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ABSTRACT. This note is a survey of $a$ collaboration with G. Malle and E. Schulte [18]
and reports on recent results towards a classification of simple endo-trivial modules for
finite quasi-simple groups, as well as the use of character theoretic methods for ende
trivial modules. This is the summary of a talk held at the RIMS Symposium Research
on Finite Groups and their Representations, Vertex Operator Algebras, and Algebraic
Combinatorics, March 2014,

1. INTRODUCTION

Throughout, unless otherwise stated, we let $p$ be a prime number, $k$ be an algebraically
closed field of characteristic $p>0,$ $G$ be a finite group such that $p||G|$ , and let $mod (kG)$

denote the category of finitely generated left $kG$-modules. We let $(K, \mathcal{O}, k)$ be a splitting
$p$-modular system for $G$ and its subgroups.

A $kG$-module $M\in mod (kG)$ is termed endo-trivial if the $k$-endomorphism ring of $M$

satisfies the condition $End_{k}(M)\cong M^{*}\otimes_{k}M\cong k\oplus($proj) as $kG$-modules and where (proj)
denotes a projective summand. $(In$ other words, $End_{k}(M)$ is trivial is the stable module
category.)

Basic Facts 1.1. Let $M\in mod(kG)$ be an endo-trivial $kG$ -module. Then:
$(a)\dim_{k}(M)\equiv\pm 1$ $($mod $|G|_{p})$ if $p>2$ and $\dim_{k}(M)\equiv\pm 1$ $($mod $\frac{1}{2}|G|_{p})$ if $p=2$ ;
(b) $M\cong M_{0}\oplus(proj)$ , where $M_{0}$ is the unique indecomposable endo-trivial direct sum-

mand of $M$ ;
(c) if $H\leq G$ , then $M|_{H}$ is endo-trivial and ifmoreover $H$ contains a Sylow $p$ -subgroup

of $G$ , then $M$ is endo-trivial if and only if $M|_{H}$ is endo-trivial.

Thanks to Basic Fact (b), the set $T(G)$ of isomorphism classes of indecomposable endo-
trivial modules becomes an abelian group for the law: $[M]+[N]$ $:=[(M\otimes_{k}N)_{0}]$ . The
zero element is $[k]$ and $-[M]=[M^{*}].$

1.1. Simple endo-trivial modules. A recent result of Robinson’s [23] states that when-
ever the Sylow $p$-subgroups of a finite group $G$ are neither cyclic nor quaternion, then
any simple endo-trivial $kG$-module is either simple endo-trivial for a quasi-simple normal
subgroup, or induced from a 1-dimensional module of a strongly $p$-embedded subgroup
of $G$ . This leads to the natural problem of classifying simple endo-trivial modules for
quasi-simple groups treated hereafter. In fact the existence of such modules seems to
restrict even further the structure of the group.
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Conjecture 1.2. Let $G$ be a finite quasi-simple group with a faithful simple endo trivial
module. Then the Sylow $p$ -subgroups of $G$ have $p$ -rank at most 2.

As a matter of fact in all examples described below, the Sylow $1\succ$subgroups are either
homocyclic of rank at most 2, extraspecial of order $p^{3}$ with $p\leq 11$ , or dihedral. As a
consequence of our classifications we obtain:

Theorem 1.3. Conjecture 1.2 holds in all of the following cases:

(a) if $p=2,$

(b) if $G/Z(G)$ is an alternating group,
(c) if $G/Z(G)$ is a sporadic group,
(d) if $G/Z(G)$ is a group of Lie type and $p$ is its defining characteristic, and
(e) if $G/Z(G)$ is an exceptional group of Lie type.

Remark 1.4. Traditionally endo-trivial modules have been studied through the description
of the structure of the group $T(G)$ , and, a priori, the classification problem of endo-trivial
modules is equivalent to describing the structure of the group $T(G)$ . This structure has
been computed by Carlson, Mazza, Nakano, Th\’evenaz and coauthors for several classes
of finite groups, such as for examle p–groups, $p$-soluble groups, symmetric and alternating
groups, groups of Lie type in defining characteristic. Nonetheless, we emphasise that
the knowledge of the structure of the group $T(G)$ often relies on Green correspondence,
hence does not give an explicit description of indecomposable endo-trivial modules in
general. This is the main reason that prevented us from using previously known results
on endo-trivial modules in the forthcoming classifications. See Section 5.

2. CHARACTER THEORY FOR ENDO-TRIVIAL MODULES

The new feature of the approach used in [18, 17, 19] is that it mainly relies on character
theoretic methods. This is made possible through the following generalisation of a lifting
result due to Alperin [1] from the case of p–groups to arbitrary finite groups, which may
be of independent interest:

Theorem 2.1 ([18, Thm. 1.3]). Let $(K, \mathcal{O}, k)$ be a splitting $p$ -modular system and let $V$

be an endo-trivial $kG$ -module. Then $V$ lifts to an endo-trivial $\mathcal{O}G$-lattice.

This leads to the following criterion to detect endo-trivial modules from their ordinary
characters:

Lemma 2.2. Let $V$ be a $kG$-module which is liftable to a simple $\mathbb{C}G$ -module with char-
acter $\chi$ , say. If $V$ is endo-trivial then $|\chi(g)|=1$ for all $p$-singular elements $g\in G.$

Proof. By assumption $\chi\overline{\chi}\equiv 1+\psi(mod p)$ , where $\psi$ is the character of a p–projective
module. Thus, $\psi(g)=0$ for all p–singular elements $g\in G$ . The claim follows. $\square$

Now it is well-known that a trivial source $kG$-module $M$ lifts uniquely to a trivial source
$\mathcal{O}G$-lattice $\hat{M}$ . Denote by $\chi_{\hat{M}}$ the corresponding ordinary character. So that trivial source
endo-trivial modules can be detected from their characters as follows.

Theorem 2.3 ([17], Thm. 2.2). Let $M$ be an indecomposable trivial source $kG$ -module
(with dimension prime to $p$). Then $M$ is endo-trivial if and only if $\chi_{\hat{M}}(x)=1$ for all
non-trivial $p$ -elements $x\in G.$
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In fact this theorem ensues from a result of Green, Landrock and Scott, stating that
the character $\chi_{\hat{M}}$ of a trivial source $kG$-module takes non-negative integer values on p-
elements $x\in G$ , which are moreover positive if and only if the element $x$ belongs to a
vertex of $M.$

Remark 2.4. When the normal $p$-rank of the group $G$ is greater than 1, then the class of
an indecomposable endo-trivial $kG$-module lies in the torsion subgroup $TT(G)$ if and only
if $M$ is a trivial source module. Thus assuming the Sylow $p$-subgroups of $G$ are neither
cyclic, nor semi-dihedral, nor generalised quaternion, then Theorem 2.3 tells us the group
$TT(G)$ is a function of the character table of the group $G.$

For groups of Lie type, more character-theoretic criteria for endo-trivial modules can
be found in [18, Sec. 6].

3. CYCLIC BLOCKS

We start by describing simple endo-trivial modules lying in blocks of cyclic defect. The
following result applies to arbitrary finite groups, not only quasi-simple groups.

Let $G$ be a finite group with a non-trivial cyclic Sylow $p$-subgroup $P\cong C_{p^{n}},$ $n\in \mathbb{N}.$

Let $Z$ denote the unique subgroup of order $p$ of $G$ and let $H$ $:=N_{G}(Z)$ . For a $p$-block $B$

of $kG$ , let $e_{B}$ denote its inertial index, and let $e=|N_{G}(P)$ : $C_{G}(P)|$ denote the inertial
index of the principal block. Call an edge of the Brauer tree $\sigma(B)$ of $B$ a leaf if it is an
end edge, and call a leaf non-exceptional if the exceptional vertex does not sit at its end.

Theorem 3.1 ([18, Lem. 3.2, Cor. 3.3, Thm 3.7]). Let $G$ be as above such that $e>1.$
Let $B$ be a $p$ -block of $kG$ containing an endo-trivial $kG$ -module. Then:

(a) $e_{B}=e$ ;
(b) the number of $p$ -blocks of $kG$ containing (simple) endo-trivial modules is exactly

$\frac{1}{e}|H/[H:H]|_{p’}$ ;
(c) a simple $kB$ -module $S$ is endo-trivial if and only if $S$ labels a non-exceptional leaf

of the Brauer tree $\sigma(B)$ of B.

Proof (Sketch). Part (a) follows by Bessenrodt’s theorem [2, Thm. 2.3] on the position of
endo-trivial modules in the Auslander-Reiten quiver of $kG$ : they lie at the end. Part (b)
is a consequence of (a) together with Mazza and Th\’evenaz’ theorem [21, Thm. 3.2] on the
structure of the group $T(G)$ for groups $G$ with cyclic Sylow $p$-subgroups. For part (c), let
$S$ be a simple $kB$-module and let $f(S)$ denote its $kH$-Green correspondent. First, again
by Bessenrodt’s theorem [2, Thm. 2.3], $S$ is endo-trivial if and only if $S$ lies at the end of
the stable Auslander-Reiten quiver $\Gamma_{s}(B)\cong(\mathbb{Z}/e\mathbb{Z})A_{p^{n}-1}$ of B. But this happens if and
only if $f(S)$ lies at the end of the stable Auslander-Reiten quiver $\Gamma_{s}(b)\cong(\mathbb{Z}/e\mathbb{Z})A_{p^{n}-1}$ of
the $kH$-Brauer correspondent $b$ of $B$ if and only if the length of $f(S)$ belongs to $\{1, p^{n}-1\}$

if and only if $S$ corresponds to a non-exceptional leaf of the Brauer tree of $B$ , where the
last equivalence follows from a result of $HiB$ and Lux [13, Lem. 4.4.12]. $\square$

In the case of cyclic Sylow $p$-subgroups, the group $T(G)$ is finite. Obviously the sub-
group $T_{0}(G)\leq T(G)$ consisting of the indecomposable endo-trivial modules lying in the
principal block is generated by the first syzygy $[\Omega(k)]$ and has order $2e$ . Then, pick-
ing a simple endo-trivial module in each non-principal block, and tensoring these simple

41



CAROLINE LASSUEUR

modules with $\Omega(k)$ allows us to recover all indecomposable endo-trivial modules. This
yields:

Corollary 3.2. Let $G$ be a finite group with a non-trivial cyclic Sylow $p$ -subgroup, and
assume $e\neq 1$ . Then the group of endo-trivial modules $T(G)$ is generated by the classes of
syzygy modules of simple $kG$ -modules.

4. SIMPLE ENDO-TRIVIAL MODULES FOR QUASI-SIMPLE GROUPS.

We now go through several families of quasi-simple groups and give a classification of
simple endo-trivial modules in these cases, proving Theorem 1.3 as a by-product.

4.1. Covering groups of alternating groups. We start with covering groups of al-
ternating groups, for which the results rely on intrinsic combinatorics, the Murnagham-
Nakayam rule and results of Erdmann [9] and Henke [11].

Theorem 4.1 ([18, Thm. 4.9]). Let $V$ be a faithful simple $kG$ -module for some covering
group $G$ of $\mathfrak{A}_{n}$ with $n \geq\max\{p$ , 5 $\}$ . Then $V$ is endo-trivial if and only if $V$ is a constituent

of the simple module for the corresponding covering group of $\mathfrak{S}_{n}$ indexed by $\lambda\vdash n$ , where
one of:

(1) $G=\mathfrak{A}_{n},$ $5\leq p+2\leq n<2p$ and $\lambda=(p+1,1^{n-p-1})$ (cydic defect);
(2) $G=\mathfrak{A}_{n},$ $p>2,$ $n=2p+1$ and $\lambda=(p+1,1^{p})$ ;
(3) $G=\mathfrak{A}_{n},$ $p>2,$ $n=3p-1$ and $\lambda=(2p-1,p)$ ;
(4) $n=6$ , 7, $|Z(G)|\geq 3$ and $(G,p, V)$ are as in Table 1;
(5) $G=\tilde{\mathfrak{A}}_{5}\cong SL_{2}(5)$ , $p=3$ and $dim_{k}V=2$ ; or
(6) $G=\tilde{\mathfrak{A}}_{n},$ $5\leq p\leq n\leq p+3$ and $\lambda$ is as follows (cyclic defect):

(i) $\lambda=((p+1)/2, (p-1)/2)$ when $n=p$;
(ii) $\lambda=(p+1)$ or $\lambda=((p+1)/2, (p-1)/2,1)$ when $n=p+1$ ;
(iii) $\lambda=(p+2)$ (two non-isomorphic modules) and, for $p>5,$

$\lambda=((p+1)/2, (p-1)/2,2)$ (two non-isomorphic modules) when $n=p+2$;
(iv) $\lambda=(p+2,1)$ (two non-isomorphic modules) and, for $p>5,$

$\lambda=((p+1)/2, (p-1)/2,2,1)$ (two non-isomorphic modules) when $n=p+3.$

TABLE 1. Faithful cyclic blocks containing a simple endo-trivial module $V$

$in3.\mathfrak{A}_{6}, 3.\mathfrak{A}_{7}, 6.\mathfrak{A}_{6}and6.\mathfrak{A}_{7}$
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4.2. Groups of Lie type in defining characteristic. For groups of Lie type in their
defining characteristic, simple endo-trivial modules are also extremely rare.

Theorem 4.2 ([18, Thm. 5.2]). Let $G$ be a finite quasi-simple group of Lie type in
characteristic $p>0$ . Let $V$ be a simple faithful $kG$ -module, where $k$ is algebraically closed

of characteristic $p$ . Then $V$ is endo-trivial if and only if one of
(1) $p\geq 5,$ $G=SL_{2}(p)$ and $\dim V=p-1$ ; or
(2) $p=2,$ $G=SL_{3}(2)$ and $\dim V=3.$

If $G=SL_{2}(p)$ and $\dim_{k}V=p-1$ , then for $P\in Sy1_{p}(G)$ (cyclic), $V|_{P}$ is indecomposable,
and up to isomorphism there is a unique indecomposable $kP$-module of dimension $p-1,$
namely $\Omega(k)$ . Therefore we must have $V|_{P}\cong\Omega(k)$ , which is endo-trivial, whence so is
V. For $G=SL_{3}(2)\cong L_{2}(7)$ see the next subsection.

Otherwise, we may assume that $V$ is a non-trivial simple $kH$-module, where $H$ is a
group of simply connected type such that $G=H/Z$ for some central subgroup $Z\leq H.$

By Steinberg’s tensor product theorem the simple $kH$-modules are tensor products of
Frobenius twists of $p$-restricted highest weight modules, and it is easy to prove that a
tensor product of two modules is endo-trivial if and only if both factors are. Now twists
of the Steinberg module have dimension divisible by $p$ , hence are not endo-trivial. All
other $p$-restricted highest weight modules have dimension less than $|G|_{p}-1$ , unless we
are in one of the exceptional case, so that they cannot be endo-trivial by the dimensional
criteria.

4.3. The groups $SL_{2}(q)$ and $L_{2}(q)$ in cross-characteristic. For $G=SL_{2}(q)$ , $q=p^{n},$

$p$ a prime, $k$ of characteristic $\ell\neq p$ dividing the order of $G$ . If $\ell\neq 2$ the classification of
simple endo-trivial modules follows from Theorem 3.1.

Proposition 4.3 ([18, Prop. 3.8]). Let $G=SL_{2}(q)$ , $q=p^{n}$ with $p$ a prime. Let $V$ be
a non-trivial simple $kG$ -module, where $k$ is algebraically closed of characteristic $\ell\neq p.$

Then $V$ is endo-trivial if and only if one of:
(1) $2\neq\ell|q-1$ and $V$ lies in an $\ell$-block of full defect and inertial index 2 (cyclic

defect);
(2) $p\neq 2\neq\ell|q+1$ and $V$ lies in the non-principal $\ell$-block of full defect and inertial

index 2 (cyclic defect);
(3) $3=\ell|q+1,$ $|G|_{\ell}=3$ and $V$ lies in the principal $\ell$ -block (cyclic defect).

Moreover, if $\ell=2,$ $q\equiv-1$ (mod4) and $V$ lies in the principal $\ell$ -block, then $V$ is endo-
trivial as a $kL_{2}(q)$ -module, but not as a $kG$-module.

For the exceptional covering groups of $L_{2}(9)\cong \mathfrak{A}_{6}$ see Theorem 4.1. For the principal
block modules of $L_{2}(q)$ , it is well-known that they are trivial source modules and easy to
check that the corresponding characters take value 1 on 2-elements, hence they are endo-
trivial by Theorem 2.3. Clearly these modules are not endo-trivial as $kSL_{2}(q)$ -modules
since $O_{2’}(G)=Z(G)$ acts trivially.

4.4. Characteristic 2.

Theorem 4.4 ([18, Thm. 6.7]). Let $G$ be a finite quasi-simple group. Then $G$ has a
non-trivial simple endo-trivial $kG$ -module $V$ over a field of characteristic 2 if and only if
one of:
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(a) $G=L_{2}(q)$ with $7\leq q\equiv 3$ (mod4) and $\dim(V)=(q-1)/2$ ; or
(b) $G=3.\mathfrak{A}_{6}$ and $\dim(V)\in\{3$ , 9 $\}.$

In particular, Conjecture 1.2 holds for the prime 2.

The proof of this result goes through the possibilities for $G$ according to the classification
of finite simple groups. The exceptions in the statement of the Theorem are given by
Theorem 4.3 and 4.1. All other irreducible characters of finite quasi-simple groups are
discarded as follows. If $G$ is alternating, the claim is Theorem 4.1, and if $G$ is sporadic
it is Theorem 4.8 below. If $G$ is of Lie type in defining characteristic see Theorem 4.2.
If $G$ is an exceptional group of Lie type in odd characteristic, the claim will follow from
Section 4.5. Thus it remains to deal with classical groups of Lie type in odd characteristic.
In this case $G$ has wild representation type, so that the group $T(G)$ has no 2-torsion and
it follows that no self-dual simple $kG$-module can be endo-trivial. If $\chi\neq 1$ is a unipotent
character of $G$ whose reduction modulo 2 is irreducible, then $V$ is self-dual. Thus only
non-unipotent characters could lead to endo-trivial modules. In all types these characters
can be discarded by a closer examination of the Lusztig’s series in which they lie.

4.5. Exceptional groups of Lie type. Throughout this subsection we assume the
groups of Lie type are defined over a field of characteristic $p$ and we assume the field
$k$ is of characteristic $\ell\neq p$ dividing the order of the considered group.

To begin with, for the five families of small rank exceptional groups of Lie type, that is,
$2B_{2}(2^{2f+1})$ , $2G_{2}(3^{2f+1})$ , $2F_{4}(2^{2f+1})$ , $G_{2}(q)$ and $3D_{4}(q)$ , complete ordinary character tables
are available, making it relatively easy to find the candidate characters for simple endo-
trivial modules.

Theorem 4.5 ([18, Thm. 6.8]). Let $G$ be a covering group of one of the simple groups
$2B_{2}(2^{2f+1})$ (with $f\geq$ 1), $2G_{2}(3^{2f+1})$ (with $f\geq$ 1), $G_{2}(q)$ (with $q\geq 3$), $3D_{4}(q)$ , or
$2F_{4}(2^{2f+1})$ (with $f\geq 1$). Let $\ell\neq p$ denote a prime divisor of $|G|$ and $P\in Sy1_{\ell}(G)$ .
If there exists a non-trivial simple endo-trivial $kG$-module then $P$ is cyclic.

In the cases of the previous theorem, the simple endo-trivial $kG$-modules for primes $\ell$

such that $P$ is cyclic are classified in [18] in Table 2 and Table 3. Again they can be read
from the known Brauer trees.

Turning to the exceptional groups of rank at least four (for which no complete generic
character tables are available) for unipotent characters we obtain the following:

Proposition 4.6 ([18, Prop. 6.9], [17]). Let $G=G(q)$ be a finite simple exceptional group
of Lie type in characteristic $p$ of rank at least 4 and $\ell\neq p$ a prime for which the Sylow

$\ell$-subgroups of $G$ are non-cyclic. Then $\chi\in Irr(G)$ is the character of a simple unipotent
endo-trivial $kG$ -module if and only if $G=F_{4}(2)$ , $\ell=5$ and $\chi=F_{4}^{II}[1]$ (notation is that
of [7, \S 13

In this case most unipotent characters are discarded by the usual degree criteria or
Theorem 2.3. This leads to:

Theorem 4.7 ([18, Prop. 6.9], [17]). Let $G$ be a quasi-simple exceptional group of Lie
type in characteristic $p$ , and $\ell\neq p$ a prime such that Sylow $\ell$-subgroups of $G$ have $\ell$ -rank
at least 3. Then $G$ does not have faithful simple endo-trivial $kG$ -modules over a field $k$ of
characteristic $\ell.$
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4.6. Covering groups of sporadic simple groups. For sporadic groups simple endo-
trivial modules remain a rare phenomenon, although the following results shows that they
do occur for groups whose Sylow $p$-subgroups are either elementary abelian of rank 2 or
extra-special of order $p^{3}$ and exponent $p.$

Theorem 4.8 ([18, Thm. 7.1], [17]). Let $G$ be a quasi-simple group such that $G/Z(G)$ is
sporadic simple. Let $V$ be a faithful simple endo-trivial $kG$-module, where $k$ is algebraically
closed of characteristic $p$ , with $p$ dividing $|G|$ . Let $P$ be a Sylow $p$ -subgroup of G. Then
one of the following holds:

(1) $|P|=p$ and $V$ lies in a $p$ -block $B$ of $kG$ as listed in [18, Table 7] ; $or$

(2) $(G, P, \dim V)$ are as in Table 2.
Conversely, all modules listed in Table 2 are endo-trivial except possibly for those marked
by a “?” in the last column.

TABLE 2. Candidate characters in sporadic groups

In the cyclic Sylow case, a complete description of the simple endo-trivial modules
can be read directly from the Brauer trees of cyclic blocks using Theorem 3.1 and [13].
(Excepting one block of 2. $B$ in characteristic 47 and five blocks of $M$ in various charac-
teristics, for which the Brauer trees are not known completely as of yet.) The results are
collected in [18, Table 7].

Now if we assume $p^{2}$ divides $|G|$ . Using the dimension and character degree criteria
(Basic Facts 1.1, Lemma 2.2, Theorem 2.3), the known ordinary character tables and
decomposition matrices of the quasi-simple sporadic groups (see [8, 14, 10]) we obtain the
list of candidate characters $\chi\in Irr(G)$ stated in Table 2. Excepting the cases marked by
$a$ “?”’ in the last column, one can prove that the corresponding modules are endo-trivial
using one of the following arguments:

(i) $\chi\otimes\chi^{*}$ has one trivial constituent and one constituent of defect zero;
(ii) there is a subgroup $H\leq G$ containing a Sylow $p$-subgroup of $G$ and $\chi|_{H}$ has a

unique trivial constituent, and all other constituents are of defect zero;
(iii) $\chi$ is the character of a trivial source module and Theorem 2.3 yields the result; or
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(iv) for the pairs $(G, \chi(1))=(^{2}F_{4}(2)’,$ $351$ ) computations with MAGMA [20].

In the case of $J_{4}$ and $B$ , it is not known whether these characters remain irreducible
modulo $p.$

Remark 4.9. In fact most of the simple modules listed in Table 2 are trivial source modules.
For instance this is obvious as soon as a $character\backslash$ satisfies condition (ii) above. As a
consequence, these modules provide us with example of torsion endo-trivial module, that
is modules whose class lies in the torsion subgroup $TT(G)<T(G)$ . In [17, 19], it will
be shown that any quasi-simple sporadic group admitting a simple endo-trivial module
also has exotic endo-trivial modules, in the sense that $G$ has torsion endo-trivial modules
whose dimension is not one.

Remark 4.10. endo-triviality is in general not preserved by Morita equivalences. Cyclic
blocks of sporadic groups provide us with many counter-examples. For instance the
Janko group $J_{1}$ has four 3-blocks with isomorphic Brauer trees, that is, isomorphic as
pointed graphs equipped with a planar embedding. Hence the four blocks are Morita
equivalent (see [13, pp. 69-70]). However, only two of these blocks contain simple endo-
trivial modules.

5. DISCARDING THE EXISTENCE OF SIMPLE ENDO-TRIVIAL MODULES VIA

AuSLANDER-REITEN THEORY

Previous work on endo-trivial modules for different classes of quasi-simple groups $G$

was concerned with the determination of the group $T(G)$ of endo-trivial modules. This

includes results on groups with cyclic Sylow subgroups [21], the symmetric and alternating
groups [4, 6], and groups of Lie type in their defining characteristic [5].

Nevertheless there are three main obstructions to apply these results to answer the
question of finding the simple endo-trivial modules. First, the aforementioned articles
do not treat covering groups. Second, they determine the structure of $T(G)$ but not the
indecomposable endo-trivial modules themselves, in that their description involves Green
correspondence, which is not explicit and notoriously difficult to determine. Third, even
in the simplest cases where $T(G)=\langle\Omega(k)\rangle\cong \mathbb{Z}$ (where $\Omega$ is the Heller operator), it is not
clear whether any of the modules $\Omega^{n}(k)$ for $n\in \mathbb{Z}$ can be simple.

In the latter case, we give here one possible approach via the stable Auslander-Reiten
quiver $\Gamma_{s}(kG)$ of $kG$ , which could have enabled us to use the structure the known structure
of the group $T(G)$ to discard the existence of simple endo-trivial modules. This was
suggested a fortiori by S. Koshitani.

Proposition 5.1. Let $G$ be a finite group and $B_{0}$ be the principal block of $kG$ . Assume
$B_{0}$ has wild representation type and $G$ satisfies the following conditions:

(i) each $AR$-component of type $\mathbb{Z}A_{\infty}$ of $\Gamma_{s}(B_{0})$ contains at most one simple module;

(ii) $T(G)\cong \mathbb{Z}.$

Then $G$ does not have non-trivial simple endo-trivial modules.

Proof. The condition $T(G)\cong \mathbb{Z}$ implies that an indecomposable endo-trivial $kG$-module
is isomorphic to a syzygy module $\Omega^{n}(k)$ for some $n\in \mathbb{Z}$ , and thus lies in $B_{0}$ . Moreover
$\Gamma_{s}(B_{0})$ has only two connected components containing endo-trivial modules: $\Gamma_{S}(k)$ and
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$\Gamma_{S}(\Omega(k))$ , both isomorphic to $\mathbb{Z}A_{\infty}$ as $B_{0}$ is a wild block. By assumption (i), the trivial
module $k$ is the unique simple module in $\Gamma_{s}(k)$ . If $\Gamma_{s}(\Omega(k))$ contains a simple endo-trivial
module $S$ , then $S=\Omega^{2n+1}(k)$ for some $n\in \mathbb{Z}$ . Therefore $S^{*}=\Omega^{-2n-1}(k)$ is also simple
and lies in $\Gamma_{s}(\Omega(k))$ , which contradicts assumption (i). The claim follows. $\square$

Going back to quasi-simple groups and related groups this yields the following results.

Theorem 5.2. Let $G$ be a finite group of one of the following types:
(a) $G$ is a perfect group of Lie type defined over a field of characteristic $p$ and $G$ is

not of type $A_{1}(p)(p>2)$ , $2A_{2}(p)$ , $A_{2}(p)$ , $B_{2}(p)(p\geq 5)$ , $G_{2}(p)(p\geq 7)$ , $2B_{2}(2^{a+\frac{1}{2}})$

$(a\geq 0)$ or $\mathfrak{B}_{2}(3^{a+\frac{1}{2}})(a\geq 0)$ ;
(b) $p=2$ and $G=\mathfrak{S}_{n}$ is a symmetric group such that $n\geq 6,\cdot$

(c) $G=\mathfrak{A}_{n}$ is an alternating group such that $n\geq 8$ if $p=2$ , or such that $3p\leq n<p^{2}$

or $p^{2}+p\leq n$ if $p\geq 3.$

Then $G$ does not have non-trivial simple endo-trivial modules.

The claim is a direct consequence of Proposition 5.1. Indeed, by [5] and [6, 4] any group
of type (a), (b) or (c) is such that $T(G)\cong \mathbb{Z}$ . Moreover by [15, 16] and [24, Thm. 6] these
groups also satisfy condition (i) of Proposition 5.1.

Acknowledgments. The author gratefully acknowledges financial support by ERC Ad-
vanced Grant 291512 and SNF Fellowship for Prospective Researchers PBELP2-143516
at the time of the research presented in this survey. In addition, the author would like
to thank Prof. Shigeo Koshitani and Dr. Moeko Takahashi for an invitation to visit
Chiba University in March 2014 supported by the Japan Society for Promotion of Science
(JSPS), Grant-in-Aid for JSPS-Fellows 24.2274.

REFERENCES

[1] J. L. ALPERIN, Lifting endotrivial modules. J. Group Theory 4 (2001), 1-2.
[2] C. BESSENRODT, Endotrivial modules and the Auslander-Reiten quiver. Pp. 317-326 in: Represen-

tation Theory of Finite Groups and Finite-Dimensional Algebras (Bielefeld, 1991), Progr. Math.,
95, Birkh\’auser, Basel, 1991.

[3] J. CARLSON, Endotrivial modules. Pp. 99-111 in: Recent Developments in Lie Algebras, Groups
and Representation Theory. Proc. Sympos. Pure Math., Providence, RI, 2012.

[4] J. CARLSON, D, HEMMER, N. MAZZA, The group of endotrivial modules for the symmetric and
alternating groups. Proc. Edinb. Math. Soc. 53 (2010), 83-95.

[5] J. CARLSON, N. MAZZA, D. NAKANO, Endotrivial modules for finite groups of Lie type. J. Reine
Angew. Math. 595 (2006), 93-119.

[6] J. CARLSON, N. MAZZA, D. NAKANO, Endotrivial modules for the symmetric and alternating
groups. Proc. Edinb. Math. Soc. (2). 52 (2009), 45-66.

[7] R. CARTER, Finite Groups of Lie type: Conjugacy Classes and Complex Characters. Wiley, Chich-
ester, 1985.

[8] J H. CONWAY, R.T. CURTIS, S.P. NORTON, R.A. PARKER, R.A. WILSON, Atlas of Finite
Groups. Clarendon Press, Oxford, 1985.

[9] K. ERDMANN, Young modules for symmetric groups. J. Aust. Math. Soc. 71 (2001), 201-210.
[10] THE GAP GROUP, GAP –Groups, Algorithms, and Programming, Version 4.4; 2004, http:

$//www$ . gap-system. org.
[11] A. HENKE, On $p-$-Kostka numbers and Young modules. European J. Combin. 26 (2005), 923-942.

47



CAROLINE LASSUEUR

[12] P. N. HOFFMAN, J. F. HUMPHREYS, Projective Representations of the Symmetric Groups. Q-
Functions and Shifted Tableaux. Oxford Science Publications. The Clarendon Press, Oxford Uni-
versity Press, New York, 1992.

[13] G. HISS, K. Lux, Brauer Trees of Sporadic Groups. Oxford Science Publications. The Clarendon
Press, Oxford University Press, New York, 1989.

[14] C. JANSEN, K. Lux, R. PARKER, R. WILSON, An Atlas of Brauer Characters. Oxford Science
Publications. The Clarendon Press, Oxford University Press, New York, 1995.

[15] S. KAWATA, G. O. MICHLER, AND K. UNO, On simple modules in the Auslander-Reiten compo-
nents of finite groups. Math. Z. 234 (2000), 375-398.

[16] S. KAWATA, G. O. MICHLER, AND K. UNO, On Auslander-Reiten components and simple modules
for finite groups of Lie type. Osaka J. Math. 38 (2001), 21-26.

[17] C. LASSUEUR, G. MALLE, Simple endotrivial modules for the linear, unitary and exceptional
groups. Preprint (2014).

[1S] C. LASSUEUR, G. MALLE, E. SCHULTE, Simple endotrivial modules for quasi-simple groups. J.
reine angew. Math., DOI: 10.1515/crelle-20l3-0l00.

[19] C. LASSUEUR, N. MAZZA, Endotrivial modules for the sporadic groups and their covers. Preprint
(2014).

[20] MAGMA V2.12-14, The computational Algebra Group, School of Mathematics and Statistics,
University of Sydney. http: $//$magma.maths. usyd. edu. $au/magma/.$

[21] N. MAZZA, J. TH\’EVENAZ, Endotrivial modules in the cyclic case. Arch. Math. (Basel) 89 (2007),
497-503.

[22] E. SCHULTE, Simple Endotrivial Modules for Finite Simple Groups. Diplomarbeit, TU Kaisers-
lautern, 2012.

[23] G. ROBINSON, On simple endotrivial modules. Bull. Lond. Math. Soc. 43 (2011), 712-716.
[24] K. UNO, Simple modules in the Auslander-Reiten quivers of finite group algebras. Pp. 83-97 in:

Surikaisekikenkyusho Kokyuroku No. 1149, 2000. Representation theory of finite groups and related
topics (Japanese) (Kyoto, 1998).

FB MATHEMATIK, TU KAISERSLAUTERN, POSTFACH 3049, 67653 KAISERSLAUTERN, GERMANY.
$E$-mail address: lassueur@mathematik.uni-kl.de

48


