Clifford theory of characters in Brauer induction

This is joint work with Britta Späth [4]. In representation theory of finite groups Clifford theory plays a very important role. Here we shall discuss extendibility of ordinary characters of a normal subgroup N of a finite group G, by using a subgroup $G[b]$ which is a normal subgroup of G_b, where b is a p-block of N, G_b is the set of all elements in G stabilizing b by the conjugation action, and p is a prime number. The group $G[b]$ is defined by E.C. Dade in his very distinguished paper [1] of early 1970's. Actually $G[b]$ has remarkably nice properties.

The notation used here in this small note is standard. Throughout this note we assume that G is a finite group, N is its normal subgroup, and b is a p-block of N. We denote by Irr(N) and IBr(N), respectively, the set of all irreducible ordinary and Brauer characters of N. Then, we denote by Irr(b) and IBr(b), respectively, those characters belonging to b. For a subgroup H of G and a p-block B' of H, $(B')^G$ means the block induction of B' to G if it is defined. A triple $(\mathcal{K}, \mathcal{O}, k)$ is so-called a p-modular system, which is big enough for all finitely many finite groups which we are looking at, including G. Namely, \mathcal{O} is a complete discrete valuation ring, \mathcal{K} is the quotient field of \mathcal{O}, \mathcal{K} and \mathcal{O} have characteristic zero, and k is the residue field $\mathcal{O}/\text{rad}(\mathcal{O})$ of \mathcal{O} such that k has characteristic p. We mean by "big enough" above that \mathcal{K} and k are both splitting fields for the finite groups mentioned above. We denote by 1_b the block idempotent of b which is a block algebra of kN (sometimes of $\mathcal{O}N$). We write Bl(G) and Bl$(G|b)$ for the set of all p-blocks of G and for the set of all p-blocks of G covering b,
respectively. When \(\chi \in \text{Irr}(N) \) and \(\phi \in \text{IBr}(N) \), we denote by \(\text{bl}(\chi) \) and \(\text{bl}(\phi) \), respectively, the \(p \)-block of \(N \) to which \(\chi \) and \(\phi \) belong. For \(\phi \in \text{IBr}(N) \), we denote by \(\text{IBr}(G|\phi) \) the set of all characters \(\psi \in \text{IBr}(G) \) such that \(\phi \) is an irreducible constituent of \(\psi \downarrow_N \), see [8, p.155]. For the notation and terminology we shall not explain precisely, see the books of [9].

Let us keep the notation \(G, N \) and \(b \) as above throughout. Then, the group \(G[b] \) is defined by [1] as follows:

\[
G[b] := \{ g \in G \mid (1_bC_g^{-1})(1_bC_g) = 1_bC_1 \}
\]

where \(C_g := C_{OG}(N) \cap ONg \subseteq OG \) for each \(g \in G \). For a \(p \)-block \(B \) of \(G \) we denote by \(\lambda_B \) the central function (central character) \(\lambda_B : Z(kG) \rightarrow k \) associated to \(B \), see [8, p.48]. When \(g \in G \), we denote by \(\text{cc}_G(g) \) the conjugacy class of \(G \) which contains \(g \), and we define \((\text{cc}_G(g))^+ := \sum_{g \in \text{cc}_G(g)} g \in kG \). Then, we have had several characterizations of \(G[b] \). Namely,

Proposition. We have the following three kinds of characterizations of the group \(G[b] \).

(i) (see [5]) \(G[b] = \{ g \in G_b \mid \exists u_g \in b^\times \text{ such that } g^{-1}\beta g = u_g^{-1}\beta u_g \text{ for any } \beta \in b \} \)

(ii) (see [3]) \(G[b] = \{ g \in G_b \mid b \otimes_O g \cong b \text{ as } O[N \times N]-\text{modules} \} \).

(iii) (see [6]) \(G[b] = \{ g \in G_b \mid \exists y \in gN, \exists B' \in \text{Bl}(\langle N, g \rangle) \text{ such that } \lambda_{B'}((\text{cc}_{\langle N, g \rangle}(y))^+) \neq 0 \} \).

The following three theorems are our main results in this note.

First, we obtain a sort of generalization of the Theorem of Harris-Knörr [2].

Theorem A. Let \(G \) be a finite group, and let \(N < G, H \leq G \) and \(M := N \cap H \). Let \(b' \in \text{Bl}(M) \) be a block of \(M \) that has a defect group \(D \) with \(C_G(D) \subseteq H \). For \(b := (b')^N \) the map from \(\text{Bl}(H \mid b') \) to \(\text{Bl}(G \mid b) \) given by \(B' \mapsto (B')^G \) is well-defined and surjective.

Remark. There is an exmaple where the above map in **Theorem A** is not injective, see [4].
Theorem B. Let b' be a block of M that has a defect group D with $C_G(D) \subseteq H$. Assume further that $G = G[b]$ for $b : = (b')^N$. Then for every $\phi \in \text{IBr}(b)$ and every $\phi' \in \text{IBr}(b')$ there is a bijection

$$\Lambda : \text{IBr}(G | \phi) \rightarrow \text{IBr}(H | \phi'),$$

such that $\text{bl}(\Lambda(\rho)) = \text{bl}(\rho)$ for every $\rho \in \text{IBr}(G | \phi)$. Further $\rho \in \text{IBr}(G)$ is an extension of ϕ if and only if $\Lambda(\rho)$ is an extension of ϕ'.

Theorem C. Let G be a finite group, and let $N \leq G$, $H \leq G$ and $M := N \cap H$. Let $b' \in \text{Bl}(M)$ be a block of M with defect group D such that $C_G(D) \subseteq H$, and let $b := (b')^N$. Assume further that $G = G[b]$.

(i) **(Ordinary characters)**

1. If $\chi' \in \text{Irr}(b')$ extends to a character $\tilde{\chi}' \in \text{Irr}(H)$, then there exists a character $\chi \in \text{Irr}(b)$ of height zero which extends to a character $\tilde{\chi} \in \text{Irr}(G)$ and which satisfies

 $$\text{bl}((\tilde{\chi})_{J \cap H})^J = \text{bl}(\chi_{J})$$

 for every J with $N \leq J \leq G$.

2. If $\chi \in \text{Irr}(b)$ extends to a character $\tilde{\chi} \in \text{Irr}(G)$, then there exists a character $\chi' \in \text{Irr}(b')$ of height zero which extends to a character $\tilde{\chi}' \in \text{Irr}(H)$ and which satisfies (\ast).

(ii) **(Sylow p-subgroups)**

1. If $\chi' \in \text{Irr}(b')$ extends to a character $\tilde{\chi}' \in \text{Irr}(H)$ and if $\chi \in \text{Irr}(b)$ extends to a subgroup J_0 of G with $N \leq J_0 \leq G$ and $J_0/N \in \text{Syl}_p(G/N)$, then χ extends to a character $\tilde{\chi} \in \text{Irr}(G)$ which satisfies (\ast).

2. If $\chi \in \text{Irr}(b)$ extends to a character $\tilde{\chi} \in \text{Irr}(G)$ and if $\chi' \in \text{Irr}(b')$ extends to $J_0 \cap H$ for a subgroup J_0 of G with $N \leq J_0 \leq G$ and $J_0/N \in \text{Syl}_p(G/N)$, then χ' extends to a character $\tilde{\chi}' \in \text{Irr}(H)$ which satisfies (\ast).

(iii) **(Brauer characters)**

1. If $\phi' \in \text{IBr}(b')$ extends to a character $\tilde{\phi}' \in \text{IBr}(H)$, then any $\phi \in \text{IBr}(b)$ extends to a character $\tilde{\phi} \in \text{IBr}(G)$ which satisfies

 $$\text{bl}((\tilde{\phi}')_{J \cap H})^J = \text{bl}(\phi_{J})$$

 for every J with $N \leq J \leq G$.

(2) If $\phi \in \text{IBr}(b)$ extends to a character $\tilde{\phi} \in \text{IBr}(G)$, then any $\phi' \in \text{IBr}(b')$ extends to a character $\tilde{\phi}' \in \text{IBr}(H)$ which satisfies (**).

Acknowledgements. The author would like to thank Professor Masato Sawabe for giving him an opportunity to give a talk in the meeting held in the RIMS of the University of Kyoto March 2014.

References