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1 Elements of a set-valued functor

References: [ML98], [Bo94]

1.1 Elements of a functor

Definition 1.1 An element of a set valued
functor F'.: € — Set is a pair (X,z) of an
object X € € and z € F(X).
f: (X,z) - (Y,y) between elements is a mor-
phism f: X - Y in & such that

A morphism

F(f):F(X)> F(Y)z—y

The elements of F form the category of ele-

ments, which is denoted by
Elts(F) or Elts(¢,F)
with projection functor
np : Elts(F) - €; (X, z) = X.

For a contravariant functor, the category of ele-
ments is similarly defined.
See[Yo60], [Bo%4, I.p37]. B

Lemma 1.1 In Elts(%, F), the following hold:
(i) (X,z) = (Y,y) if and only if there exists
f: X 2Y in € such that y = f(z).

(ii) There is a bijection

Obj(Elts(€, F))/= «— [[ Aut(X)\F(X)
Xe®

!
Here H is the coproduct over the isomorphisms
classes Obj(¥)/=

1.2 comma categories and slice categories

Definition 1.2 The comma category (S | T)
of a pair of functors 2 S, ¢ & Ehasas objects
all triplets (X,Y,S(X) N T(Y)).and as mor-
phisms (X, Y,8(X) 5 T(Y)) = (X', Y’,S(x") &
T(Y")) all pairs (X % X', Y 5 Y’) such that

X Y sx L .1vY
ul ul Sul O lTu
X’ Y sx L,y

The compositions are given by those of 2 and &.
[ML98], [Bo94] B

Definition 1.3 The slice category €/X over
an object X € ¥ is the category of morphisms
into X. A morphism from (A 3 X) to (B LA X)
is a morphism f: A — B in ¥ such that a = ff.

Similarly, the coslice category X\% is defined

ass the category of morphisms from X.

Let S = Id¢ be an identity functor of ¥, and
T : % := {%,id.} — ¥;* — X. Then there are

equivalences of categories

(SIT)~%/X and (T} S) ~ X\

* This research is suppoted by JSPS KAKENHI Grant Number 25400001
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F:% — Set, S: {*} — Set. Then the cat-
egory of elements of F' is presented by a comma

category:

Elts(¢,F) =S| F

1.3 Examples

Example 1.1 A monoid M can be identified
with a category M with a single object x and with
Hom(*,*) = M. Let X be an M-set with left M-
action M x X — X;(a,z) — azx.

Such an M-set X can be viewed as
(i) a functor X : M — Set;* — X;
and also as
(i) a category X with Obj(X) = X and with

Homx (z,y) = {a € M | az = y}

Then the category of elements of the functor X is

equivalent to X

Elts(M, X) ~ X;(x,z) ¢—
a
Example 1.2 Let X € €. Then

(1) Let Hx : ¥°P — Set; A — Hom(A, X) denote
the contravariant Hom-functor. Then an element
of Hx has the form (A = X), i.e., an object
over X, and so the category of elements of Hx is

equivalent to the slice category:
Elts(¢,Hx) = € /X
(2) Similarly, for the covariant Hom-functor. HX :

% — Set; A — Hom(X, A), the category of ele-

ments is equivalent to the coslice category:

Elts(¢, HX) = X\¥
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Example 1.3 Let G be a finite group. Let set®
denote the category of finite (left) G-sets and G-
maps and trans® the subcategory of set€ consist-
ing of transitive G-sets. Then a G-map f : G/H —
G/K is decided by the image of H € G/H:

Maps(G/H,G/K) = {zK € G/K | H C *K}

The subgroup category sub(G) has all sub-
groups of G as objects. A morphism H — K
is a coset zK such that H C *K := zKz™!;
and the composition is defined by yL o zK =
zyL. Then sub(G) is equivalent to trans® by
H — G/H. Two subgroups are isomorphic in
set(G) if and only if they are conjugate, and so
C(G) := sub(G)/ = is the set of conjugacy classes
of subgroups.

Let Sub(G) be the subgroup lattice of G.
Note that any poset can be viewed as a category.
Let hom(1l,—) : H —» G/H be the Hom-functor
from the trivial subgroup 1 € set(G). Then

Elts(sub(G), hom(1, -)),
1\sub(G),

Elts(trans®, Maps(G/1, -)),
(G/1)\trans®

are all equivalent to Sub(G) as categories. In par-
ticular, the isomorphism classes of these categories
are all are bijectively corresponding to the set of
subgroups of G.

As a conclusion the subgroup lattice Sub(G) is
categorically viewed as the category of elements of

a functor!! W

Categories of elements are used to prove the fol-

lowing two important theorems. Refer to [Ril4].

Example 1.4 Yoneda’s density theorem:
Let F : €°P — Set and let € := [¢°P, Set]. Then

-~
7

F 2 1lim (Elts(F) LINVRN %)
—

where y : X — Hom(—, X) denotes the Yoneda
embedding.



Example 1.5 Kan extension:
Let F: € — 2 be a functor. Then F : & —
Cg;Y ~ Y o F has a left adjoint functor and a

right adjoint functor:
Lan(F) 4 F 4 Ran(F)
The value of Lan(F) at X € € is given by

Lan(F)(X) = lim (F IS¢ X Set)
—
=~ lim (Elts(HJ o) S¢ X Set)
—

Similarly Ran(F)(X) is obtained by replacing the
limit instead of the colimit. [ML98, X.3]

1.4 Operations on set-valued functors

There are some arithmetical o perations on cat-
egories and functors. We study what categories
of the elements of set-valued functors play in such
operations. Refer to [Yo01]

Let €,2,& be categories, and F : ¥ — Set,
G:2 — Set, H: & — Set set-valued functors.

Then we define additions and products as follows

(i) € 4+ Z : the disjoint union of categories.
(ii) € x 2 : the Cartesian product of categories:
(iii) F + G: the summation of functors.

F(2)
G(2)

(Ze%)

F+G: ¥+ 2 — Set; Z —
{ (Z € 2)

(iv)F x G: the product of functors.

FxG:%x2 —Set;(X,Y)— F(X) +G(Y)

Here F(X) 4+ G(Y') denotes the disjoint union of
sets F(X) and G(Y).

(v) F™: the power of a functor.

F" . €™ — Set; (Xe)p, = [[ F(Xk)
k=1
Then the 2-category €at has a commutative

semi-ring structure by + and x.. Furthermore,

so is the 2-category Cat/Set of set valued func-
tors. For example, the following distributive law
holds

(F+G)xH=2FxH+GxH

"Zero” and "One” in €at/Set is

O : ) — Set,
I:1={id.} — Set;* — {x}

respectively.
For a functor F' : € — Set, define a functor

OF : Elts(%,F) 25 ¢ -5 Set

Then the following hold:
Elts(F x G) = Elts(F) x 2 + € x Elts(G)
IF xG)=Fx9(G)+8(F)xG
Elts(F™) ~ n€™"! x Elts(F)
O(F™) = nF™! x §(F)
These formulas look like Leibniz’s product rule for

differentiation. This is the reason why we used OF

for the functor from the category of elements.

Remark. In some literature (e.g., [ML9§]),
Elts(%, F) is often denoted by the symbol

[gp o [F

This symbol is not suitable for the category of el-

ements because of Leibniz rule.

2 Generating functions

Refrence: [Yo13], [Yo01], [Jo81].

2.1 Universal zeta functions (UZF)

The reason why the category of elements of a
functor works like derivation becomes clear by
considering generating functions of categories and

functors.



Let € be a essentially small and locally finite
category, and so ¥ is equivalent to a small cate-
gory and each hom-set Hom(X,Y') is a finite set for
any X,Y € ¥. Then the universal zeta func-
tion (or exponential generating function of ¢
is defined as a formal series

Z [Aut(M

Me¥
where ¥’ takes over isomorphism classes of ob-
jects of €. The symbols tM (M € €) are assumed
to satisfy the relations
(i) M =M = tM =M
(ii) 9 = 1, teM+M' — M M’ if there exist any

finite coproducts, where @ is an initial object.

The universal zeta function (or exponential

generating function of a functor F: € — Z is

Z ]Aut F(M)

Mec¥
Here the summation is well-defined only if the

fibers of F are all finite sets, that is, for any
Ne 2,

H{M € €/ =| F(M)= N} < oo.

Such a functor F is said to have finite fibers.
Let set be the category of finite sets. We iden-
tify the symbol ¢tV with the monomial polynomial
tNl. Thus if F : € — set is a faithful functor
with finite fibers, then the UZF F(t) is the usual

formal power series. For example,

set(t Zt—,—exp ) € QIIt]

2.2 ¥ -structures
Let F: € — 2 a faithful functor.

Definition 2.1 An %-structure on N(€ 2) is
(X,0), where X € € and o : F(X) =, N. The

isomorphism o is called a labeling. We denote by
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Str(¥/N) C F | N the category of ¥-structures
on N.
The isomorphism of two #-structures on N is

defined by
(X,o)=2(Y,7) ©3f: X 2Yst.7oF(f) =
|

Lemma 2.1 The UZF of F satisfying the follow-

ing:

Py = 3 SUEN)/Z |
Ne2

Furthermore, |Str(¢/N)/= |, the number of iso-
morphism classes of ¥-structures on N, is equal
to

3 (Aut(F(X)): F

F(X)2N

(Aut(X))),

where the summation is taken over isomorphism

classes of ¥-structures on N.

2.3 Operations on UZF

The definitions of operations on faithful func-
tors match those on power series, that is, for any
faithful functors F : € — set and G : Z — set
into the category of finite sets with finite fibers,

we have the equations of formal power series:

(F+G)(t)=F(t)+G(¢)
(FG)(t) = F(t)G(t)
pt)y=0, 1@¢)=1.

As before, let
OF : Elts(¥,F) ™5 € 5 set; (X,z) = X — F(X)

Then its UZF is

Z |F(M)| {F(M) _ tdF(t,)
ot JAut(M)] dt

Remark.

F': Elts(%, F) - set; (X,z) = F(X) — {z},



gives the usual derivation F'(t) = dF(t)/dt. Un-
fortunately, unless all F(f) are monic, F’ is not a

functor.

Let F : € — 2 be a functor. Let H! =
Hom(I,-) : 2 — set be a Hom-functor associ-
ated to I € 9. Then a partial derivation of F
is defined by

81(F) :=8(H' o F) : Elts(H' o F) 5 % &5 set
; (X,2) = Hom(I, F(X))

It is possible to define a so-called plethysm com-
positions of categories (or functors). Here we only

give exponential of categories.

Definition 2.2 For a category %, the fibred
category Exp(%)(or often set(¥)) is the cate-
gory with objects all indexed %-objects (X;)icr,
where [ is a finite set and X; is an object of €, and
with morphisms (7, (fi)ier) : (Xi)ier = (Yj)jes,
where 7 : I — Jand f; : X; — Yrs)- The cate-
gory Exp(%) has any finite coproduts.

For any functor F' : € — Set can be uniquely

extended to

Exp(F) : Exp(€) — Set; (X,)ics — [ F(X3)

icl

which preserves finite coproducts. W

Let 1 be the category with only one object * and
only one morphism id,. Thén Exp(1) =~ set, the
category of finite sets.

Lemma 2.2 (1) Exp(%)(t) = exp(¥€(t)).
(2) Exp(F)(t) = exp(F(t)).

(3) Exp(% + 2) = Exp(¥) x Exp(2)

(4) Exp(F + G) 2 Exp(F) x Exp(G)

(5) 8(Exp(F)) = (OF) - Exp(F).

Example 2.1 Tree
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2.4  Wohlfahrt formula

Theorem 2.3 Let G be a finitely generated
group.. Then the following hold:

(1) set® ~ Exp(trans®).

(2) set€(t) = exp (trans®(t)).

Pt

Hec (G: H),

where H runs over all subgroups of G of finite in-

(3) trans®(t) =

dex.
(4) Let F : set® — set be the forgetful functor.
Then the following identity holds:

F() =1 +§: IHomf, Sn)l m
n=1 ’

t(G’:H)

Z (G: H)

H< ;G

= exp

(1) follows from the unique decomposition of
any finite G-set into the disjoint union of its or-
bits. (3) follows from the fact that a transitive
G-set is G-isomorphic to a homogeneous G-set of
the form G/H and that (i) G/H =¢ G/K iff H
and K are G-conjugate; (ii) Aut(G/H) X WH :=
Ng(H)/H; (iii) the number of subgroups of G con-
jugate to H is equal to (G : Ng(H)). (4) follows

from the existence of a bijection:

Str(set®/[n])/ = +— Hom(G, S,)

remark. The identity in (4) is first published be
Wohlfahrt (1977).

Example 2.2 Let C = (a) be an infinite cyclic
group. For n > 1, we put C" := (a™) < C and
C(n) := C/C™. 'Then a finite C-set, that is, a
finite dynamical system, is uniquely decomposed
into a disjoint union of some transitive (connected)

C-sets. Thus set® ~ Exp(trans®) and so

— 1
set®(t) = exp (z ﬁtC(n)>

n=1



For any finite C-set X, the substitution #V «
[Homg (N, X)|ulM! gives

' |Hom(N, X — |Fixx(a™)| »
2 I|07x_—ui(N)|)_iU|N|:exP(Z—_| xe ”“)

NesetC n=1
where the right hand side is the Artin-Mazur
zeta function of X.

Furthermore, the UZF of the Hom-functor

Hom(C(l), —) : X — Hom(C(1), X) = Fixx(a')

is the generating function for the numbers of finite

C-sets in which o! fixes exactly l-points.

exp Z t"

n|l

Refer to [DS89]. B

2.5 Theory of species

There is another categorical theory of gen-
erating functions introduced and developed by
Joyal([Jo81]).

Definition 2.3 Let bij be the cat of finite sets
and bijections and let S, be the symmetric group
of degree n. Then a (set valued) species is a func-
tor bij — set. Thus a species A is nothing but a
series (A[n])n=0,1,.. of finite S,-sets.

The generating function (series) of a species
Ais

A=Y |ARI S
n=0 !

Combinatorially, A[I] means "the set of A-
structures on a finite set I”.

As in the case of Set-valued functors, species
also have arithmetical operations, for example, the
derivation of A is defined by

A'll} = A[TU{T}]
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Then A'(t) is the derivation of A(t).
The theory of species is included in those of
faithful functors with finite fibers. In fact, given a

species A : bij — set,
A : Elts(A) -5 bij C set; (I,i) — I

is a faithful functor with finite fibers and with
the same generating functions A(t) = A(t). Note
that Elts(A) is a groupoid, that is, a category
in which all morphisms are isomorphisms. Con-
versely, given a faithful functor F : € — set with
finite fibers,

F : bij — set; N — Str(¢/N)/=

is a species.

Theorem 2.4 The notion of species is equiva-
lent to those of faithful functors from a groupoid
to set with finite fibers.

Problem. Rewrite the theory of species by using
the notion of faithful functors with finite fibers.

3 Abstract Burnside rings (ABR)

References: Yoshida [Y087], [Yo90]

3.1 Burnside homomorphisms

Let I be an essentially finite and locally finite
category. Obj(I')/ = or simply I'/ = denote the fi-
nite set of isomorphisms of objects; [X] or often X
denotes the isomorphism class of an object X € I'.
Define two abelian groups as follows:

f2(T") := ZT" := free abelian group onl'/ =,
A(r) =27 = Map(r/=,2) = [] 2,

Ier

where the product H, is taken over isomorphism
classes of objects of I'. The product ring ZT (often
wrote as gh(I')) is called the ghost ring.



The linear map

¢ =(¢1): ZF - Z";[X] = (Hom(I, X)|)rers

is called the Burnside homomorphism, whose

representation matrix is the Hom-set matrix:
= (|I(I, J))1,ser=.

Definition 3.1 ZI' (= (XI')) is called an ab-
stract Burnside ring if ZI' has a ring struc-
ture with 1 and if ¢ is an injective ring homomor-
phisms. The abstract Burnside rings with other
coefficient rings, for example Q, Zpy, etc. can be

similarly defined.

Example 3.1 Let I" := (set<,)°? be the dual
category of the category of finite sets of size at
most n. We put [¢] := {1,2,...,in} and [0] := 0.

QUMY — Q Za,[z (i aiz'i)
i=0 0<z<n

Thus Q(I') is the module of integral polynomi-
als of degree < n and ¢ is the evaluation map
f(X) = (f(2))ogzzn

QN =ZX(X(X -1)-

Example 3.2 Let I' := setZ,

of nonempty sets of size at most n..

(X —n)).

be the category

0 : QD) = QT Y ali

n n
] —> E a,vz'”
i=1 =0 1<z<n

Thus Q(I") is the ”ring” of finite Dirichlet polyno-

mials of ”degree” < n.

3.2 Mobius rings

Let P be a finite poset, which can be viewed
as a finite category such that fro any z,y € P,
there exists at most one morphism from z to
y. Thus the hom-set matrix is a P x P-matrix

H= (C(:E, y))z,yeP, where

1 ifz<y
C(r,y)—{o olse

As is well-known, H is invertible, and so

¢ ZP =5 ZP; [z] = (C(3,2))s

is isomorphic. Thus ZP becomes an abstract
Burnside ring, which is called a Mébius ring.
The inverse matrix of H is presented by the
Mobius function:
H™ = (u(2,9))a,yep-
Thus we have and inversion formula and and idem-

potent formula:

2P 5 ZP; (x(3); =

et 1= Z u(z, t)[z]

zEP

> wlz,5)x()l=],

z,jeP

3.3 Fundamental Theorem for ABR
We assume that two conditions for I" hold:

(E) All the morphisms of I' are epimorphic.
(C) For any object I and o € Aut(I), there exists
a coequalizer diagram:

I 1

I—=>1/o
o

Definition 3.2 Define an abelian group and ho-
momorphism

obs(I) := [ (z/1Aut(D)]z)

Ier

seAut(l)

Vilx: T > Z)— ( > x(I/o) mod |Aut(I)])

I

Obs(I) is called the group of obstructions and
1) is called the Cauchy-Frobenius map.

Theorem 3.1 The following sequence is exact:
0— 2z £ 27 ¥4 Obs(I') — 0

Theorem 3.2 ZI is an abstract Burnside ring.
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Remark. (1) The condition F can be re-
placed by (F) the existence of the unique (E, M)-
factorization system such that E C Epi(I"). But
then ABR ZI' is ring isomorphic to another
ABRZI,, where I, is the subcategory of I" con-
sisting of all epimorphisms of I Thus we may
assume that (E) holds at first.

(2) QI is always an ABR isomorphic to Q via ¢
under the condition (F) without C.

(3) For a prime p, Z,)I" is an ABR under the

condition (F) and the following condition

(Cp) For any I € I'" and any p-element o € Aut([),
there exists a coequalizer of 1, o similarly as (C).
(4) We may assume that I' is skeletal, i.e., X =
Y=X=Y.

Let H := (|Hom(Z, J)|)s},;s; the Hom-set matrix
of I. Then the inversion formula and the idempo-
tent formula are given by

e Q7 5 Q0 S HO(K) (1]
Ier

/
ex = Y Hp[ll
Ier

We need to calculate the inverse matrix H~! to

obtain an explicit idempotent formula.

Example 3.3 Let G be a finite group. The
Burnside ring £2(G) of G is the Grothendieck
ring of set®. It is canonically isomorphic to the
ABR Ztrans®. The Burnside homomorphism is
defined by
e: G- 2G):= ][] z
(8)ec(G)
s [X] = (1X%])s)

Note that there is a bijection

X5 := Fixs(X) < Mapg(G/S, X); 2o + (g5 + o)

The primitive idempotent of Qf2(G) associated to
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H < G is give by

1
€EH = 57 T Z IDIIJ‘(DyH)[G/D]’
INe(H)| 5=
where p is the Mobius function of the subgroup

lattice of G.

3.4 Discrete cofibration (DCF)

In order to obtain the inverse matrix H~! of
the Hom-set matrix H = (|Hom(I, J)|); jer/~, we
have to construct a poset like the subgroup lattice.

We may assume that all the morphisms of I’
are epimorphic. In this case, H is decomposed as
H=1LD,and so H' = D-1L~1, where

L = (|Hom([, J)|/|Aut(J)])r,ser,

Ly ; is equal to the number of quotient objects
of I isomorphic to J. When I' is the category
of set of size at most n, the number L(I,J) =
S(|I],]J]) is the Stirling number of second' kind
and L~1(I,J) = s(|I],]J|) is the Stirling number
of first kind.

Now, in the case of trans®, the subgroup lattice
is categorically constructed as follows:

Sub(G) ~ Elts(trans®, Hom(G/1, —))
=~ (G/1)\trans®.

Thus if th category I has a ”generator” like G/1
using the notion of categories of elements (or
coslice categories), we can construct a poset we

need.

Definition 3.3 A functor 7 : I’ — I' is called a
discrete cofibration (DCF) if

Mor(T") <222 Obj(T)

|

Mor(I") 2225 Obj(I")



is a fibre product diagram. See [Yo87]. More pre-
cisely, this means that for any X e I~", 7 induces
an equivalence between slice categories:
X\m: X\T = n(X)\I
(X oY) e (n(X) - w(Y))

Note (1) DCF n: I' — I is faithful.
(2) Any functor which has a right adjoint is a DCF.

Example 3.4 Let G be a finite group. Let
trans® be the cat of transitive G-sets and Sub(Q)

the subgroup lattice viewed as a category. Then

7 : Sub(G) — trans®; I — G/I

is a DCF. The bijection
I\m: I\Sub(G) = (G/I)\trans®

is given by

K(>I)— (G/T - G/K;gI = gK),
(G/T - X) = Gay(D ),

where G () is the stabilizer of a(T) € X.

Let sub(G) be the subgroup category, which
is equivalent to trans® by I — G/I. Then
Sub(G) — sub(G); I ~ I gives a DCF.

Note that the inverse matrix of the Hom-set ma-

trix H of Sub(G) is given by the Mébius function:

H' = (I, D156

3.5 The inverse of the Hom-set matrix

We continue assuming that the morphisms of I"
are all epimorphic. We consider the following con-

ditions for a discrete cofibration 7 : I' — I':

S)n:I)~— I'/ 2 is surjective on objects.
P) I'/= is a poset, i.e. , [Hom(X,Y)| < 1 for any
Y e

—

EaiiC:]
’*Jz

For any G € I'; let G\T be the coslice category,
which is equivalent to Elts(Homr (G, —)).
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Example 3.5 (1) For any G € I,
g G\ - T;(G3 X)— X

is a DCF satisfying (P). It satisfies (S) if and only
if any X € I" has a morphism from G. Such a G
exists uniquely up to isomorphism if it exists.

(2) Let G be a set of objects of I' such that any
X € I' has a morphisms from some G € G. Then

mc:= [ ne:G\I''=[[ 6\ - T
GeG GeG

is a DCF satisfying (S) and (P).

(3) For finite group G, 7 : Sub(G) — trans®; I —
G/I and nSub(G) — sub(G);I — I are both
DCF satisfying (S) and (P).

Let 7 : I' = I' be a DCF satisfying (S) and (P).
Let p be the Mébius function of the poset I’ /=,
which value at the isomorphism classes [I], [J)] is

simply wrote as ,u(f, j) For any I € I', we define

Nr:=t{{l) e I/=| n(T) = I},
ind(7) := Nr|Aut(Z)]

Example 3.6 When
7: I =Sub(G) —» I' =sub(G);I — I,

we have
Ny =#{I < G|I~g I} =(G: Ne(I)),
Aut(I) = Ng(I)/I,

and so ind(I) = (G:1). B

Theorem 3.3 The inverse of the Hom-set marix

H := ([Hom(, J)|)1,ser of I is given by

n(I)NIW(J)NJ

Theorem 3.4 The primitive idempotent associ-

ated to J € I is given by

= "I, ) (T
Zmd (I))Zu( ) [=(D)]



Theorem 3.5 Let § € Q7. Then

p~l(6) = Z' “(I—Jze(fﬂ [(D)] € QI

Ty ind{m(I))

4  Abstract monomial Burnside rings

Refer to [Dr71], [Sn88], [Sn94], [Tal0].

4.1 Definition of AMBR

Definition 4.1 As before, let I" denote an essen-

tially finite and locally finite category Let
/\:I’°P—>mon;lv—>f

be a functor to the category of finite monoids Thus
an f : I — J induces a monoid homomorphism
f: J - T, which we often extend to a ring ho-
momorphism f : Z[J] — Z[I] between monoid
rings. In particular, T is a right Aut(I)-set, and
so Aut(I) acts the monoid algebra Z[T] We can
consider the centralizer algebra Z[TJA"*Y) under
this action. Then the monomial ghost ring is

defined as the product algebra
arnn = [ zmr®
Jerjx
Let 22(I,A) := Z[Elts(I, A)] be the free abelian
group generated by Elts(I,A)/=. B

Definition 4.2 The monomial Burnside ho-

momorphism is the linear map defined by

0 ALA) = LA Xzl o | Y f=)
fI-X I
£2(I,A) is called an abstract monomial Burn-
side ring (AMBR) if
(a) 2(I', A) has a ring structure, and

(b) ¢ is an injective ring homomorphism. B

(1) Let G be a finite group. and
I' = sub(G), the subgroup category, and A : H —

~

H := Hom(H,C*).

Example 4.1

the linear character functor.
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Then as the AMBR, we have a classical monomial
Burnside ring (G, A) which is an abelian group
generated by the symbols [H, ], where H < G
and A € H , a linear character, and with relation
[H9,)9] = [H,A]. The multiplication is defined by

(H - [K 4] = ) [H N K, M Hsnk - pronk]
HgK
There is a ring homomorphism into the character

ring:
Q(G,A) = R(G); [H, )] — ind®(})

(2) Let G be a finite group and S a monoid
with right G-action. Take the centralizer func-
tor Cs : sub(G) —» mon;H — Cg(H). Then
the AMBR £2(sub(G), Cs) is the crossed Burnside
ring £2(G, S)., In general, this ring is not com-
mutative, but when S = G¢, the group G with
G-action by G-conjugation, 2(G,G¢) is commu-
tative.

(3) Let A be a finite abelian group with G-
action. Then Q(sub(G), H(—, A)) = Q(G, A) is

the Dress monomial BR.

4.2 The fundamental theorems for AMBR

As before, we assume that I satisfies the follow-

ing two conditions:

(E) All the morphisms of I" are epimorphic.
(C) For any object I and o € Aut([), there exists

a coequalizer diagram:

1

I I1—1/o
o

By (C), we have a monoid homomorphism
& Ijo—» I .= {ie T|3(i) =4}

Furthermore, if f : I — X satisfies foo = f,
then there exists a unique g : /o0 — X such that

goce=f,andsoéyo0g=f.



I - I/o of

1,0 € Aut(]) induces a monoid homomorphism

By (C), the coequalizer c,

Co I//t\T — (o) f, which furthermore induces
&, : Z|I /o] = Z|T9] — z[])
Define the group of obstructions by

Obs(ryA) =[] (@/1Aut(DDE)*
Ier/=

and define a module endmorphism 1;/; = (JI) of

(I, A) by

P1(6) = > C,0(I/0)

agcAut(l)

Finally define the Cauchy-¥Frobenius map by

b DL, A) -2 BT, A) B Obs(T, A).

Theorem 4.1 The following is an exact se-

quence of modules:
0= QI A) =2 QI A) — Obs(I,A) — 0

Theorem 4.2 (I, A) is an AMBR.

4.3 Monomial G-sets

It is often more convenient to use the no-
tion of monomial G-set than of sub(G). The
category of monomial G-sets is equivalent to
Exp(Elts(sub(G)).

Then any functor A : sub(G)°? — mon can be
extend to set®. In fact, the monoid X for any
G-set X is defined by the set of X-indexed family
(Az)zex such that A\, € é\z and Agz 9A, for any
rz€Xand geqG.

Then the AMBR £2(sub(G), A) is isomorphic to
the Grothendieck ring of monomial G-sets with re-
spect to disjoint union and multiplication defined
by

(X, (A)B(Y, (1) = (X XY, (Aadc.y Py 6ey) @)

In this notation, the monomial Burnside homo-

morphism ¢ = (¢r) (I <G) is given by

@r [X, (Az)] — Z /\z[l € (Z[ﬂ)NG(I)
zeX!

4.4 |ldempotent formula

Theorem 4.3 (Takegahara) The
idempotent of the complex coeflicient MBR
CO(G, A) associated to (H,t) is given by

primitive

1 —_
EH,t = m Dzs:H g’.} |Diu(D, H)A(t)[D» AID]

=€ @ €H,

where

1 —
€t = —— /\(t))\
=
reH
is the primitive idempotent of the complex coefli-
cient character ring CR(H) associated to t € H,

and

1
eH = e |D|u(D, H)[D],
Nl 2=, ]
is the primitive idempotent of the Burnside ring
C ® 2(G). Furthermore, we used the notation

A® [D] := [D, \p].

Corollary 4.4 (Snaith, Boltje)

Brauer induction theorem!

Explicit
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