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This is based on the slides for my talk given on March 5, 2014, at RIMS. Further

details are found in my manuscript with title “A simple description of the Mathieu dual

hyperoval and its splitness”, which was submitted for publication.

1 Contents and some history

1.1 DHO

We first recall the notion of dimensional dual hyperovals. Let $n$ be an integer with $n\geq 2$

and let $U$ be a finite vector space over $\mathbb{F}_{q}$ of dimension at least $2n-1.$

Definition 1 A collection Sofn-dimensional subspaces of $U$ is called $a$ dual hyperoval

over $\mathbb{F}_{q}$ of rank $n$ (abbreviated to $n$ -DHO in the sequel), if it satisfies the following

conditions (i), (ii) and (iii):

(i) $\dim(X\cap Y)=1$ for distinct $X,$ $Y\in S,$

(ii) $X\cap Y\cap Z=\{O\}$ for mutually distinct $X,$ $Y,$ $Z\in S,$

(iii) $|S|=1+\{(q^{n}-1)/(q-1$

1.2 Contents of my talk

In this talk, I will first give

a simple construction of a 3-DHO $\mathcal{M}$ over $\mathbb{F}_{4}$ $($ so that $|\mathcal{M}|=22)$ ,

which is given inside the symmetric tensor product $S^{2}(\mathbb{F}_{4}^{3})$ as a deformation of the Verone-

sean DHO. Based on this construction, then I will present

$a$ self-contained introduction to $M_{22}.$

More precisely I will discuss

$\bullet$ how to see $Aut(\mathcal{M})\cong 3.M.2$ with $M$ a simple group of order $2^{7}.3^{2}.5.7.11$ , and

$\bullet$ how to find explicit unitary matrices in $SU_{6}(\mathbb{F}_{4})$ generating $L(\mathcal{M})\cong 3.M.$
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1.3 Known models of $\mathcal{M}$

As far as I know, the 3-DHO $\mathcal{M}$ over $\mathbb{F}_{4}$ associated with the simple Mathieu group $M_{22}$

was first mentioned in paper [1] below. It is given in terms of the Leech lattice. Then
it appears in [2] as a table in terms of MOG arrangement. The paper [3] characterizes
$\mathcal{M}$ as a 3-DHO $\mathcal{M}$ over $\mathbb{F}_{4}$ of unitary polar type, in the sense that every member of the
DHO is totally isotropic with respect to a nondegenerate hermitian form on the ambient
space. It also recovers the seemingly miracle table given in [2] as explicit descriptions of
all members.

1 W. J\’onsson and J. McKay, (More about the Mathieu group $M_{22}$ Can.J.Math.
28 (1976), 929-937.

2 J.H.Conway, R.T.Curtis, S.P.Norton, R.A.Parker, W.A.Wilson, p.39 in “Atlas of
Finite Groups 1985.

3 N.Nakagawa, (On 2-dimensional dual hyperovals of polar type”, Utilitas Mathe-
matica 76 (2008), 101-114.

Below I repeat Nakagawa’s descriptions of members of $\mathcal{M}$ , where $e_{i}(i=0, \ldots, 5)$

are basis for a 6-dimensional vector space $U$ over $\mathbb{F}_{4}$ equipped with a nondegenerate
hermitian form $(,$ $)$ with $(e_{i}, e_{j})=\delta_{i+j,5}(0\leq i,j\leq 5)$ . The letters $\alpha$ and $\theta$ denote
nonzero elements in $\mathbb{F}_{4}$ with $\beta=\alpha+\theta$ , and $\overline{x}=x^{2}$ for $x\in \mathbb{F}_{4}.$

$A := \langle e_{0}, e_{1}, e_{2}\rangle,$

$A[e_{0}] := \langle e_{0}, e_{3}, e_{4}\rangle,$

$A[e_{1}] := \langle e_{1}, e_{3}, e_{5}\rangle,$

$A[e_{2}] := \langle e_{2}, e_{4}, e_{5}\rangle,$

$A[\alpha e_{0}+e_{1}] := \langle e_{0}+\alpha e_{3}, e_{1}+\overline{\alpha}e_{3}, e_{2}+\alpha e_{4}+\overline{\alpha}e_{5}\rangle,$

$A[\alpha e_{0}+e_{2}] := \langle e_{0}+\alpha e_{4}, e_{2}+\overline{\alpha}e_{4}, e_{1}+\alpha e_{3}+\overline{\alpha}e_{5}\rangle,$

$A[\alpha e_{1}+e_{2}] := \langle e_{1}+\alpha e_{5}, e_{2}+\overline{\alpha}e_{5}, e_{0}+\alpha e_{3}+\overline{\alpha}e_{4}\rangle,$

$A[\alpha\theta e_{0}+$

$:= \langle\theta e_{0}+e_{1}+\overline{\alpha}e_{2}, \overline{\beta}e_{0}+e_{3}+\alpha e_{4}, \beta e_{2}+\overline{\theta}e_{4}+e_{5}\rangle.$

$\alpha e_{1}+e_{2}]$

1.4 Motivation to find another description

All descriptions obtained in papers [1], [2] and [3] are just tables. Thus in analogy with
coding theory, they are just (

(generator matrices”’ This gives difficulties in finding the
intersectrion of two members, specifically between $A[\alpha\theta e_{0}+\alpha e_{1}+e_{2}]$ ’s in the description
by Nakagawa. Consequently, it is not straightforward to find automorphisms based only
on these tables.

Thus we need more concise description of members of $\mathcal{M}$ , which corresponds (parity-
check conditions” in analogy with coding theory.
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2 A construction of $\mathcal{M}$

2.1 Reviews on $F_{4}^{3}$ and $S^{2}(\mathbb{F}_{4}^{3})$

2.1.1 Notation

We use the letter $V$ to denote a 3-dimensional vector space over $\mathbb{F}_{4}$ with a specified basis
$e_{i}(i=0,1,2)$ . Consider the symmetric square tensor product $S^{2}(V)$ of V. (which is

obtained as $(V\otimes V)/W$ with $W$ the subspace of $V\otimes V$ spanned by $x\otimes y+y\otimes x$ for all
$x,$ $y\in V$ . We denote the image of $x\otimes y$ in this factor space by the same symbol $x\otimes y$ , so
that we have $x\otimes y=y\otimes x$ for all $x,$ $y\in V.$ ) The vector space $S^{2}(V)$ is a 6-dimensional
vector space over $\mathbb{F}_{4}$ with a basis $\triangle_{i},$ $\nabla_{i}(i=0,1,2)$ , where

$\triangle_{i}:=e_{i}\otimes e_{i}(i=0,1,2)$ ,
$\nabla_{i}$ $:=e_{j}\otimes e_{k}(\{i,j, k\}=\{0,1,2$

Explicitly, $\nabla_{0}=e_{1}\otimes e_{2},$ $\nabla_{1}=e_{2}\otimes e_{0},$ $\nabla_{2}=e_{0}\otimes e_{1}.$

Delta-map We denote by $\triangle$ a map from $V$ to $S^{2}(V)$ given by $\triangle(x)$ $:=x\otimes x.$
$\triangle$ is a

$F_{4}$-semilinear injection, because for all $x,$ $y\in V$ we have

$\triangle(x+y)=\triangle(x)+\triangle(y) , \triangle(\alpha x)=\alpha^{2}\triangle(x)$ .

2.1.2 A quadratic map on $V=\mathbb{F}_{4}^{3}$

The map $\iota$ : $Varrow V$ sending $x=x_{0}e_{0}+x_{1}e_{1}+x_{2}e_{2}\in V$ to

$\sum_{i}x_{j}x_{k}e_{i}=x_{1}x_{2}e_{0}+x_{2}x_{0}e_{1}+x_{0}x_{1}e_{2}\in V$

is a quadratic map, in the sense that the associated map $(x, y)\mapsto\iota(x+y)+\iota(x)+\iota(y)+$

$\iota(O)$ is a bilinear (in fact, alternating bilinear) map from $V\cross V$ to $V$ . The associated

alternating map

$\iota(x+y)+\iota(x)+\iota(y)+\iota(O)$

$= (x_{1}y_{2}+x_{2}y_{1})e_{0}+(x_{2}y_{0}+x_{0}y_{2})e_{1}+(x_{0}y_{1}+x_{1}y_{0})e_{2}$

is the exterior product on $V=\mathbb{F}_{4}^{3}$ , which I shall denote $x\cross y$ , following the common
notation in colledge mathematics.

2.1.3 Basic equations

For all $x,$ $y,$ $z\in V=\mathbb{F}_{4}^{3}$ , we have

$x\cross y = \iota(x+y)+\iota(x)+\iota(y)$ ,

$(x\cross y)\cdot z = \det(r(x, y, z$

$x\cross(y\cross z) = (x\cdot z)y+(x\cdot y)z,$

where $x \cdot y:=\sum_{i=0}^{2}x_{i}y_{i}$ (dot product) and

$r(x, y, z)=(\begin{array}{lll}x_{0} x_{1} x_{2}y_{0} y_{1} y_{2}z_{0} z_{1} z_{2}\end{array})$
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2.2 Construction

2.2.1 Vector $m(x, y)$ in $S^{2}(\mathbb{F}_{4}^{3})$

Definition 2 For $x,$ $y\in V=\mathbb{F}_{4}^{3}$ , define a vector $m(x, y)\in S^{2}(V)$ by

$m(x, y) := x\otimes y+\triangle(\iota(x\cross y$ (1)

The expression of $m(x, y)$ as a linear combination of basis $\nabla_{i},$ $\triangle_{i}(i=0,1,2)$ of
$S^{2}(V)$ is given as follows for $x= \sum_{i=0}^{2}x_{i}e_{i}$ and $y= \sum_{i=0}^{2}y_{i}e_{i}$ :

$m(x, y)= \sum_{i=0}^{2}(x\cross y)_{i}\nabla_{i}+\sum_{i=0}^{2}(x_{i}y_{i}+\overline{(x\cross y)_{j}(x\cross y)_{k}})\triangle_{i},$

where $\{i, j, k\}=\{0$ , 1, 2 $\}$ and $\overline{\alpha}=\alpha^{2}(\alpha\in \mathbb{F}_{4})$ .
Observe $m(x, y)=m(y, x)$ , $m(x, x)=\triangle(x)$ .

2.2.2 Subsets $A[v],$ $A$ of $S^{2}(F_{4}^{3})$

Observe $m(\alpha x, y)=\alpha m(x, y)$ for $\alpha\in \mathbb{F}_{4}^{\cross}$ ; because $\alpha^{4}=\alpha$ (we are working with $\mathbb{F}_{4}!$ ).
Thus a subset

$A[v] :=\{m(x, v)|x\in V\}$

of $S^{2}(V)$ depends only on the projective point $[v]$ ( $1$ -space containing $v$ ).
We set

$A:=\{\triangle(x)|x\in V\},$

which forms a subspace of $S^{2}(V)$ by the semilinearity of $\triangle.$

In fact, $A[v]$ is a subspace of $S^{2}(V)$ , as we shall see below.

2.2.3 Additive formula

Lemma 1 For $a,$ $b,$ $v\in V$ , the following equations hold with $\delta$ $:=\det(r(a,$ $b,$ $v$

$m(a, v)+m(b, v) = m(a+b, v)+\triangle(\vec{\delta}v)$ , (2)

$m(a, v)+m(b, v) = m(a+b+\overline{\delta}v, v)$ . (3)

Equation (3) follows from equation (2), because $\triangle(\delta v)=m(\delta v, \delta v)=\overline{\delta}m(v, v)$ .
Moreover, Equation (3) implies that $A[v]$ is a subspace of $S^{2}(V)$ .

2.2.4 Proof of additive formula

As $m(x, y)=x\otimes y+\triangle(\iota(x\cross y))$ and $\triangle$ is $\mathbb{F}_{2}$-linear, in order to prove equation (2) it
suffices to show

$\iota((a+b)\cross v)+\iota(a\cross v)+\iota(b\cross v) = \delta v$ . (4)

As $\iota$ is quadratic with the associated form $\cross$ $($ that $is, \iota(v+w)+\iota(v)+\iota(w)=v\cross w)$ ,
the left hand side of equation (4) is $(a\cross v)\cross(b\cross v)$ , which equals
$\{(a\cross v)\cdot b\}v+\{(a\cross v)\cdot v\}b=\det(r(a, b, v))v.$
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2.2.5 DHO $\mathcal{M}$

We shall now define a DHO $\mathcal{M}$ . We denote by PG(V) the set of projective points in $V.$

Proposition 1 (i) The collection $\mathcal{M}$ $:=\{A[v]|[v]\in PG(V)\}\cup\{A\}$ is a $DHO$ of
rank 3 over $\mathbb{F}_{4}.$

(ii) For $[v]\in PG(V)$ , $A\cap A[v]$ is $a$ 1-subspace spanned by $\triangle(v)$ .

(iii) For distinct $[v],$ $[w]$ in PG(V), $A[v]\cap A[w]$ is $a$ 1-subspace spanned by $m(w, v)=$

$m(v, w)$ .

2.2.6 Proof of (iii)

Assume $0\neq c:=m(x, v)=m(y, w)\in A[v]\cap A[w]$ . Comparing the coefficients of $\nabla_{i}$ in

the expressions of $m(x, v)$ and $m(y, w)$ , this implies that $(x\cross v)_{i}=(y\cross w)_{i}(i\in\{0,1,2\})$

and thus $x\cross v=y\cross w$ $a$ ).

It’s easy to show $a\neq 0.$

Then $a^{\perp}:=\{z\in V|z\cdot a=0\}$ is a hyperplane of $V$ , which is spanned by $v$ and $w,$

as $[v]\neq[w]$ . Thus $a^{\perp}\ni x=\alpha v+\beta w,$ $y=\gamma v+\delta w$ for some $\alpha,$
$\beta,$

$\gamma,$

$\delta$ in $\mathbb{F}_{4}.$

Then the additive formula implies

$m(x, v) = m(\alpha v+\beta w, v)$

$= m(\alpha v, v)+m(\beta w, v)+\triangle(\det(r(\alpha v, \beta w, v))v)$

$= \alpha\triangle(v)+\beta m(w, v)$ .

Similarly, we have $m(y, w)=\gamma m(v, w)+\delta\triangle(w)$ . As $m(x, v)=m(y, w)$ , these expressions

imply
$(\beta+\gamma)m(v, w)=\triangle(\overline{\alpha}v+\overline{\delta}w)$ .

This holds iff $\beta+\gamma=0=\overline{\alpha}v+\overline{\delta}w$ , or equivalently $\beta=\gamma$ and a $=\delta=$ O. Thus
$c=m(x, v)=m(y, w)=\beta m(v, w)$ .

3 Automorphisms

3.1 Basic idea

3.1.1 Automorphisms

Definition 3 Aut(M) and $L(\mathcal{M})$ respectively denote the groups of $\mathbb{F}_{4}$ -semilnear and

linear bijections on $S^{2}(V)$ permuting the members of $\mathcal{M}.$

It is not difficult to establish the following facts:

$\bullet$ $Aut(\mathcal{M})$ contains $L(\mathcal{M})$ with index two: a field automorphism lies in $Aut(\mathcal{M})\backslash$

$L(\mathcal{M})$ .

$\bullet$ The kernel of the action of $L(\mathcal{M})$ on $S^{2}(V)$ is $Z$ $:=\langle\omega I_{6}\rangle$ , a central subgroup of

order 3 of $SL_{6}(4)$ , where $\omega$ denotes a primitive cubic root of unity in $\mathbb{F}_{4}.$

$\bullet$ The stabilizer of $A$ in $L(\mathcal{M})/Z$ is a subgroup of $GL(V)\cong GL_{3}(4)$ .
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3.1.2 A method to find an automorphism of a DHO

Assume $\lambda\in L(\mathcal{M})$ stabilizes $A=\{\triangle(x)|x\in V\}$ . We shall explain a basic idea to find
the action of $\lambda$ on $m(x, y)$ . It is easy to see that there is a linear bijection $g$ on $V$ such
that $\triangle(x)^{\lambda}=\triangle(x^{g})$ for all $x\in V.$

As $\langle\triangle(x)\rangle=A\cap A[x]$ for $x\neq 0,$ $\langle\triangle(x)^{\lambda}\rangle=A^{\lambda}\cap A[x]^{\lambda}=A\cap A[x]^{\lambda}$ . On the other
hand, $\langle\triangle(x)^{\lambda}\rangle=\langle\triangle(x^{g})\rangle=A\cap A[x^{g}]$ . As $\mathcal{M}$ is a DHO, we have

$A[x]^{\lambda}=A[x^{9}](x\in V, x\neq 0)$ .

Then for $x,$ $y\in V$ with $[x]\neq[y]$ we have

$\langle m(x, y)^{\lambda}\rangle = (A[x]\cap A[y])^{\lambda}=A[x]^{\lambda}\capA[y]^{\lambda}$

$= A[x^{9}]\cap A[y^{9}]=\langle m(x^{g}, y^{9}$

Thus we have the following (

$(Key$ Equation

$m(x, y)^{\lambda}$ $=$ $\gamma_{x,y}m(x^{g}, y^{g})$ for some $\gamma_{x,y}\in \mathbb{F}_{4}^{\cross}$ . (5)

This restricts the shape of $g$ , as $m(x, y)(x, y\in V)$ span $S^{2}(V)$ .

3.2 The stabilizer of $A$

3.2.1 Unitary form

Define a unitary form $(,$ $)$ on $S^{2}(V)$ by

$(\triangle_{i}, \triangle_{j}):=0=:(\nabla_{i}, \nabla_{j})(i,j\in\{0,1,2$

$(\triangle_{i}, \nabla_{j}):=1$ or $0$ according as $i=j$ or not.

Lemma 2 We can verify the following facts:
(1) Every member of $\mathcal{M}$ is totaly isotropic.

(2) $L(\mathcal{M})$ preserves $(,$ $)$ .

3.2.2 An important property of $m(x, y)$

For $x= \sum_{i=0}^{2}x_{i}e_{i}$ and $y= \sum_{i=0}^{2}y_{i}e_{i}$ in $V$ , we already saw

$m(x, y)= \sum_{i=0}^{2}(x\cross y)_{i}\nabla_{i}+\sum_{i=0}^{2}(x_{i}y_{i}+\overline{(x\cross y)_{j}(x\cross y)_{k}})\triangle_{i}.$

Observe that $\nabla_{i}=e_{j}\otimes e_{k}=m(e_{j}, e_{k})$ , $\triangle_{i}=\triangle(e_{i})$ , $\det(r(e_{0}, e_{1}, e_{2}))=1.$

Lemma 3 The same formula holds for another basis $u_{i}(i=0,1,2)$ of $V$ ; namely, for
$x= \sum_{i=0}^{2}x_{i}u_{i},$ $y= \sum_{i=0}^{2}y_{i}u_{i}$ in $V$ with $\delta$ $:=\det(r(u_{0},$ $u_{1},$ $u_{2}$ we have

$m(x, y) = \sum_{i=0}^{2}(x\cross y)_{i}m(u_{j}, u_{k})$

$+ \sum_{i=0}^{2}(x_{i}y_{i}+\overline{\delta}\overline{(x\cross y)_{j}(x\cross y)_{k}})\triangle(u_{i})$ .
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3.2.3 The stabilizer of $A$

We shall now state the main result and give its proof.

Proposition 2 The stabilizer of $A$ in $L(\mathcal{M})$ coincides with $\{\tilde{g}|g\in SL(V)\}$ , where,

if $g_{i}:=e_{i9}=g_{i0}e_{0}+g_{i1}e_{1}+g_{i2}e_{2}(i=0,1,2)$ , the action of $\tilde{g}$ is given as follows:
$\triangle_{i}\tilde{g} =\overline{g_{i0}}\triangle_{0}+\overline{g_{i1}}\triangle_{1}+\overline{g_{i2}}\triangle_{2},$

$\nabla_{i}\tilde{g} = g_{j}\otimes g_{k}+\triangle(\iota(g_{j}\cross g_{k}$

$for\{i,j, k\}=\{0$ , 1, 2 $\}$ . Moreover m$(x, y)^{\tilde{9}}=m(x^{g}, y^{g})andA[x]^{\overline{g}}=A[x^{g}](x,y\in V)$ .

3.2.4 Proof of Proposition

Take $\lambda\in L(\mathcal{M})$ stabilizing $A$ . Then there is $g\in GL(V)$ such that $\triangle(x)^{\lambda}=\triangle(x^{g})$

$(x\in V)$ . The vectors $g_{i}$
$:=e_{i}^{g}$ form a basis of $V$ and $\triangle_{i}^{\lambda}=\triangle(g_{i})(i=0,1,2)$ .

By the previous argument given in Subsubsection 3.1.2, $A[e_{i}]^{\lambda}=A[e_{i}^{g}]=A[g_{i}]$ and

$(e_{i}\otimes e_{j})^{\lambda}=\gamma_{e_{t\rangle}e_{j}}m(g_{i}, g_{j})=\gamma_{e_{i},e_{j}}\{g_{i}\otimes g_{j}+\triangle(\iota(g_{i}\cross g_{j}$

As $\lambda$ preserves the unitary form $(,$ $)$ , we can show that $\gamma_{e_{t},e_{j}}=\overline{\det(g)}.$

Thus the action of $\lambda$ on the basis $\triangle_{i}$ and $\nabla_{i}$ for $S^{2}(V)$ is determined as follows: for
any $i\in\{0, 1, 2\}=\{i, j, k\},$

$\triangle_{i}^{\lambda}=\triangle(g_{i})$ , $\nabla_{i}^{\lambda}=(e_{j}\otimes e_{k})^{\lambda}=\overline{\det(g)}m(g_{j}, g_{k})$ .

Take any distinct $[x],$ $[y]\in PG(V)$ with $x= \sum_{i=0}^{2}x_{i}e_{i},$ $y= \sum_{i=0}^{2}y_{i}e_{i}$ . As we noticed
above in equation (5),

$m(x, y)^{\lambda}=\gamma_{x,y}m(x^{9}, y^{9})$ for some $\gamma_{x,y}\in \mathbb{F}_{4}^{\cross}.$

The left hand side of equation (5) is calculated as

$m(x, y)^{\lambda} = \sum_{i=0}^{2}\overline{\det(g)}(x\cross y)_{i}m(9j, g_{k})$

$+ \sum_{i=0}^{2}\{x_{i}y_{i}+\overline{(x\cross y)_{j}(x\cross y)_{k}}\}\triangle(g_{i})$ , (6)

in view of the above action of $\lambda$ on $\triangle_{i},$ $\nabla_{i}$ applied to $m(x, y)= \sum_{i=0}^{2}(x\cross y)_{i}\nabla_{i}+$

$\sum_{i=0}^{2}\{x_{i}y_{i}+\overline{(x\cross y)_{j}(x\cross y)_{k}}\}\triangle_{i}.$

On the other hand, the right hand side of equation (5) is given by Lemma 3 applied

to basis $g_{i}$ for $V$ $(\delta :=\det(r(g_{0}, g1,92))=\det(g))$ :

$m(x^{g}, y^{g}) = m( \sum_{i=0}^{2}x_{i}g_{i}, \sum_{i=0}^{2}y_{i}g_{i})$

$= \sum_{i=0}^{2}(x\cross y)_{i}m(g_{j}, g_{k})$

$+ \sum_{i=0}^{2}\{x_{i}y_{i}+\overline{\delta}\overline{(x\cross y)_{j}(x\crossy)_{k}}\}\triangle(g_{i})$ . (7)
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As $\triangle(g_{i})$ and $m(g_{j}, g_{k})(i\in\{0,1,2\}=\{i,j, k\})$ form a basis for $S^{2}(V)$ , “KeyEqua-
tion”’ (equation (5)) together with equations (6) and (7) implies

$x_{i}y_{i}+ \frac{\overline{\det(g)}(x\cross y)_{l}}{(x\cross y)_{j}(x\cross y)_{k}} == \gamma_{xy}\{x_{i}y_{i}+’\}\gamma_{xy}(x\cross y)_{i}\frac{and}{\det(g)(x\cross y)_{j}(x\cross y)_{k}}$

for all $i\in\{0$ , 1, 2 $\}$ . As $[x]\neq[y]$ , there exists $i\in\{0$ , 1, 2 $\}$ with $(x\cross y)_{i}\neq$ O. Thus we
have $\gamma_{xy}=\det(g)$ from the first equation above. Then the second equation above reads

$(x_{i}y_{i})(1+\overline{\det(g)})=(1+\det(g))\overline{(x\cross y)_{j}(x\crossy)_{k}}$

for all $i\in\{0$ , 1, 2 $\}.$

This conclusion holds for every distinct $[x],$ $[y]\in PG(V)$ . Take $x=e_{0}+e_{1}+e_{2}$ and
$y=e_{0}+we_{1}+\overline{\omega}e_{2}$ . Then the above conclusion for these $x,$ $y$ reads $1+\det(g)=1+\det(g)$ ,
whence $\det(g)=\det(g)=1.$

Thus we showed that if $\lambda$ is a linear automorphism of $\mathcal{M}$ stabilizing $A$ , then $\lambda$ is of
the form $\tilde{g}$ for some $9\in SL(V)$ .

Conversely, we can show that $\tilde{g}$ for $g\in SL(V)$ in fact lies in $L(\mathcal{M})$ .

3.2.5 Matrix form

For $9\in SL(V)$ , we also use $g$ to denote the matrix representing $g$ with respect to $e_{i}.$

Then the matrix representing $\tilde{g}$ in Proposition 2 with respect to $\triangle_{i},$ $\nabla_{i}$ is given by

$(\begin{array}{ll}\overline{9} 0L(g) tg^{-1}\end{array}), L(g)=t\iota(tg)+\iota((t\overline{g})^{-1})$ ,

where $\iota(h)=(\begin{array}{lll}h_{01}h_{02} h_{02}h_{00} h_{00}h_{01}h_{11}h_{12} h_{12}h_{10} h_{10}h_{11}h_{21}h_{22} h_{22}h_{20} h_{20}h_{2l}\end{array})$ for $h=(h_{lj}\prime)$ . (The following property of $\iota$ may

be of some interest: for matrices $a,$
$b$ of degree 3, we have $\iota(ab)=a\iota(b)+\iota(a)(tb^{-1}).$ )

For example, take the following matrices in $SL(V)$ generating $3_{+}^{1+2}$ : $Q_{8}$ , where we
adopt the usual convention to denote monomial matrices $t_{1}$ and $t_{2}.$

$t_{1}:=(e_{0}, e_{1}, e_{2}) , t_{2}:=diag(1, \omega, \omega$

$q_{1}:= (111 \frac{1}{\omega}\omega\frac{\omega 1}{\omega}) , q_{2}:=(\begin{array}{ll} 1\overline{\omega}\overline{\omega}\omega \overline{\omega}\omega \frac{\omega}{\omega}\omega\end{array})$

The the corresponding matrices in the stabilizer of $A$ in $L(\mathcal{M})$ can be obtained as follows:

$\tilde{t}_{1}=(\triangle_{0}, \triangle_{1}, \triangle_{2})(\nabla_{0}, \nabla_{1}, \nabla_{2}) , \tilde{t}_{2}=diag(1, \overline{\omega}, \omega, 1,\overline{\omega}, \omega)$ ;

$\tilde{q}_{1}=(\overline{q_{1}0}\frac{0}{q_{1}}) , \tilde{q}_{2}=(\begin{array}{l}0\overline{q_{2}}\overline{q_{2}}\overline{q_{2}}\end{array}).$
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3.3 Structure of $L(\mathcal{M})$

3.3.1 An involution moving $A$

The above arguments can also be applied to find a linear automorphism moving $A.$

For example, consider the following involutive linear automorphism $\sigma$ on $S^{2}(V)$ (rep-

resented with respect to basis $\triangle_{i}$ and $\nabla_{i}(i=0,1,2$ Then $\sigma$ sends $A$ to $A[e_{2}].$

$\sigma=(000001000001000001000001000001000001)$ .

Lemma 4 Let $\sigma$ be a linear bijection on $S^{2}(V)$ which fixes $\nabla_{2}$ and $\triangle_{2}$ and interchanges

the pairs $(\nabla_{i}, \triangle_{i})$ for $i=0$ and 1. Then $\sigma$ is an automorphism of $\mathcal{M}$ . Moreover
$\triangle(x)\sigma=m(e_{2}, \delta(x))$ and $m(x, y)\sigma=m(\delta(x), \delta(y))$ , and hence $A\sigma=A[e_{2}],$ $A[e_{2}]\sigma=A,$

$A[x]\sigma=A[\overline{\delta}(x)]$ for every $x,$ $y\in V\backslash [e_{2}]$ , where $\delta(x)$ is given by:

$\delta(x) :=\overline{x_{1}}e_{0}+\overline{x_{0}}e_{1}+(x_{0}x_{1}+\overline{x_{2}})e_{2}.$

3.3.2 Structure of $Aut(\mathcal{M})$

By Proposition 2, the stabilizer of $A$ in $L(\mathcal{M})$ induces a permutation group isomorphic

to $SL_{3}(4)/Z(SL_{3}(4))\cong PSL_{3}(4)$ on the 21 memebers in $\mathcal{M}\backslash \{A\}$ . This group is a non-

abelian simple group and a doubly transitive on $\mathcal{M}\backslash \{A\}$ , as this action is equivalent to

the 2-transitive action of $PSL_{3}(4)$ on 21 points of PG(V). Then the existence of $\sigma$ in
$L(\mathcal{M})$ moving $A$ to $A[e_{2}]$ implies that $L(\mathcal{M})/Z$ is a triply transitive permutation group

on $\mathcal{M}$ with stabilizer $PSL_{3}(4)$ . Hence $L(\mathcal{M})/Z$ is a simple group of order $22|PSL_{3}(4)|=$

$2^{7}3^{2}.5.7.11$ acting 3-transitively on $\mathcal{M}.$

Summarizing, the structure of the automorphism group $Aut(\mathcal{M})$ is determined as

follows:

$\bullet$ $[Aut(\mathcal{M}) : L(\mathcal{M})]=2$ and $Aut(\mathcal{M})\backslash L(\mathcal{M})$ contains an involution (the filed

automorphism).

$\bullet$ $L(\mathcal{M})$ is a subgroup of the special unitary group $SU_{6}(\mathbb{F}_{4})$ containing the group $Z$

of scalars (of order 3 inverted by the field automorphism).

$\bullet$ $L(\mathcal{M})/Z$ is a non-abelian group of order $2^{7}3^{2}.5.7.11$ acting 3-transitively on $\mathcal{M}.$

(As a Sylow 3-subgroup of $L(\mathcal{M})$ is $3_{+}^{1+2}$ , which is not split over its center $Z$ , the

extension $L(\mathcal{M})/Z$ does not split by a theorem of Gash\"utz.)

The explicit identification of the simple group $L(\mathcal{M})/Z$ with the Mathieu simple

group $M_{22}$ can also be given as follows. We first recall the fact that there is a unique

block design with parameters $t=3,$ $v=22,$ $k=6$ and $\lambda=1$ and that the Mathieu group
$M_{22}$ is defined to be the automorphism group of such a block design. Thus it suffices

to construct a block design with parameters $(t, v, k, \lambda)=$ $(3,22,6,1)$ on which $L(\mathcal{M})/Z$

acts faithfully. As the set of points, we take $\mathcal{M}$ . We shall construct a block design on
$\mathcal{M}$ by defining a block as follows: take three distinct members $X_{i}(i\in\{0,1,2\})$ of $\mathcal{M}.$
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Then it can be uniquely extended to a 6-subset $B(X_{0}, X_{1}, X_{2})$ $:=\{X_{k}|k\in\{0, . . . , 5\}\}$

of $\mathcal{M}$ with the following property: for any 3-subset $\{p, q, r\}$ of $\{0$ , . . . , 5 $\}$ , the 2-subspace
spanned by $X_{p}\cap X_{q}$ and $X_{p}\cap X_{r}$ contains $X_{p}\cap X_{j}$ for all $j\in\{0, . . . , 5\}\backslash \{p, q, r\}.$

To verify this claim, we may assume that $X_{0}=A,$ $X_{i}=A[e_{i}](i=1,2)$ by the triply
transitivity of $Aut(\mathcal{M})$ on the members of $\mathcal{M}$ . It can be verified that $B(X_{0}, X_{1}, X_{2})=$

$\{X_{k}|k\in\{0, . . . , 5\}\}$ with $X_{3+j}$ $:=A[e_{1}+\omega^{j}e_{2}](j=0,1,2)$ . The above property implies
that $B(X_{0}, X_{1}, X_{2})=B(X_{p}, X_{q}, X_{r})$ for every 3-subset $\{p, q, r\}$ of $\{0$ , . . . , 5 $\}$ . We adopt
as blocks a116-subsets $B(X_{0}, X_{1}, X_{2})$ determined by 3-subsets $\{X_{0}, X_{1_{\mathfrak{j}}}X_{2}\}$ of $\mathcal{M}$ . Then
the 22-set $\mathcal{M}$ together with the set $\mathcal{B}$ of all blocks forms a design with parameters $t=3,$

$v=22,$ $k=6$ and $\lambda=1$ . As $L(\mathcal{M})/Z$ acts faithfully on this block design $(\mathcal{M}, \mathcal{B})$ , this
establishes the claim $L(\mathcal{M})\cong M_{22}.$
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