Clifford theory for association schemes

Yasuaki Miyazaki
Shinshu University

1 Introduction

Association schemes are regarded as generalizations of finite groups. So it is natural to consider the generalization to association schemes of the theory of representation of finite groups.

Let K be an algebraically closed field. Let G be a finite group, N a normal subgroup of G. The usual Clifford theory for finite groups shows that

(CF1) the restriction of an irreducible KG-module to KN is a direct sum of G-conjugates of an irreducible KN-module L with the same multiplicities;

(CF2) there exists a natural bijection between the set of irreducible KG-modules over L and the set of KT-modules over L, where T is the stabilizer of L in G;

(CF3) and there exists a natural bijection between the set of irreducible KT-modules over L and the set of irreducible modules of a generalized group algebra of T/N.

We will generalize them to association schemes. But we only consider module over the complex number field \mathbb{C}.

2 Adjacency algebras of association schemes

We fix some notations for association schemes.

Let (X, S) be an association scheme. We denote by σ_s the adjacency matrix of $s \in S$. The intersection number is denoted by p_{st}^u for $s, t, u \in S$, namely $\sigma_s \sigma_t = \sum_{u \in S} p_{st}^u \sigma_u$. The valency is denoted by n_s for $s \in S$. An elements in the quotient scheme $S//T$ is denoted by s^T.

2.1 Generalized adjacency algebras

In this section we define generalized adjacency algebras based on a definition of generalized group algebra. Details for factor sets and generalized group algebra (ring) are available in the literature [6, Chapter 2, Section 7].
Let G be a group and let K be a field. We say that $\alpha : G \times G \to K^\times$ is a
\textit{factor set} if it satisfies the following condition:

$$\alpha(xy, z)\alpha(x, y) = \alpha(y, z)\alpha(x, yz)$$

for all $x, y, z \in G$.

Note that in general we can consider the action of G on K, but to simplify our arguments, we suppose that the action is trivial. Two factor sets α and β are
\textit{cohomologous} if there exists a map $\gamma : G \to K^\times$ such that

$$\alpha(x, y) = \beta(x, y)\gamma(x)\gamma(y)\gamma(xy)^{-1}$$

and we write $\alpha \sim \beta$ in this case. The relation \sim is an equivalence relation on the
set of factor sets. A factor set α is said to be \textit{normalized} if $\alpha(x, 1) = \alpha(1, x) = 1$
for all $x \in G$. For a normalized factor set α, $\alpha(x, x^{-1}) = \alpha(x^{-1}, x)$ also holds.
For an arbitrary factor set α, there exists a normalized factor set β such that $\beta \sim \alpha$.

Let (X, S) be an association scheme and let T be a strongly normal closed subset of S. Then the quotient $S//T$ can be regarded as a finite group. Let $\alpha : S//T \times S//T \to K^\times$ be a factor set. We define a K-algebra $K^{(\alpha)}S = \bigoplus_{u \in S} K\sigma_u^{(\alpha)}$
with formal basis $\{\sigma_u^{(\alpha)} | u \in S\}$ and multiplication

$$\sigma_u^{(\alpha)}\sigma_v^{(\alpha)} = \sum_{w \in S} p_{uv}^w \alpha(u^T, v^T)\sigma_w^{(\alpha)}.$$

The algebra $K^{(\alpha)}S$ is called the \textit{generalized adjacency algebra} of (X, S) over K
with factor set α. If the strongly normal closed subset T is trivial, then the scheme is thin and the generalized adjacency algebra is just a generalized group algebra.

\subsection{2.2 Graded modules and simple modules}

Let K be a field. Let (X, S) be a scheme and T a strongly normal closed subset
of S. Then $S//T$ is thin and we can regard it as a finite group. Then

$$KS = \bigoplus_{s^T \in S//T} K(TsT)$$

is an $S//T$-graded K-algebra, where $K(TsT) = \bigoplus_{u \in TsT} K\sigma_u$. Obviously $(KS)_1^T = KT$. We can apply Dade’s theory for KS, but we restrict our attention to the
case $K = \mathbb{C}$.

\textbf{Theorem 2.1.} [4, Theorem 3.6] For any simple CT-module L and $s \in S$,
$L \otimes \mathbb{C}(TsT)$ is a simple CT-module or 0.

For any simple CT-module L, the set of $S//T$-conjugates is $\{L \otimes \mathbb{C}(TsT) | s \in S, L \otimes \mathbb{C}(TsT) = 0\}$. We remark that there exist examples such that L and L'
are $S//T$-conjugate simple CT-modules but their dimensions are different.
3 Clifford Theory

First we define some notations. Let A a finite-dimensional K-algebra and let B be a subalgebra of A. For a right B-module L, the induction $L \otimes_B A$ of L to A is denoted by $L \uparrow^A$. For a right A-module M, we write $M \downarrow_B$ if M is considered as a B-module. We denote by $\text{IRR}(A)$ the complete set of representatives of the isomorphism classes of simple A-modules. Suppose that both A and B are semisimple. For a simple B-module L, we define $\text{IRR}(A | L) = \{ M \in \text{IRR}(A) | \text{Hom}_A(L \uparrow^A, M) \neq 0 \}$.

Let (X, S) be an association scheme and let T be a closed subset of S. For a right $\mathbb{C}T$-module L and a right $\mathbb{C}S$-module M, we write $L \uparrow^S$ and $M \downarrow \tau$ instead of $L \uparrow^{\mathbb{C}S}$ and $M \downarrow \mathbb{C}T$, respectively.

In the rest of this section, we fix a scheme (X, S) and its strongly normal closed subset T.

Let $M \in \text{IRR}(\mathbb{C}S)$. Then $M \in \text{IRR}(\mathbb{C}S | L)$ for some $L \in \text{IRR}(\mathbb{C}T)$. Since M is a direct summand of $L \uparrow^S$, any simple submodule of $M \downarrow_T$ is an $S//T$-conjugate of L. If L and L' are $S//T$-conjugate, then $L \uparrow^S \cong L' \uparrow^S$ as $\mathbb{C}S$-modules. So

$$\dim_{\mathbb{C}} \text{Hom}_{\mathbb{C}T}(L, M \downarrow_T) = \dim_{\mathbb{C}} \text{Hom}_{\mathbb{C}T}(L', M \downarrow_T).$$

This shows the following theorem.

Theorem 3.1. [4, Theorem 4.1] Let $M \in \text{IRR}(\mathbb{C}S)$. There exists $L \in \text{IRR}(\mathbb{C}T)$ such that $M \in \text{IRR}(\mathbb{C}S | L)$. Then there exists a positive integer e such that

$$M \downarrow_T \cong e \left(\bigoplus_{L' \in C} L' \right),$$

where $C = \{ L \otimes \mathbb{C}(TsT) | s \in S, L \otimes \mathbb{C}(TsT) \neq 0 \}$.

Fix a simple $\mathbb{C}T$-module L. Put $U//T$ the stabilizer of L in $S//T$. Then

$$\bigoplus_{s^T \in S//T} L \otimes \mathbb{C}(TsT) = L \otimes_{\mathbb{C}T} \mathbb{C}S \supset L \otimes_{\mathbb{C}T} \mathbb{C}U = \bigoplus_{u^T \in U//T} L \otimes \mathbb{C}(TuT)$$

and, by Theorem 2.1,

$$\bigoplus_{u^T \in U//T} L \otimes \mathbb{C}(TuT) \cong n_{U//T} L$$

as a $\mathbb{C}T$-module. So $\dim_{\mathbb{C}} \text{Hom}_{\mathbb{C}U}(L \uparrow^U, L \uparrow^U) = \dim_{\mathbb{C}} \text{Hom}_{\mathbb{C}T}(L, L \uparrow^U \downarrow_T) = n_{U//T}$. On the other hand, by the Frobenius reciprocity, we have

$$\dim_{\mathbb{C}} \text{Hom}_{\mathbb{C}S}(L \uparrow^S, L \uparrow^S) = \dim_{\mathbb{C}} \text{Hom}_{\mathbb{C}T}(L, L \uparrow^S \downarrow_T) = n_{U//T}.$$
So \(\dim_{\mathbb{C}} \text{Hom}_{\mathbb{C}S}(L \uparrow^{S}, L \uparrow^{S}) = \dim_{\mathbb{C}} \text{Hom}_{\mathbb{C}U}(L \uparrow^{U}, L \uparrow^{U}) \). Let \(L \uparrow^{U} \cong \bigoplus_{i} m_{i} M_{i} \) be the irreducible decomposition of \(L \uparrow^{U} \), with the property that \(M_{i} \cong M_{j} \) if and only if \(i = j \). Then

\[
\dim_{\mathbb{C}} \text{Hom}_{\mathbb{C}U}(L \uparrow^{U}, L \uparrow^{U}) = \dim_{\mathbb{C}} \text{Hom}_{\mathbb{C}U}(\bigoplus_{i} m_{i} M_{i}, \bigoplus_{i} m_{i} M_{i}) \\
\leq \dim_{\mathbb{C}} \text{Hom}_{\mathbb{C}S}(\bigoplus_{i} m_{i} M_{i} \uparrow^{S}, \bigoplus_{i} m_{i} M_{i} \uparrow^{S}) \\
= \dim_{\mathbb{C}} \text{Hom}_{\mathbb{C}S}(L \uparrow^{S}, L \uparrow^{S})
\]

This means that \(\dim_{\mathbb{C}} \text{Hom}_{\mathbb{C}S}(M_{i} \uparrow^{S}, M_{i} \uparrow^{S}) = 1 \) and \(M_{i} \uparrow^{S} \) is a simple \(\mathbb{C}S \)-module for every \(i \). Also \(M_{i} \uparrow^{S} \cong M_{j} \uparrow^{S} \) if and only if \(i = j \). Obviously \(M_{i} \in \text{IRR}(\mathbb{C}U|L) \) and \(M_{i} \uparrow^{S} \in \text{IRR}(\mathbb{C}S|L) \).

Conversely, let \(N \in \text{IRR}(\mathbb{C}S|L) \). Then \(N \) is a direct summand of \(L \uparrow^{S} \). So there exists some \(M_{i} \) such that \(N \) is a direct summand of \(M_{i} \uparrow^{S} \). Since \(M_{i} \uparrow^{S} \) is simple, such \(M_{i} \) is uniquely determined. This shows the following theorem.

Theorem 3.2. [4, Theorem 4.2] Fix a simple \(\mathbb{C}T \)-module \(L \). Put \(U//T \) the stabilizer of \(L \) in \(S//T \). Then there exists a bijection \(\tau : \text{IRR}(\mathbb{C}U|L) \rightarrow \text{IRR}(\mathbb{C}S|L) \) such that \(\tau(M) = M \uparrow^{S} \) and \(\tau^{-1}(N) \) is the unique direct summand of \(N \downarrow_{U}^{S} \) contained in \(\text{IRR}(\mathbb{C}U|L) \).

We consider \(\text{End}_{\mathbb{C}U}(L \uparrow^{U}) \). For \(u^{T} \in U//T \), we define \(\rho_{u^{T}} \in \text{End}_{\mathbb{C}U}(L \uparrow^{U}) \) by \((\rho_{u^{T}}(\ell))_{v^{T}} = \ell_{u^{T}v^{T}} \). Then \(\text{End}_{\mathbb{C}U}(L \uparrow^{U}) = \bigoplus_{u^{T} \in U//T} \mathbb{C} \text{rho}_{u^{T}} \) and this is a \(U//T \)-graded algebra ([3, Section 4]). The multiplication is \(\rho_{u^{T}} \rho_{v^{T}} = \alpha(u^{T}, v^{T}) \rho_{u^{T}v^{T}} \) and this defines a factor set \(\alpha \). Now \(\text{End}_{\mathbb{C}U}(L \uparrow^{U}) \cong \mathbb{C}^{(\alpha)}(U//T) \) is a generalized group algebra with factor set \(\alpha \).

Proposition 3.3. [5, Theorem 3.1] Under the above assumptions, the irreducible \(\mathbb{C}T \)-module \(L \) is extensible to a \(\mathbb{C}^{(\alpha^{-1})}U \)-module (\(\mathbb{C}^{(\alpha^{-1})}U \) is the generalized adjacency algebra with factor set \(\alpha^{-1} \)). The action is given by \(\ell \sigma_{u}^{(\alpha^{-1})} = \rho_{(u^{T})^{-1}}(\ell \sigma_{u}) \) for \(\ell \in L \) and \(u \in U \).

We denote by \(\tilde{L} \) the extension of \(L \) to \(\mathbb{C}^{(\alpha^{-1})}U \). Since \(L \) is a simple \(\mathbb{C}T \)-module, \(\tilde{L} \) is a simple \(\mathbb{C}^{(\alpha^{-1})}U \)-module.

If \(M \) is an irreducible \(\mathbb{C}^{(\alpha)}(U//T) \)-module, then \(\tilde{L} \otimes_{\mathbb{C}U} M \) is an irreducible \(\mathbb{C}U \)-module and is in \(\text{IRR}(\mathbb{C}U | L) \). So we can define a map \(\mu : \text{IRR}(\mathbb{C}^{(\alpha)}(U//T)) \rightarrow \text{IRR}(\mathbb{C}U | L) \) by \(\mu(M) = \tilde{L} \otimes_{\mathbb{C}U} M \).

Then \(\mu \) is a bijection. This shows the following theorem.

Theorem 3.4. [5, Theorem 3.6] Let \((X, S) \) be an association scheme, let \(T \) be a strongly normal closed subset, and let \(L \) be an irreducible \(\mathbb{C}T \)-module. Let \(U//T \) be the stabilizer of \(L \) in \(S//T \). Then \(L \) is extensible to a \(\mathbb{C}^{(\alpha^{-1})}U \)-module \(\tilde{L} \) and the map \(\mu : \text{IRR}(\mathbb{C}^{(\alpha)}(U//T)) \rightarrow \text{IRR}(\mathbb{C}U | L) \) defined by \(\mu(M) = \tilde{L} \otimes_{\mathbb{C}U} M \) is a bijection.
References

