbb{N}$ , and $\iota\in(0,1$ ]. There exist positive numbers $\delta,\tilde{\sigma}$ , and $\sigma$ depending on $D,$ $m,$ $n$ , and $\iota$ only, such that
if the following three conditions hold

1. $0<\epsilon<\delta,$

2. $\frac{\tilde{\sigma}}{\epsilon^{3}\log\frac{1}{\epsilon}}\leq\overline{\lambda}(\gamma)\leq\overline{\overline{\lambda}}(\gamma)<\frac{\sigma}{\epsilon^{3}},$

3. $\iota\overline{\overline{\lambda}}(\gamma)\leq\overline{\lambda}(\gamma)$ ,

then there is a stationary assembly of $n$ perturbed double bubbles, satisfying the constraints (5.2). Each
perturbed double bubble is bounded by three smooth curves that meet at two triple junction points.

This solution is stable in some sense. If $n=1$ , the lower bound $\frac{\overline{\mathring{\sigma}}}{\epsilon^{3}1g\frac{1}{e}}\leq\overline{\lambda}(\gamma)$ is not needed.

All the perturbed double bubbles in the stationary assembly have almost the same size and shape. The
locations of the double bubbles are determined by the same function $F$ of (3.21). This theorem was first

case i$n[38],andf$inally f$orthegenera1$ case n $\geq 2andm\in(0, l))in[39]$

proved f$orthen=lands$ymmetric (
$m= \frac{1}{2,(})$

case i$n[37]_{)}$ then f
$orthen.=1$

and asymmetric $(m\in(0,1))$

The right plot of Figure 1 illustrates this theorem with an assembly of 40 double bubbles in $D$ which
is the unit disc. As in Theorem 3.5 the locations of the double bubbles in the assembly are obtained by
minimizing $F$ . Theorem 5.1 does not tell what the directions of the double bubbles are, so the directions of
the double bubbles in the figure are not the true directions in the stationary assembly.

In two dimensions, a regular stationary point $(\Omega_{1}, \Omega_{2})$ of $\mathcal{J}\tau$ is a solution to the following equations:

$\kappa_{1}+\gamma_{11}I_{\Omega_{1}}+\gamma_{12}I_{\Omega_{2}}$ $=$ $\lambda_{1}$ on $\partial\Omega_{1}\backslash \partial\Omega_{2}$ (5.3)

$\kappa_{2}+\gamma_{12}I_{\Omega_{1}}+\gamma_{22}I_{\Omega_{2}}$ $=$ $\lambda_{2}$ on $\partial\Omega_{2}\backslash \partial\Omega_{1}$ (5.4)

$\kappa_{0}+(\gamma_{11}-\gamma_{12})I_{\Omega_{1}}+(\gamma_{12}-\gamma_{22})I_{\Omega_{2}}$ $=$ $\lambda_{1}-\lambda_{2}$ on $\partial\Omega_{1}\cap\partial\Omega_{2}$ (5.5)

$\nu_{1}+\nu_{2}+\nu_{0}$ $=$
$\vec{0}$ at $\partial\Omega_{1}\cap\partial\Omega_{2}\cap\partial\Omega_{3}$ . (5.6)

92



Here we assume that $\Omega_{1}$ and $\Omega_{2}$ do not touch the boundary of $D$ . Otherwise we need to add another
condition that the boundary of $\Omega_{1}$ (or $\Omega_{2}$ ) meets the boundary of $D$ perpendicularly.

In $(5.3)-(5.5)\kappa_{1},$ $\kappa_{2}$ , and $\kappa_{0}$ are the curvatures of the curves $\partial\Omega_{1}\backslash \partial\Omega_{2},$ $\partial\Omega_{2}\backslash \partial\Omega_{1}$ , and $\partial\Omega_{1}\cap\partial\Omega_{2},$

respectively. These are signed curvatures defined with respect to a choice of normal vectors. For instance a
circle has positive curvature if the normal vector is inward pointing. On $\partial\Omega_{1}\backslash \partial\Omega_{2}$ the normal vector points
inward into $\Omega_{1}$ . On $\partial\Omega_{2}\backslash \partial\Omega_{1)}$ the normal vector points inward into $\Omega_{2}$ . On $\partial\Omega_{1}\cap\partial\Omega_{2}$ , the normal vector
points from $\Omega_{2}$ towards $\Omega_{1}$ , i.e. inward with respect to $\Omega_{1}$ and outward with respect to $\Omega_{2}.$

As in the binary case $I_{\Omega_{1}}$ and $I_{\Omega_{2}}$ are inhibitors of $\Omega_{1}$ and $\Omega_{2}$ , respectively. The constants $\lambda_{1}$ and $\lambda_{2}$ are
Lagrange multipliers corresponding to the constraints (5.2).

In the last equation, (5.6), $\nu_{1},$ $v_{2}$ , and $\nu_{0}$ are the inward pointing, unit tangent vectors of the curves
$\partial\Omega_{1}\backslash \partial\Omega_{2},$ $\partial\Omega_{2}\backslash \partial\Omega_{1}$ , and $\partial\Omega_{1}\cap\partial\Omega_{2}$ at triple points. The requirement that the three unit vectors sum to
zero is equivalent to the condition that the three curves meet at 120 degree angles.

The proof of Theorem 5.1 consists of several steps. In the first step, one constructs an assembly of exact
double bubbles and compute its energy. Take $K$ exact double bubbles $B^{k}$ whose two bubbles are $B_{1}^{k}$ and
$B_{2}^{k}$ for $k=1$ , 2, $K$ . The area of $B_{l}^{k}$, is $w_{i}^{k}$ . Take $K$ distinct points $\xi^{k}$ in $D$ and $K$ angles $\theta^{k}\in \mathbb{S}^{1}$ , where
$\mathbb{S}^{1}$ is the unit circle. Scale down each $B^{k}$ by a factor $\epsilon$ , rotate by the angle $\theta^{k}$ and place it in $D$ centered at
$\xi^{k}$ More precisely, let $T^{k}=T_{\epsilon,\xi^{k},\theta^{k}}$ be the affine transformation

$T^{k}(\hat{x})=T_{\epsilon,\xi^{k},\theta^{k}}(\hat{x})=\epsilon e^{i\theta^{k}}\hat{x}+\xi^{k}$ , (5.7)

and then map $B^{k}$ into $D$ by $T^{k}$ The image is a small double bubble denoted $T^{k}(B^{k})$ , and the collection
$(T^{1}(B^{1}), T^{2}(B^{2}), \cdots, T^{K}(B^{K}))$ is an assembly of exact double bubbles denoted by $T(B)$ . This $T(B)$ depends
on $\xi=(\xi^{1}, \ldots, \xi^{K})$ , $\theta=(\theta^{1}, . \theta^{K})$ , and $w=\{w_{i}^{k}\}$ . One finds the energy of $T(B)$ as follows.

$\mathcal{J}_{T}(T(B))$ $=$ $\epsilon\sum_{k=1}^{K}\sum_{i=0}^{2}2a_{il}^{k_{r\prime}k}+(\log\frac{1}{\epsilon})\epsilon^{4}\sum_{k=1}^{K}\sum_{i,j=1}^{2}\frac{\gamma_{ij}w_{i}^{k}w_{j}^{k}}{4\pi}+\epsilon^{4}\sum_{k=1}^{K}\sum_{i,j=1}^{2}\frac{\gamma_{vj}}{2}\int_{B_{7}^{k}}\int_{B_{\supset}^{k}}\frac{1}{2\pi}\log\frac{1}{|\hat{x}-\hat{y}|}d\hat{x}d\hat{y}$

$+ \epsilon^{4}\sum_{k=1}^{K}\sum_{i,j=1}^{2}\frac{\gamma_{ij}}{2}w_{i}^{k}w_{j}^{k}R(\xi^{k}, \xi^{k})+\epsilon^{4}\sum_{k\neq l}\sum_{i,j=1}^{2}\frac{\gamma_{ij}}{2}w_{i}^{k}w_{j}^{l}G(\xi^{k}, \xi^{l})+O(|\gamma|\epsilon^{5})$ . (5.8)

In the second step, perturb each $B^{k}$ in a special way to define a restricted class of perturbed double
bubble assemblies. There are actually two parts in the perturbation. First move the two triple points of $B^{k}$

vertically in opposite directions by the same amount. Connect the new triple points by three circular arcs.
The two sets bounded by the new arcs still have the areas $w_{1}^{k}$ and $w_{2}^{k}$ respectively and the radii $\rho_{i}^{k}$ of the new
arcs satisfy the condition $(\rho_{1}^{k})^{-1}-(\rho_{2}^{k})^{1}=(\rho_{0}^{k})^{-1}$ However the 120 degree angle condition at triple points
no longer holds for the new arcs. In the second part of the restricted perturbation, the arcs are changed
to more general curves, while the areas of the two enclosed sets remain to be $w_{i}^{k}$ and the triple points are
unchanged. This perturbed double bubble is denoted $P^{k}$ It is scaled down by $\epsilon$ and mapped into $D$ by the
same $T^{k}$ The collection $T(P)=(T^{1}(P^{1}), T^{2}(P^{2}), T^{K}(P^{K}))$ is an assembly of perturbed double bubbles.
All assemblies obtained this way form a restricted class of perturbed double bubble assemblies. This class is
specified by $\xi,$

$\theta$ , and $w.$

It turns out that each assembly in a restricted class is identified by an element of a Hilbert space. The
element consists of $3K$ functions $\phi_{i}^{k}$ and $K$ numbers $\eta^{k}$ for $k=1$ , 2, $\cdots$ , $K$ and $i=1$ , 2, O. Collectively they
are denoted by $(\phi, \eta)$ where $\phi=(\phi^{1}, \phi^{2}, \ldots, \phi^{K})$ , $\phi^{k}=(\phi_{1}^{k}, \phi_{2}^{k}, \phi_{0}^{k})$ , and $\eta=(\eta^{1}, \eta^{2}, \cdots, \eta^{K})$ . Within the
restricted class $\mathcal{J}_{T}$ becomes a functional on the Hilbert space.

In each restricted class there is an element $(\phi^{*})\eta^{*}$ ) that locally minimizes $\mathcal{J}_{T}$ within the restricted class.
This third step is most technical, involving an error estimate of the exact double bubble assembly $T(B)$ ,
proving the positivity of the second variation of $\mathcal{J}_{T}$ at $T(B)$ , and a fixed point argument. It is shown
that $(\phi^{*}, \eta^{*})$ satisfies a weakened version of $(5.3)-(5.5)$ where the constants $\lambda_{1}$ and $\lambda_{2}$ may vary from one
perturbed double bubble to another perturbed double bubble in the assembly.

To fix this problem and also to have the 120 degree angle condition (5.6) satisfied, revisit the restricted
class of perturbed double bubble assemblies. Since this class is specified by $(\xi, \theta, w)$ , the energy minimizing
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Figure 2: First row: two dimensional symmetric and asymmetric double bubbles. Second row: three dimen-
sional symmetric and asymmetric double bubbles.

element $(\phi^{*}, \eta^{*})$ in this class should be denoted by $(\phi^{*} \xi, \theta, w)$ , $\eta^{*}(\xi,$ $\theta,$ $w$ In the fourth step one finds that
the energy $\mathcal{J}(\phi^{*} \xi, \theta, w)$ , $\eta^{*}(\xi, \theta, w)$ ) of this element is close to that of $\mathcal{J}_{T}(T(B))$ given in (5.8). Treating
this quantity as a function of $\xi,$

$\theta$ , and $w$ , one minimizes it with respect to $(\xi, \theta, w)$ and finds a minimum
$(\xi^{*}, \theta^{*}, w^{*})$ . If one uses the restricted class of assemblies specified by this particular $(\xi^{*}, \theta^{*}, w^{*})$ , then the
locally energy minimizing element $(\phi^{*} \xi^{*}, \theta^{*}, w^{*})$ , $\eta^{*}(\xi^{*}, \theta^{*}, w^{*})$ ) solves $(5.3)-(5.5)$ exactly and also satisfies
the 120 degree angle condition (5.6) at triple points. This completes the sketch of the proof.

6 Conclusions

I have mainly discussed stationary assemblies of the functionals $\mathcal{J}_{B}$ and $\mathcal{J}\tau$ in this article. But implications
go beyond these two functionals.

In the study of biological processes of organism development, the Gierer-Meinhardt system [14, 15, 18]
is an often used model for morphogenesis patterns on animal coats and skin pigmentation. This is an
activator-inhibitor type system of two partial differential equations on a bounded domain $D$ :

$u_{t}= \epsilon^{2}\Delta u-u+\frac{u^{p}}{(1+\kappa u^{p})v^{q}}$ ; $\tau v_{t}=d\triangle v-v+\frac{u^{r}}{v^{s}}$ , (6.1)

with the zero Neumann boundary condition for both variables $u$ and $v$ . One can show formally that if $d$ is of
the order $\frac{1}{\epsilon}$ , the $u$ component of a stationary solution has a limit as $\epsilonarrow 0$ . This limit is a positive constant
on a subset $\Omega$ of $D$ and is $0$ on $D\backslash \Omega.$ $\prime The$ Lebesgue measure $|\Omega|$ is determined by the parameters in (6.1),
and most interestingly $\Omega$ satisfies the same equation (2.20); see [36] for detail.

Despite the lack of a free energy functional, the Gierer-Meinhardt system contains mechanisms that
produce growth and inhibition. The Euler-Lagrange equation (2.20) of $\mathcal{J}_{B}$ can be regarded as a singular
limit of (6.1), a simplification that retains the key properties of (6.1).

This article should have convi\’{n}ced the reader that the functionals $\mathcal{J}_{B}$ and $\mathcal{J}_{T}$ , although minimalist, are
powerful enough to model pattern formation. I hope that more sophisticated patterns of interest will emerge
from deep analysis of these inhibitory systems.
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