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1 Elements of a set-valued functor

References: [ML98], [Bo94]

1.1 Elements of a functor

Definition 1.1 An element of a set valued

functor $F$ : $\mathscr{C}arrow$ Set is a pair (X, x) of an

object $X\in \mathscr{C}$ and $x\in F(X)$ . A morphism

$f$ : $(X, x)arrow(Y, y)$ between elements is a mor-

phism $f$ : $Xarrow Y$ in $\mathscr{C}$ such that

$F(f):F(X)arrow F(Y);x\mapsto y$

The elements of $F$ form the category of ele-

ments, which is denoted by

Elts (F) or Elts $(\mathscr{C}, F)$

with projection functor

$\pi_{F}$ : Elts $(F)arrow \mathscr{C};(X, x)\mapsto X.$

For a contravariant functor, the category of ele-

ments is similarly defined.

See[Yo60], [Bo94, I.p37]. $\blacksquare$

Lemma 1.1 In Elts $(\mathscr{C}, F)$ , the following hold:

(i) $(X, x)$ $\cong$ $(Y, y)$ if and only if there exists

$f:X\cong Y$ in $\mathscr{C}$ such that $y=f(x)$ .

(ii) There is a bijection

Obj $($Elts ( $\mathscr{C}, F)$ )
$/\congrightarrow\coprod_{X\in \mathscr{C}}’$ Aut $(X)\backslash F(X)$

Here $\coprod’$ is the coproduct over the isomorphisms

classes Obj $(\mathscr{C})/\cong$

1.2 comma categories and slice categories

Definition 1.2 The comma category $(S\downarrow T)$

of a pair of functors $\mathscr{D}arrow^{S}\mathscr{C}arrow^{T}\mathscr{E}$ has as objects

all triplets $(X, Y, S(X)arrow^{f}T(Y)).and$ as mor-

phisms $(X, Y, S(X)arrow fT(Y))arrow(X’, Y’, S(X’)arrow f’$

$T(Y’))$ all pairs $(Xarrow uX’, Yarrow vY’)$ such that

$X Y SXTY\underline{f}$

$u| v\downarrow s_{u}\downarrow 0 \downarrow Tv$

$X’ Y’ SX’arrow^{f’}TY’$

The compositions are given by those of $\mathscr{D}$ and $\mathscr{E}.$

[ML98], [Bo94] $\blacksquare$

Definition 1.3 The slice category $\mathscr{C}/X$ over

an object $X\in \mathscr{C}$ is the category of morphisms

into $X$ . A morphism from $(Aarrow\alpha X)$ to $(Barrow\beta X)$

is a morphism $f$ : $Aarrow B$ in $\mathscr{C}$ such that $\alpha=f\beta.$

Similarly, the coslice category $X\backslash \mathscr{C}$ is defined

ass the category of morphisms from $X.$

Let $S=Id_{\mathscr{C}}$ be an identity functor of $\mathscr{C}$ , and

$T$ : $*:=\{*, id_{*}\}arrow \mathscr{C};*\mapsto X$ . Then there are

equivalences of categories

$(S\downarrow T)\approx \mathscr{C}/X$ and $(T\downarrow S)\approx X\backslash \mathscr{C}$
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$F:\mathscr{C}arrow Set,$ $S:t*\}\mapsto Set$ . Then the cat-

egory of elements of $F$ is presented by a comma

category:

Elts $(\mathscr{C}, F)\cong S\downarrow F$

$\blacksquare$

1.3 Examples

Example 1.1 A monoid $M$ can be identified

with a category $M$ with a single object $*$ and with

$Hom(*, *)=M$ . Let $X$ be an $M$-set with left M-

action $M\cross Xarrow X;(a, x)\mapsto ax.$

Such an $M$-set $X$ can be viewed as

(i) a functor $X$ : $Marrow Set;*\mapsto X$ ;

and also as

(ii) a category $X$ with Obj $(X)=X$ and with

$Hom_{X}(x, y)=\{a\in M|ax=y\}$

Then the category of elements of the functor $X$ is

equivalent to $X$ :

Elts$(M, X)\approx X;(*, x)rightarrow x$

$\blacksquare$

Example 1.2 Let $X\in \mathscr{C}$ . Then

(1) Let $H_{X}$ : $\mathscr{C}^{op}arrow Set;A\mapsto Hom(A, X)$ denote

the contravariant $Hom$-functor. Then an element

of $H_{X}$ has the form $(Aarrow^{\alpha}X)$ , i.e., an object

over $X$ , and so the category of elements of $H_{X}$ is

equivalent to the slice category:

Elts $(\mathscr{C}, H_{X})\approx \mathscr{C}/X$

(2) Similarly, for the covariant $Hom-$ functor. $H^{X}$ :

$\mathscr{C}arrow Set;A\mapsto Hom(X, A)$ , the category of ele-

ments is equivalent to the coslice category:

Elts $(\mathscr{C}, H^{X})\approx X\backslash \mathscr{C}$

$\blacksquare$

Example 1.3 Let $G$ be a finite group. Let $set^{G}$

denote the category of finite (left) $G$-sets and G-

maps and trans$G$

the subcategory of set
$G$ consist-

ing of transitive $G$-sets. Then a $G$-map $f$ : $G/Harrow$

$G/K$ is decided by the image of $H\in G/H$ :

Map$c(G/H, G/K)=\{xK\in G/K|H\subset xK\}$

The subgroup category sub(G) has all sub-

groups of $G$ as objects. A morphism $Harrow K$

is a coset $xK$ such that $H\subset xK:=xKx^{-1}$ ;

and the composition is defined by $yLoxK=$

$xyL$ . Then sub(G) is equivalent to $trans^{G}$ by

$H\mapsto G/H$ . Two subgroups are isomorphic in

set (G) if and only if they are conjugate, and so

$C(G)$ $:=sub(G)/\cong is$ the set of conjugacy classes

of subgroups.

Let Sub(G) be the subgroup lattice of $G.$

Note that any poset can be viewed as a category.

Let $hom(1, -)$ : $H\mapsto G/H$ be the $Hom$-functor

from the trivial subgroup $1\in set(G)$ . Then

Elts (sub$(G),$ $hom(1,$

$1\backslash sub(G)$ ,

Elts ($trans^{G}$ , Map$c(G/1$ , ,

$(G/1)\backslash trans^{G}$

are all equivalent to Sub(G) as categories. In par-

ticular, the isomorphism classes of these categories

are all are bijectively corresponding to the set of

subgroups of $G.$

As a conclusion the subgroup lattice Sub(G) is

categorically viewed as the category of elements of

a functor!! $\blacksquare$

Categories of elements are used to prove the fol-

lowing two important theorems. Refer to [Ri14].

Example 1.4 Yoneda’s density theorem:

Let $F:\mathscr{C}^{op}arrow Set$ and let $\hat{\mathscr{C}}:=$ [ $\mathscr{C}^{op}$ , Set]. Then

$F \cong\lim_{arrow}(Elts(F)arrow \mathscr{C}\pi_{F}arrow^{y}\hat{\mathscr{C}})$ ,

where $y$ : $X\mapsto Hom$ $X$ ) denotes the Yoneda

embedding.
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Example 1.5 Kan extension:

Let $F$ : $\mathscr{C}arrow \mathscr{D}$ be a functor. Then $\hat{F}$ : $\hat{\mathscr{D}}arrow$

$\hat{\mathscr{C};}Y\mapsto YoF$ has a left adjoint functor and a

right adjoint functor:

$Lan(F)\dashv\hat{F}\dashv Ran(F)$

The value of $Lan(F)$ at $X\in\hat{\mathscr{C}}$ is given by

$Lan(F)(X)=\lim_{arrow}(F\downarrow Jarrow\pi \mathscr{C}arrow xSet)$

$\underline{\simeq}\lim_{arrow}(Elts(H_{J}oF)arrow\pi \mathscr{C}arrow xSet)$

Similarly Ran$(F)(X)$ is obtained by replacing the

limit instead of the colimit. [ML98, X.3]

1.4 Operations on set-valued functors

There are some arithmetical $0$ perations on cat-

egories and functors. We study what categories

of the elements of set-valued functors play in such

operations. Refer to $[YoO1]$

Let $\mathscr{C},$ $\mathscr{D},$
$\mathscr{E}$ be categories, and $F:\mathscr{C}arrow Set,$

$G$ : $\mathscr{D}arrow Set,$ $H$ : $\mathscr{E}arrow Set$ set-valued functors.

Then we define additions and products as follows

:

(i) $\mathscr{C}+\mathscr{D}$ : the disjoint union of categories.
(ii) $\mathscr{C}\cross \mathscr{D}$ : the Cartesian product of categories.
(iii) $F+G$ : the summation of functors.

$F+G:\mathscr{C}+\mathscr{D}arrow Set,$ $Z\mapsto\{\begin{array}{ll}F(Z) (Z\in \mathscr{C})G(Z) (Z\in \mathscr{D})\end{array}$

$(iv)F\cross G$ : the product of functors.

$F\cross G$ : $\mathscr{C}\cross \mathscr{D}arrow Set;(X, Y)\mapsto F(X)+G(Y)$

Here $F(X)+G(Y)$ denotes the disjoint union of

sets $F(X)$ and $G(Y)$ .

(v) $F^{n}$ : the power of a functor.

$F^{n}:\mathscr{C}^{n}arrow Set;(X_{k})_{k=1}^{n}\mapsto\coprod_{k=1}^{n}F(X_{k})$

Then the 2-category $\mathfrak{C}\mathfrak{a}t$ has a commutative

semi-ring structure by $+and\cross.$ . Furthermore,

so is the 2-category $\mathfrak{C}\mathfrak{a}t/Set$ of set valued func-

tors. For example, the following distributive law

holds

$(F+G)\cross H\cong F\cross H+G\cross H$

“Zero” and “One” in $\mathfrak{C}at/Set$ is

$O:\emptysetarrow Set,$

$I$ : $1=\{*, id_{*}\}arrow Set;*\mapsto\{*\}$

respectively.

For a functor $F:\mathscr{C}arrow Set$ , define a functor

$\partial F$ : Elts $(\mathscr{C}, F)arrow \mathscr{C}\pi_{F}arrow^{F}$ Set

Then the following hold:

Elts $(F\cross G)\approx Elts(F)\cross \mathscr{D}+\mathscr{C}\cross$ Elts ( $G)$

$\partial(F\cross G)\cong F\cross\partial(G)+\partial(F)\cross G$

Elts $(F^{n})\approx n\mathscr{C}^{n-1}\cross$ Elts ( $F)$

$\partial(F^{n})\cong n\mathbb{F}^{n-1}\cross\partial(F)$

These formulas look like Leibniz’s product rule for

differentiation. This is the reason why we used $\partial F$

for the functor from the category of elements.

Remark. In some literature (e.g., [ML98]),

Elts $(\mathscr{C}, F)$ is often denoted by the symbol

$\int_{\mathscr{C}}F$ or $\int F$

This symbol is not suitable for the category of el-

ements because of Leibniz rule.

2 Generating functions

Refrence: [Yo13], $[YoO1]$ , [Jo81].

2.1 Universal zeta functions (UZF)

The reason why the category of elements of a

functor works like derivation becomes clear by

considering generating functions of categories and

functors.
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Let $\mathscr{C}$ be a essentially small and locally finite

category, and so $\mathscr{C}$ is equivalent to a small cate-

gory and each $hom$-set $Hom(X, Y)$ is a finite set for

any $X,$ $Y\in \mathscr{C}$ . Then the universal zeta func-

tion (or exponential generating function of $\mathscr{C}$

is defined as a formal series

$\mathscr{C}(t):=\sum_{M\in \mathscr{C}}’\frac{1}{|Aut(M)|}t^{M}$

where $\sum’$ takes over isomorphism classes of ob-

jects of $\mathscr{C}$ . The symbols $t^{M}(M\in \mathscr{C})$ are assumed

to satisfy the relations

(i) $M\cong M’\Rightarrow t^{M}=t^{M’}$

(ii) $t^{\emptyset}=1,$ $t^{M+M’}=t^{M}$ $t^{M’}$ if there exist any

finite coproducts, where $\emptyset$ is an initial object.

The universal zeta function (or exponential

generating function of a functor $F:\mathscr{C}arrow \mathscr{D}$ is

$F(t):= \sum_{M\in \mathscr{C}}’\frac{1}{|Aut(M)|}t^{F(M)}$

Here the summation is well-defined only if the

fibers of $F$ are all finite sets, that is, for any

$N\in \mathscr{D},$

$\#\{M\in \mathscr{C}/\cong|F(M)\cong N\}<\infty.$

Such a functor $F$ is said to have finite flbers.

Let set be the category of finite sets. We iden-

tify the symbol $t^{N}$ with the monomial polynomial
$t^{|N|}$ . Thus if $F$ : $\mathscr{C}arrow set$ is a faithful functor

with finite fibers, then the UZF $F(t)$ is the usual

formal power series. For example,

set $(t)= \sum_{n=0}^{\infty}\frac{t^{n}}{n!}=\exp(t)\in \mathbb{Q}[[t]]$

2.2 $\mathscr{C}$-structures

Let $F:\mathscr{C}arrow \mathscr{D}$ a faithful functor.

Definition 2.1 An $\mathscr{C}$-structure on $N(\in \mathscr{D})$ is

$(X, \sigma)$ , where $X\in \mathscr{C}$ and $\sigma$ : $F(X)arrow^{\underline{}\simeq}N$ . The

isomorphism $\sigma$ is called a labeling. We denote by

$Str(\mathscr{C}/N)\subset F\downarrow N$ the category of $\mathscr{C}$-structures

on $N.$

The isomorphism of two $\mathscr{C}$-structures on $N$ is

defined by

$(X, \sigma)\cong(Y, \tau)\Leftrightarrow\exists f$ : $X\cong Ys.t.$ $\tau\circ F(f)=\sigma$

$\blacksquare$

Lemma 2.1 The UZF of $F$ satisfying the follow-

ing:

$F(t)= \sum_{N\in \mathscr{D}}’\frac{|Str(\mathscr{C}/N)/\cong|}{|Aut(N)|}t^{N}$

Furthermore, $|Str(\mathscr{C}/N)/\cong|$ , the number of iso-

morphism classes of $\mathscr{C}$-structures on $N$ , is equal

to

$\sum_{F(X)\simeq N}’$
(Aut $(F(X)):F$ (Aut(X))),

where the summation is taken over isomorphism

classes of $\mathscr{C}$-structures on $N.$

2.3 Operations on UZF

The definitions of operations on faithful func-

tors match those on power series, that is, for any

faithful functors $F$ : $\mathscr{C}arrow set$ and $G$ : $\mathscr{D}arrow set$

into the category of finite sets with finite fibers,

we have the equations of formal power series:

$(F+G)(t)=F(t)+G(t)$

$(FG)(t)=F(t)G(t)$

$\emptyset(t)=0, 1 (t)=1.$

As before, let

$\partial F$ : Elts $(\mathscr{C}, F)arrow^{F}\mathscr{C}\piarrow F$ set; $(X, x)\mapsto X\mapsto F(X)$

Then its UZF is

$( \partial F)(t)=\sum_{M\in \mathscr{C}}’\frac{|F(M)|}{|Aut(M)|}t^{F(M)}=t\frac{dF(t.)}{dt}$

Remark.

$F’$ : Elts$(\mathscr{C}, F)arrow set;(X, x)\mapsto F(X)-\{x\},$
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gives the usual derivation $F’(t)=dF(t)/dt$ . Un-

fortunately, unless all $F(f)$ are monic, $F’$ is not a

functor.

Let $F$ : $\mathscr{C}arrow \mathscr{D}$ be a functor. Let $H^{I}$
$:=$

$Hom(I, -)$ : $\mathscr{D}arrow set$ be a $Hom$-functor associ-
ated to $I\in \mathscr{D}$ . Then a partial derivation of $F$

is defined by

$\partial_{I}(F)$ $:=\partial(H^{I}\circ F)$ : Elts $(H^{I}\circ F)arrow\pi \mathscr{C}^{H^{1}}arrow$ set

; $(X, x)\mapsto Hom(I, F(X))$

It is possible to define a so-called plethysm com-

positions of categories (or functors). Here we only

give exponential of categories.

Definition 2.2 For a category $\mathscr{C}$ , the fibred

category $Exp(\mathscr{C})$ ( $or$ often set ( $\mathscr{C}$) ) is the cate-

gory with objects all indexed $\mathscr{C}$-objects $(X_{i})_{i\in I},$

where $I$ is a finite set and $X_{i}$ is an object of $\mathscr{C}$ , and

with morphisms $(\pi, (f_{i})_{i\in I})$ : $(X_{i})_{i\in I}arrow(Y_{j})_{j\in J},$

where $\pi$ : $Iarrow J$ and $f_{i}$ : $X_{i}arrow Y_{\pi(i)}$ . The cate-

gory $Exp(\mathscr{C})$ has any finite coproduts.

For any functor $F$ : $\mathscr{C}arrow Set$ can be uniquely

extended to

$Exp(F):Exp(\mathscr{C})arrow Set;(X_{i})_{i\in I}\mapsto\coprod_{i\in I}F(X_{i})$

which preserves finite coproducts. $\blacksquare$

Let 1 be the category with only one object $*$ and

only one morphism $id_{*}$ . Then $Exp(1)\approx set$ , the

category of finite sets.

Lemma 2.2 (1) $Exp(\mathscr{C})(t)=\exp(\mathscr{C}(t))$ .

(2) $Exp(F)(t)=\exp(F(t))$ .

(3) $Exp(\mathscr{C}+\mathscr{D})\approx Exp(\mathscr{C})\cross Exp(\mathscr{D})$

(4) $Exp(F+G)\cong Exp(F)\cross Exp(G)$

(5) $\partial(Exp(F))=(\partial F)\cdot Exp(F)$ .

Example 2.1 Tree

2.4 Wohlfahrt formula

Theorem 2.3 Let $G$ be a finitely generated

group.. Then the following hold:

(1) set$G\approx Exp(trans^{G})$ .

(2) set$c_{(t)}=\exp$ (trans (t) ).

(3) tran$s^{}$

$(t)= \sum_{H\leq_{f}G}\frac{t^{G/H}}{(G:H)}$

where $H$ runs over all subgroups of $G$ of finite in-

dex.

(4) Let $F$ : set $Garrow set$ be the forgetful functor.

Then the following identity holds:

$F(t)=1+ \sum_{n=1}^{\infty}\frac{|Hom(G,S_{n})|}{n!}t^{n}$

$= \exp(\sum_{H\leq_{f}G}\frac{t^{(G..\cdot\cdot H)}}{(GH)})$

(1) follows from the unique decomposition of

any finite $G$-set into the disjoint union of its or-

bits. (3) follows from the fact that a transitive
$G$-set is $G$-isomorphic to a homogeneous $G$-set of

the form $G/H$ and that (i) $G/H\cong cG/K$ iff $H$

and $K$ are $G$-conjugate; (ii) $Aut(G/H)\cong WH$ $:=$

$N_{G}(H)/H$ ; (iii) the number of subgroups of $G$ con-

jugate to $H$ is equal to $(G:N_{G}(H))$ . (4) follows

from the existence of a bijection:

Str$($set $G/[n])/\cong\ovalbox{\tt\small REJECT} Hom(G, S_{n})$

remark. The identity in (4) is first published be

Wohlfahrt (1977).

Example 2.2 Let $C=\langle\alpha\rangle$ be an infinite cyclic

group. For $n\geq 1$ , we put $C^{n}$ $:=\langle\alpha^{n}\rangle\leq C$ and

$C(n)$ $:=C/C^{n}$ Then a finite $C$-set, that is, $a$

finite dynamical system, is uniquely decomposed

into a disjoint union of some transitive (connected)

$C$-sets. Thus se$t^{}$ $\approx Exp(trans^{C})$ and so

se$t^{}$ $(t)= \exp(\sum_{n=1}^{\infty}\frac{1}{n}t^{C(n)})$

17



For any finite $C$-set $X$ , the substitution $t^{N}arrow$

$|Hom_{C}(N, X)|u^{|N|}$ gives

$\sum_{N\in set^{C}}’\frac{|Hom(N,X)|}{|Aut(N)|}u^{|N|}=\exp(\sum_{n=1}^{\infty}\frac{|Fixx(\alpha^{n})|}{n}u^{n})$

where the right hand side is the Artin-Mazur

zeta function of $X.$

Furthermore, the UZF of the $Hom$-functor

$Hom(C(l), -)$ : $X\mapsto Hom(C(l), X)\cong Fix_{X}(\alpha^{l})$

is the generating function for the numbers of finite

$C$-sets in which $\alpha^{l}$ fixes exactly $l$-points.

$\exp(\sum_{n|l}t^{n})$

Refer to [DS89]. $\blacksquare$

2.5 Theory of species

There is another categorical theory of gen-

erating functions introduced and developed by

Joyal ([Jo81]).

Definition 2.3 Let bij be the cat of finite sets

and bijections and let $S_{n}$ be the symmetric group

of degree $n$ . Then $a$ (set valued) species is a func-

tor $bijarrow set$ . Thus a species $A$ is nothing but a

series $(A[n])_{n=0,1},\ldots$ of finite $S_{n}$-sets.

The generating function (series) of a species

$A$ is

$A(t):= \sum_{n=0}^{\infty}|A[n]|\frac{t^{n}}{n!}$

$\blacksquare$

Combinatorially, $A[I]$ means “the set of A-

structures on a finite set $I$”

As in the case of Set-valued functors, species

also have arithmetical operations, for example, the

derivation of $A$ is defined by

$A’[I]:=A[I\cup\{I\}]$

Then $A’(t)$ is the derivation of $A(t)$ .

The theory of species is included in those of

faithful functors with finite fibers. In fact, given a

species $A:bijarrow set,$

$A$ : Elts $(A)arrow^{\pi}bij\subset set;(I, i)\mapsto I$

is a faithful functor with finite fibers and with

the same generating functions $A(t)=A(t)$ . Note

that Elts(A) is a groupoid, that is, a category

in which all morphisms are isomorphisms. Con-

versely, given a faithful functor $F:\mathscr{C}arrow set$ with

finite fibers,

$F$ : $bijarrow set;N\mapsto Str(\mathscr{C}/N)/\cong$

is a species.

Theorem 2.4 The notion of species is equiva-

lent to those of faithful functors from a groupoid

to set with finite fibers.

Problem. Rewrite the theory of species by using

the notion of faithful functors with finite fibers.

3 Abstract Burnside rings (ABR)

References: Yoshida [Yo87], [Yo90]

3.1 Burnside homomorphisms

Let $\Gamma$ be an essentially finite and locally finite

category. Obj $(\Gamma)/\cong or$ simply $\Gamma/\cong$ denote the fi-

nite set of isomorphisms of objects; [X] or often $X$

denotes the isomorphism class of an object $X\in\Gamma.$

Define two abelian groups as follows:

$\Omega(\Gamma)$ $:=\mathbb{Z}\Gamma$ $:=$ free abelian group $on\Gamma/\cong,$

$\sqrt{l}\sim(\Gamma):=\mathbb{Z}^{\Gamma}:=Map(\Gamma/\cong, \mathbb{Z})\cong\prod_{I\in\Gamma}’\mathbb{Z},$

where the product $\prod’$ is taken over isomorphism

classes of objects of $\Gamma$ . The product ring $\mathbb{Z}^{\Gamma}$ (often

wrote as $gh(\Gamma)$ ) is called the ghost ring.
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The linear map

$\varphi=(\varphi_{I}):\mathbb{Z}\Gammaarrow \mathbb{Z}^{\Gamma};[X]\mapsto(|Hom(I, X)|)_{I\in\Gamma/\underline{\simeq}}$

is called the Burnside homomorphism, whose

representation matrix is the $Hom$-set matrix:

$H:=(|\Gamma(I, J)|)_{I,J\in\Gamma/^{\underline{\simeq}}}.$

Definition 3.1 $\mathbb{Z}\Gamma(=\Omega(\Gamma))$ is called an ab-

stract Burnside ring if $\mathbb{Z}\Gamma$ has a ring struc-

ture with 1 and if $\varphi$ is an injective ring homomor-

phisms. The abstract Burnside rings with other

coefficient rings, for example $\mathbb{Q},$
$\mathbb{Z}_{(p)}$ , etc. can be

similarly defined.

Example 3.1 Let $\Gamma$

$:=$ $($set $\leq n)^{op}$ be the dual

category of the category of finite sets of size at

most $n$ . We put $[i]$ $:=$ { $1$ , 2, . . . , in} and [O] $:=\emptyset.$

$\varphi:\Omega(\Gamma)arrow\overline{\Omega}(\Gamma);\sum_{i=0}^{n}a_{i}[i]\mapsto(\sum_{i=0}^{n}a_{i}x^{i})_{0\leq x\leq n}$

Thus $\Omega(\Gamma)$ is the module of integral polynomi-

als of degree $\leq n$ and $\varphi$ is the evaluation map

$f(X)\mapsto(f(x))_{0\leq x\leq n}$

$\Omega(\Gamma)\cong \mathbb{Z}[X]/(X(X-1)\cdots(X-n))$ .

Example 3.2 Let $\Gamma$

$:=$ set $\leq n*$ be the category

of nonempty sets of size at most $n..$

$\varphi:\Omega(\Gamma)arrow\overline{\Omega}(\Gamma);\sum_{i=1}^{n}a_{i}[i]\mapsto(\sum_{i=0}^{n}a_{i}i^{x})_{1\leq x\leq n}$

Thus $\Omega(\Gamma)$ is the “ ring”’ of finite Dirichlet polyno-

mials of”’ degree”’ $\leq n.$

3.2 $M\ddot{o}b\dot{\ovalbox{\tt\small REJECT}}us$ rings

Let $P$ be a finite poset, which can be viewed

a$ a finite category such that fro any $x,$ $y\in P,$

there exists at most one morphism from $x$ to

$y$ . Thus the $hom$-set matrix is a $P\cross P$-matrix

$H=(\zeta(x, y))_{x,y\in P}$ , where

$\zeta(x, y)=\{\begin{array}{ll}1 if x\leq y0 else\end{array}$

As is well-known, $H$ is invertible, and so

$\varphi:\mathbb{Z}Parrow^{\underline{}\simeq}\mathbb{Z}^{P};[x]\mapsto(\zeta(i,x))_{i}$

is isomorphic. Thus $\mathbb{Z}P$ becomes an abstract

Burnside ring, which is called a M\"obius ring.

The inverse matrix of $H$ is presented by the

M\"obius function:

$H^{-1}=(\mu(x, y))_{x,y\in P}.$

Thus we have and inversion formula and and idem,

potent formula:

$\varphi^{-1}:\mathbb{Z}^{P}arrow \mathbb{Z}P;(\chi(i))_{i}\mapsto\sum_{x,j\in P}\mu(x,j)\chi(j)[x]_{\rangle}$

$e_{t}:= \sum_{x\in P}\mu(x, t)[x].$

3.3 Fundamental Theorem for ABR

We assume that two conditions for $\Gamma$ hold:

(E) All the morphisms of $\Gamma$ are epimorphic.

(C) For any object $I$ and $\sigma\in Aut(I)$ , there exists

a coequalizer diagram:

$Iarrowarrow\sigma 1Iarrow^{c_{\sigma}}I/\sigma$

Definition 3.2 Define an abelian group and ho-
momorphism

Obs $(\Gamma$$)$

$:= \prod_{I\in\Gamma}’(\mathbb{Z}/|Aut(I)|\mathbb{Z})$

$\psi$ : $( \chi : \Gammaarrow \mathbb{Z})\mapsto(\sum_{\sigma\in Aut(I)}\chi(I/\sigma)$ mod $|Aut(I)|)_{I}$

$Obs(\Gamma)$ is called the group of obstructions and

$\psi$ is called the Cauchy-Frobenius map.

Theorem 3.1 The following sequence is exact:

$0arrow \mathbb{Z}\Gammaarrow^{\varphi}\mathbb{Z}^{\Gamma}arrow^{\psi}$ Obs $(\Gamma)arrow 0.$

Theorem 3.2 $\mathbb{Z}\Gamma$ is an abstract Burnside ring.
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Remark. (1) The condition $F$ can be re-

placed by (F) the existence of the unique $(E, M)-$

factorization system such that $E\subset Epi(\Gamma)$ . But

then ABR $\mathbb{Z}\Gamma$ is ring isomorphic to another

$ABR\mathbb{Z}\Gamma_{e}$ , where $\Gamma_{e}$ is the subcategory of $\Gamma$ con-

sisting of all epimorphisms of $\Gamma$ . Thus we may

assume that (E) holds at first.

(2) $\mathbb{Q}\Gamma$ is always an ABR isomorphic to $\mathbb{Q}^{\Gamma}$ via $\varphi$

under the condition (F) without $C.$

(3) For a prime $p,$ $\mathbb{Z}_{(p)}\Gamma$ is an ABR under the

condition (F) and the following condition

$(C_{r})$ For any $I\in\Gamma$ and any $p$-element $\sigma\in Aut(I)$ ,

there exists a coequalizer of 1, $\sigma$ similarly as (C).

(4) We may assume that $\Gamma$ is skeletal, i.e., $X\cong$

$Y\Rightarrow X=Y.$

Let $H$ $:=(|Hom(I, J)|)_{[I],[J]}$ the $Hom$-set matrix

of $\Gamma$ . Then the inversion formula and the idempo-

tent formula are given by

$\varphi^{-1}:\mathbb{Q}^{\Gamma}arrow \mathbb{Q}\Gamma;\theta\mapsto\sum_{I\in\Gamma}’H_{IK}^{-1}\theta(K)[I]$

$e_{K}:= \sum_{I\in\Gamma}’H_{IK}^{-1}[I]$

We need to calculate the inverse matrix $H^{-1}$ to

obtain an explicit idempotent formula.

Example 3.3 Let $G$ be a finite group. The

Burnside ring $\Omega(G)$ of $G$ is the Grothendieck

ring of $set^{G}$ It is canonically isomorphic to the

ABR $\mathbb{Z}trans^{G}$ The Burnside homomorphism is

defined by

$\varphi:\Omega(G)arrow\tilde{\sqrt{l}}(G):=\prod_{(S)\in C(G)}\mathbb{Z}$

$;[X]\mapsto(|X^{S}|)_{(S)}$

Note that there is a bijection

$X^{S}$ $:=Fix_{S}(X)rightarrow Map_{G}(G/S, X);x_{0}\mapsto(gS\mapsto x_{0})$

The primitive idempotent of $\mathbb{Q}\Omega(G)$ associated to

$H\leq G$ is give by

$e_{H}= \frac{1}{|N_{G}(H)|}\sum_{D\leq H}|D|\mu(D, H)[G/D],$

where $\mu$ is the M\"obius function of the subgroup

lattice of $G.$

3.4 Discrete cofibration (DCF)

In order to obtain the inverse matrix $H^{-1}$ of

the $Hom$-set matrix $H=(|Hom(I, J)|)_{I,J\in\Gamma,\simeq}$ , we

have to construct a poset like the subgroup lattice.
We may assume that all the morphisms of $\Gamma$

are epimorphic. In this case, $H$ is decomposed as
$H=LD$ , and so $H^{-1}=D^{-1}L^{-1}$ , where

$L=(|Hom(I, J)|/|Aut(J)|)_{I,J\in\Gamma},$

$D$ $:=(|Aut(I)|\delta(I, J))=\{\begin{array}{ll}|Aut(I)| if I\underline{\simeq}J0 otherwise.\end{array}$

$L_{I,J}$ is equal to the number of quotient objects

of $I$ isomorphic to $J$ . When $\Gamma$ is the category

of set of size at most $n$ , the number $L(I, J)=$

$S(|I|, |J|)$ is the Stirling number of second kind

and $L^{-1}(I, J)=s(|I|_{\rangle}|J|)$ is the Stirling number

of first kind.

Now, in the case of $trans^{G}$ , the subgroup lattice

is categorically constructed as follows:

Sub$(G)\approx Elts(trans^{G},$ $Hom(G/1,$

$\cong(G/1)\backslash trans^{G}$

Thus if th category $\Gamma$ has a “generator” like $G/1$

using the notion of categories of elements (or

coslice categories), we can construct a poset we

need.

Definition 3.3 A functor $\pi$ : $\tilde{\Gamma}arrow\Gamma$ is called a

discrete cofibration (DCF) if

Mor $(\overline{\Gamma})arrow^{dom}$ Obj $(\overline{\Gamma})$

$\pi|$ $\pi|$

Mor $(\Gamma)arrow^{dom}$ Obj $(\Gamma$ $)$
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is a fibre product diagram. See [Yo87]. More pre-

cisely, this means that for any $X\in\tilde{\Gamma},$
$\pi$ induces

an equivalence between slice categories:

$X\backslash \pi:\tilde{X}\backslash \tilde{\Gamma}arrow^{\simeq\underline{}}\pi(\tilde{X})\backslash \Gamma$

$;(\tilde{X}arrow\tilde{Y})\mapsto(\pi(X)arrow\pi(\tilde{Y}))$

Note (1) DCF $\pi$ : $\tilde{\Gamma}arrow\Gamma$ is faithful.

(2) Any functor which has a right adjoint is a DCF.

Example 3.4 Let $G$ be a finite group. Let
trans $G$

be the cat of transitive $G$-sets and Sub(G)

the subgroup lattice viewed as a category. Then

$\pi$ : Sub $(G)arrow trans^{G};I\mapsto G/I$

is a DCF. The bijection

$I\backslash \pi$ : $I\backslash Sub(G)arrow^{\underline{}\simeq}(G/I)\backslash trans^{G}$

is given by

$K(\supset I)\mapsto(G/Iarrow G/K;gI\mapsto gK)$ ,

$(G/Iarrow^{\alpha}X)\mapsto G_{\alpha(I)}(\supset I)$ ,

where $G_{\alpha(I)}$ is the stabilizer of $\alpha(I)\in X.$

Let sub(G) be the subgroup category, which

is equivalent to $trans^{G}$ by $I\mapsto G/I$ . Then

Sub$(G)arrow sub(G);I\mapsto I$ gives a DCF.

Note that the inverse matrix of the $Hom$-set ma-
trix $\overline{H}$ of Sub (G) is given by the M\"obius function:

$\tilde{H}^{-1}=(\mu(I, J))_{I,J\leq G}$

3.5 The inverse of the $Hom$-set $matr\dot{\ovalbox{\tt\small REJECT}}\cross$

We continue assuming that the morphisms of $\Gamma$

are all epimorphic. We consider the following con-
ditions for a discrete cofibration $\pi$ : $\tilde{\Gamma}arrow\Gamma$ :

(S) $\pi$ : $\tilde{\Gamma}/\congarrow\Gamma/\cong is$ surjective on objects.

(P) $\tilde{\Gamma}/\cong is$ a poset, i.e., $|Hom(\overline{X},\tilde{Y})|\leq 1$ for any
$\overline{X},$ $\tilde{Y}\in\tilde{\Gamma}.$

For any $G\in\Gamma$ , let $G\backslash \Gamma$ be the coslice category,

which is equivalent to Elts $(Hom_{\Gamma}(G,$

Example 3.5 (1) For any $G\in\Gamma,$

$\pi_{G}:G\backslash \Gammaarrow\Gamma;(Garrow xX)\mapsto X$

is a DCF satisfying (P). It satisfies (S) if and only

if any $X\in\Gamma$ has a morphism from $G$ . Such a $G$

exists uniquely up to isomorphism if it exists.

(2) Let $G$ be a set of objects of $\Gamma$ such that any
$X\in\Gamma$ has a morphisms from some $G\in$ G. Then

$\pi_{G}:=\coprod_{G\in G}\pi_{G}:G\backslash \Gamma:=\coprod_{G\in G}G\backslash \Gammaarrow\Gamma$

is a DCF satisfying (S) and (P).

(3) For finite group $G,$ $\pi$ : Sub $(G)arrow trans^{G};I\mapsto$

$G/I$ and $\pi Sub(G)arrow$ sub(G); $I\mapsto$ $I$ are both

DCF satisfying (S) and (P).

Let $\pi$ : $\overline{\Gamma}arrow\Gamma$ be a DCF satisfying (S) and (P).

Let $\mu$ be the M\"obius function of the poset $\tilde{\Gamma}/\cong,$

which value at the isomorphism classes $[\tilde{I]},$ $[\tilde{J})]$ is

simply wrote as $\mu(\tilde{I},\tilde{J})$ . For any $I\in\Gamma$ , we define

$N_{I}:=\#\{[\tilde{I]}\in\overline{\Gamma}/\cong|\pi(\overline{I})\cong I\},$

ind(I) $:=N_{I}|Aut(I)|$

Example 3.6 When

$\pi$ : $\tilde{\Gamma}=Sub(G)arrow\Gamma=sub(G);I\mapsto I,$

we have

$N_{I}=\#\{\tilde{I}\leq G|\tilde{I}\sim cI\}=(G:N_{G}(I))$ ,

Aut $(I)\underline{\simeq}N_{G}(I)/I,$

and so ind(I) $=(G:I)$ . $\blacksquare$

Theorem 3.3 The inverse of the $Hom$-set marix
$H$ $:=(|Hom(I, J)|)_{I,J\in\Gamma/\simeq}$ of $\Gamma$ is given by

$H_{IJ}^{-1}= \frac{1}{ind(I)}\sum_{I\pi}\sum_{\underline{\simeq}\pi(\tilde{I})^{\underline{\simeq}}(\overline{J})J}\mu(\tilde{I},\tilde{J})//$

Theorem 3.4 The primitive idempotent associ-

ated to $J\in\Gamma$ is given by

$e_{J}= \sum_{\tilde{I}}\frac{1}{ind(\pi(\tilde{I}))}\sum_{\pi(\tilde{J})^{\underline{\simeq}}J}\mu(\tilde{I},\tilde{J})\prime.\prime[\pi(\tilde{I})]$
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Theorem 3.5 Let $\theta\in \mathbb{Q}^{\Gamma}$ Then

$\varphi^{-1}(\theta)=\sum_{\overline{I},\overline{J}}’\frac{\mu(\tilde{I}_{)}\overline{J})\theta(\pi(\tilde{J}))}{ind(\pi(\tilde{I}))}[\pi(\overline{I})]\in \mathbb{Q}\Gamma$

4 Abstract monomial Burnside rings

Refer to [Dr71], [Sn88], [Sn94], [TalO].

4.1 Definition ofAMBR

Definition 4.1 As before, let $\Gamma$ denote an essen-

tially finite and locally finite category Let

$\wedge:\Gamma^{op}arrow mon;I\mapsto\hat{I}$

be a functor to the category of finite monoids Thus

an $f$ : $Iarrow J$ induces a monoid homomorphism

$\hat{f}$ : $\hat{J}arrow\hat{I}$, which we often extend to a ring ho-

momorphism $\hat{f}$ : $\mathbb{Z}[\hat{J]}arrow \mathbb{Z}[\hat{I]}$ between monoid

rings. In particular, $\hat{I}$ is a right $Aut(I)$-set, and

so Aut(I) acts the monoid algebra $\mathbb{Z}[\hat{I]}$ . We can

consider the centralizer algebra $\mathbb{Z}[\hat{I]}^{Aut(I)}$ under

this action. Then the monomial ghost ring is

defined as the product algebra

$\tilde{\Omega}(\Gamma, \wedge):=\prod_{\underline{\simeq}I\in\Gamma/}\mathbb{Z}[\hat{I]}^{Aut(I)}$

Let $\Omega(\Gamma, \wedge)$ $:=\mathbb{Z}[Elts(\Gamma, \wedge)]$ be the free abelian

group generated by Elts $(\Gamma, \wedge)/\cong.$
$\blacksquare$

Definition 4.2 The monomial Burnside $ho-$

momorphism is the linear map defined by

$\varphi:\Omega(\Gamma, \wedge)arrow\tilde{\Omega}(\Gamma, \wedge);[X, x]\mapsto(\sum_{f.\cdot Iarrow X}\hat{f}(x))_{I}$

$\Omega(\Gamma, \wedge)$ is called an abstract monomial Burn-

side ring (AMBR) if

(a) $\Omega(\Gamma, \wedge)$ has a ring structure, and

(b) $\varphi$ is an injective ring homomorphism. $\blacksquare$

Example 4.1 (1) Let $G$ be a finite group. and

$\Gamma=sub(G)$ , the subgroup category, $and\wedge:H\mapsto$

$\hat{H}$

$:=Hom(H, \mathbb{C}^{*})$ . the linear character functor.

Then as the AMBR, we have a classical monomial

Burnside ring $\Omega(G, \wedge)$ which is an abelian group

generated by the symbols $[H, \lambda]$ , where $H\leq G$

and $\lambda\in\hat{H}$ , a linear character, and with relation

$[H^{g}, \lambda^{g}]=[H, \lambda]$ . The multiplication is defined by

$[H, \lambda]\cdot[K, \mu]=\sum_{HgK}[H^{g}\cap K, \lambda^{g_{H^{g}\cap K}}\cdot\mu_{H^{g}\cap K}]$

There is a ring homomorphism into the character

ring:

$\Omega(G, \wedge)arrow R(G);[H, \lambda]\mapsto ind^{G}(\lambda)$

(2) Let $G$ be a finite group and $S$ a monoid

with right $G$-action. Take the centralizer func-

tor $C_{S}$ : sub$(G)arrow mon;H\mapsto C_{S}(H)$ . Then

the AMBR $\Omega(sub(G), C_{S})$ is the crossed Burnside

ring $\Omega(G, S).$ , In general, this ring is not com-

mutative, but when $S=G^{c}$ , the group $G$ with

$G$-action by $G$-conjugation, $\sqrt{J}(G, G^{c})$ is commu-

tative.

(3) Let $A$ be a finite abelian group with G-

action. Then $\Omega($sub $(G),$ $H^{1}$ $A)$ ) $=\Omega(G, A)$ is

the Dress monomial BR.

4.2 The fundamental theorems for AMBR

As before, we assume that $\Gamma$ satisfies the follow-

ing two conditions:

(E) All the morphisms of $\Gamma$ are epimorphic.

(C) For any object $I$ and $\sigma\in Aut(I)$ , there exists

a coequalizer diagram:

$Iarrowarrow\sigma 1Iarrow^{c_{\sigma}}I/\sigma$

By (C), we have a monoid homomorphism

$\hat{c_{\sigma}}:\overline{I/\sigma}arrow\hat{I}^{\langle\sigma\rangle}:=\{i\in\hat{I}|\hat{\sigma}(i)=i\}$

Furthermore, if $f$ : $Iarrow X$ satisfies $fo\sigma=f,$

then there exists a unique $g:I/\sigmaarrow X$ such that

go $c_{\sigma}=f$ , and so $\hat{c_{\sigma}}0\hat{g}=\hat{f.}$

22



By (C), the coequalizer $c_{\sigma}$ : $Iarrow$ $I/\sigma$ of

1, $\sigma\in Aut(I)$ induces a monoid homomorphism

$\hat{c}_{\sigma}$ : $\overline{I/\sigma}arrow\hat{I}^{\langle\sigma\rangle}\mapsto\hat{I}$, which furthermore induces

$\hat{c}_{\sigma}:\mathbb{Z}[\overline{I/\sigma}]arrow \mathbb{Z}[\hat{I}^{\langle\sigma\rangle}]arrow \mathbb{Z}[\hat{I]}$

Define the group of obstructions by

Obs $(\Gamma, \wedge)$

$:= \prod_{I\in\Gamma/\underline{\simeq}}((\mathbb{Z}/|Aut(I)|)[\hat{I]})^{Aut(I)}$

and define a module endmorphism $\tilde{\psi}=(\overline{\psi}_{I})$ of
$\overline{\Omega}(\Gamma, \wedge)$ by

$\tilde{\psi}_{I}(\theta):= \sum \hat{c}_{\sigma}\theta(I/\sigma)$ .
$\sigma\in Aut(I)$

Finally define the Cauchy-Frobenius map by

$\psi$ : $\tilde{\Omega}(\Gamma, \wedge)arrow^{\psi\tilde{}}\tilde{\Omega}(\Gamma, \wedge)arrow^{pr}$ Obs $(\Gamma, \wedge)$ .

Theorem 4.1 The following is an exact se-

quence of modules:

$0arrow\Omega(\Gamma, \wedge)arrow^{\varphi}\tilde{\Omega}(\Gamma, \wedge)arrow^{\psi}$ Obs $(\Gamma, \Lambda)arrow 0$

Theorem 4.2 $\Omega(\Gamma_{\rangle}\Lambda)$ is an AMBR.

4.3 Monomial $G$-sets

It is often more convenient to use the no-

tion of monomial $G$-set than of sub(G) . The

category of monomial $G$-sets is equivalent to

Exp(Elts (sub(G) ).

Then any functor $\wedge:sub(G)^{op}arrow mon$ can be

extend to set
$G$

In fact, the monoid $\hat{X}$ for any

$G$-set $X$ is defined by the set of $X$-indexed family

$(\lambda_{x})_{x\in X}$ such that $\lambda_{x}\in\hat{G_{x}}$ and $\lambda_{gx}g\lambda_{x}$ for any

$x\in X$ and $g\in G.$

Then the AMBR $\Omega(sub(G), \wedge)$ is isomorphic to

the Grothendieck ring of monomial $G$-sets with re-

spect to disjoint union and multiplication defined

by

$(X, (\lambda_{x}))\otimes(Y,(\mu_{y}))=(X\cross Y, (\lambda_{x}\downarrow_{G_{xy}}\cdot\mu_{y}\downarrow c_{xy})_{(x,y)})$

In this notation, the monomial Burnside homo-

morphism $\varphi=(\varphi_{I})(I\leq G)$ is given by

$\varphi_{I}:[X, (\lambda_{x})]\mapsto\sum_{x\in X^{I}}\lambda_{x|I}\in(\mathbb{Z}[\hat{I]})^{N_{G}(I)}$

4.4 ldempotent formula

Theorem 4.3 (Takegahara) The primitive

idempotent of the complex coefficient MBR

$\mathbb{C}\Omega(G, \wedge)$ associated to $(H, t)$ is given by

$eH, t=\frac{1}{|N_{G}(H)||H|}\sum_{D\leq H}\sum_{\lambda\in\hat{H}}|D|\mu(D, H)\overline{\lambda(t)}[D,$
$\lambda_{|D}|$

$=\epsilon_{t}\otimes e_{H},$

where

$\epsilon_{t}:=\frac{1}{|H|}\sum_{\lambda\in\hat{H}}\overline{\lambda(t)}\lambda$

is the primitive idempotent of the complex coeffi-

cient character ring $\mathbb{C}R(H)$ associated to $t\in H,$

and

$e_{H}:= \frac{1}{|N_{G}(H)|}\sum_{D\leq H}|D|\mu(D, H)[D],$

is the primitive idempotent of the Burnside ring

$\mathbb{C}\otimes\Omega(G)$ . Furthermore, we used the notation

$\lambda\otimes[D]:=[D, \lambda_{|D}].$

Corollary 4.4 (Snaith, Boltje) Explicit

Brauer induction theorem!
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