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1 Introduction

Much attention has been paid to a problem of classification of all Q-polynomial distance-regular
graphs with large diameter [1] (for the definitions, we refer the reader to Section 2). One of the steps
towards solution of this problem is a characterization of known distance-regular graphs by their
intersection arrays. For the current status of the classification of the Q-polynomial distance-regular
graphs, we refer the reader to the survey paper [3] by Van Dam, Koolen and Tanaka.

The bilinear forms graph denoted here by Bilg(d x n) is a graph defined on the set of d X n-matrices
over F, with two matrices being adjacent if and only if the rank of their difference is 1. We refer

to [2, Chapter 9.5.A] for the detailed description of these graphs.

In 1999, K. Metsch [5] obtained the following result.

Result 1.1 The bilinear forms graph Bily(d x n) is characterized by its intersection array if:

eg=2andn>d+4,

e g>3andn>d+3.

Thus, the open cases are:

eg=2andne {d,d+1,d+2,d+ 3},
eg>3andne {d,d+1,d+2}.

In this paper, we discuss a problem of characterization of the bilinear forms graphs Bily(d,d),
d > 3, by their intersection arrays.



This paper is based on a talk given at RIMS, and describes a sketch of the proof of our main result
(see Section 3). The details of the proof will be given elsewhere.

2 Definitions and preliminaries

All the graphs considered in this paper are finite, undirected and simple. Suppose that T' is a
connected graph with vertex set V(I') and edge set E(T"), where E(T") consists of unordered pairs of
adjacent vertices. The distance d(z, y) between any two vertices z,y of T is the length of a shortest
path connecting x and y in T.

For a subset X of the vertex set of I, we will also write X for the subgraph of I" induced by X.
For a vertex z € V(I'), define T;(z) to be the set of vertices which are at distance precisely ¢ from
z (0 <i < D), where D := max{d(z,y) | z,y € V(I')} is the diameter of T. In addition, define
[_i(z) = I'p41(z) = 0. The subgraph induced by I'i(z) is called the neighborhood or the local
graph of a vertex . The ball of radius 1 around z is denoted by zt, i.e. 2zt = {z} UT(x). We
write I'(z) instead of I'; (z) for short, and we denote z ~r y or simply x ~ y if two vertices z and y
are adjacent in I'. For a graph G, a graph I is called locally G if any local graph of I is isomorphic
to G.

For a set of vertices zy,...,zy, let T'(zy, ... ,Tn) denote N?_,T';(z;). Moreover, if z and y are at
distance 2 in ', we call I'(z, y) the u-graph of z,y.

The eigenvalues of a graph are the eigenvalues of its adjacency matrix (recall that they are algebraic
integers). If, for some eigenvalue 7 of T, its eigenspace contains a vector orthogonal to the all ones
vector, we say the eigenvalue 1 is non-principal. If T is regular with valency k then all its eigenvalues
are non-principal unless the graph is connected and then the only eigenvalue that is principal is its
valency k.

For a graph I' and its vertex z, we say that 7 is a local eigenvalue at z, if n is an eigenvalue of
Fl (.’17)

A connected graph I' with diameter D is called distance-regular if there exist integers b;_1, ¢
(1 <4 < D) such that, for any two vertices z,y € V(I') with d(z,y) = i, there are precisely ¢;
neighbors of y in T';_1(z) and b; neighbors of y in T';1;(z). In particular, any distance-regular graph
is regular with valency k := by. We define a; := k — b; — ¢; for notational convenience and note
that a; = |I'(y) N T'y(z)| holds for any two vertices z,y with d(z,y) =i (1 <14 < D). The array
{bo,b1,...,bp_1;¢1,¢a,. .. ,cp} is called the intersection array of the distance-regular graph I

A distance-regular graph with diameter 2 is called a strongly regular graph. We say that a strongly
regular graph I" has parameters (v, k, A, p), if v = |V(T)|, k is its valency, A := a;, and W= co.

If a graph T is distance-regular then, for all integers h,%,5 (0 < h,i,j7 < D), and all vertices
z,y € V(T') with d(z,y) = h, the number

pij =Kz € V(D) | d(=z,2) = i, d(y,2) = j}]
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does not depend on the choice of z,y. The numbers p?j are called the intersection numbers of I'.
Note that ¢; = pi,_,, a; = pt;, and b; = p, ;.

For each integer i (0 < i < D), the ith distance matriz A; of I’ has rows and columns indexed by
the vertex of I', and, for any z,y € V(I'),

)1t d(z,y) =1,
(Ai)ay = {0 if d(z,y) # i.

Then A := A, is just the adjacency matriz of I', Ag = I, A;r =A; (0<i< D), and

D
AiA;j =) pliAn (0<4,j < D),
h=0

in particular,
A1Ai = bis1Ais1 + aiAi + 1A (1<i<D - 1),

A1Ap =bp_1Ap-1 +apAp,
and this implies that A; = p;(A;) for certain polynomial p; of degree ..

The Bose-Mesner algebra M of T is a matrix algebra generated by A; over C. It follows that M
has dimension D + 1, and it is spanned by the set of matrices Ag = I, A1,...,Ap, which form a
basis of M.

Since the algebra M is semi-simple and commutative, M also has a basis of pairwise orthogonal
idempotents Ey := ]V_(ll—“ﬂ‘]’ Ei,...,Ep (the so-called primitive idempotents of M):

E;E; = 6;E; (0<i,j<D), E;=E] (0<i,j<D),

Ey+Ei+...+Ep=1,

where J is the all ones matrix.

In fact, E; (0 < j < D) is the matrix representing orthogonal projection onto the eigenspace of A;
corresponding to some eigenvalue of I'. In other words, one can write

D
A=) 6;E;,
j=0

where 6; (0 < j < D) are the real and pairwise distinct scalars, known as the eigenvalues of I'. We
say that the eigenvalues are in natural order if bp = 6p > 61 > ... > 0p. We denote §; = —1 — fﬁ

for i € {1, D}.

The Bose-Mesner algebra M is also closed under entrywise (Hadamard or Schur) matrix multipli-
cation, denoted by o. Then the matrices Ag, 4, ..., Ap are the primitive idempotents of M with
respect to o, i.e., A; 0 A; = §;;A;, and Zi';o A; = J. This implies that
D
EioE;j=) qiEn (0<4,j<D)
h=0



holds for some real numbers qzhj, known as the Krein parameters of T.

Let I be a distance-regular graph, and E be a primitive idempotent of its Bose-Mesner algebra.
The graph T' is called Q-polynomial (with respect to E) if there exist real numbers ci, a;, b,
(1 <i < D) and an ordering of primitive idempotents such that Ey = T\/Tll‘ﬂ‘] and £; = F, and
EioE;=b (E; 1+ a; E; + C:+1Ei+1 (1<i<D- 1),
EioEp = b*bflEDﬁl + aBED.
Note that a Q-polynomial ordering of the eigenvalues/idempotents does not have to be the natural

ordering.

Further, the dual eigenvalues of I' associated with E are the real scalars 67 (0 < i < D) defined by
1 2
E=——% 07A;
T 2

We say that a distance-regular graph I has classical parameters (D,b,a, B) if the diameter of T is
D, and the intersection numbers of I satisfy

=y (el 1)) o

so that, in particular, ¢z = (b + 1)(a + 1),
o= (- [De—[))

m =14 b+ b .. b

where

The following important fact about Q-polynomial distance-regular graphs was proven in [7].

Result 2.1 Let T be a Q-polynomial distance-regular graph with diameter D > 3. Then, for any
i =2,...,D — 1, there exists a polynomial T; of degree 4 such that, for any vertezx z € V(D)
and any non-principal eigenvalue 1 of the local graph of x, Ty(n) > 0 holds. The polynomials T},
t=2,...,D —1, differ only in a scalor multiple.

We call these polynomials the Terwilliger polynomials of I'. The existence of these polynomials
was established in [7]. In (4], the polynomial T, was calculated explicitly.
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Result 2.2 Suppose that T' has classical parameters (D, b, a, 8). Then the Terwilliger polynomial
Ta(A) of T is

)
To(N) = oy

1(—)\2+)\(a{?] +f3—a—1—(a+1)(b+1))+ﬂﬁ)] —(a+1)(b+1)) X

x ()\2 +A(2—ab) - ab+ 1) —BO+1)2 (3)

Furthermore, the roots of Ta()) are

bP-1 -1
B-a-1, -1, =b-1, ab——— -1

Note that the bilinear forms graph Bily(d x n), n > d, has classical parameters (D,b,a,8) =
(d,g,q —1,¢" — 1). In particular, if I is a distance-regular graph with the same intersection array
as Bily(d x d), d > 3, then, for any vertex x € V(') and any non-principal eigenvalue 7 of the local
graph of z, one has:

nel-g-1,-1 or n=4¢"-¢-1, (4)

3 Main result

In this section, we suppose that I' is a distance-regular graph with the same intersection array as
Bily(d x d), d > 3.

Proposition 3.1 The local graph of any vertex x of T is the (2¢ — 3) x (2% — 3)-grid.

Proof: By (4), for ¢ = 2, a local non-principal eigenvalue 7 at any vertex z € I" satisfies:

nel-3,-1orn=24-3.
Claim 3.2 T'y(z) has only integral eigenvalues, i.e., =3, =2, —1, or 24 _ 3.

Proof: Recall that the eigenvalues of a graph are algebraic integers, and their product is an integer.
Let 71, ...,ns be all irrational eigenvalues of I'1(z). Then 7; € (—3,—1) and II;_;7; is an integer,
and thus IT5_, (n; + 2) is an integer. Now 7; € (—3,-1) = g + 2| < 1= II}_;(n: + 2) = 0. The
claim is proved.

Claim 3.3 T'(z) has spectrum 2(2" — 2)!, (2" — 3)2(2"-2), (—2)(2"‘1)2.



Proof: Recall the following basic fact from algebraic graph theory. Let 67", 67",..., 60 be the
spectrum of a regular (with valency k) graph on v vertices, and A be its adjacency matrix. Then:

8 S S
Zmi =v, tr(4)= Zmﬁi =0, tr(A* = Zmﬂ? = vk, (5)
i=0 =0 =0
where we may put 8y = k and, moreover, mg = 1 if the graph is connected.

Apply this fact to I'1(z). In our notation:
bp=v=(2"-1)2, fy=k=a; =22"~2),
0p=2"-3, bo=-1, O3 =-2, 04=-3,
and mj1, ma, M3, mg are unknown multiplicities of 0y, 62, 03, 84, respectively, while mg =1 (as I'1(x)

is connected).

Then (5) gives a system of (three) linear equations with respect to (four) unknowns my, ..., m4.
One can show that this system has the only non-negative integral solution:

my =2(2" - 2), mg=0, mg=(2"-1)% myg=0,

which shows the claim.

We now see that T';(x) is a regular graph with exactly 3 distinct eigenvalues. This yields that
Ti(z) is a strongly regular graph with smallest eigenvalue —2. It now easily follows from Sei-
del’s classification of strongly regular graphs with smallest eigenvalue —2, see [9], that I'1(z) is a
(24 — 3) x (2¢ — 3)-grid. 1

Lemma 3.4 For every pair of vertices x,y € T with d(x,y) = 2, the induced subgraph T'(z) N T (y)
is a 6-gon.

Proof: The lemma easily follows from Proposition 3.1 and the fact that c; = 6. ]

We now see that I' has the same local graphs as Bila(d x d).

Let H denote the bilinear forms graph Bila(d x d). For vertices x € H,z € I', an isomorphism
¢ xt — zt is called extendable if there is a bijection ¢’ : x* U Ha(x) = z+ U T'y(x), mapping
edges to edges, such that ¢’|,1 = ¢ (in this case ¢’ is called the extension of ¢). We say that I'
has distinct p-graphs if I'(z,y) = Iz, 2) for y,z € 2(x) implies y = z. This property yields that
the extension ¢’ above is unique.

A graph A is called triangulable if every cycle in it can be decomposed into a product of triangles
(see [6, Section 6]).

For the following result, see [6, Theorem 7.1].
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Result 3.5 Assume:
(1) T has distinct u-graphs.

(2) There ezist a vertez x of H and a vertez x of T, and an extendable isomorphism ¢ : xt — 1.

1 1

(3) If x,x are vertices of H, T', respectively, o : x — z is an extendable isomorphism, ¢ is its
eztension, and w € H(x), then ¢|y,1 : Wt = (W)L is extendable.

(4) M is triangulable.

Then I is covered by H.

Indeed, since T" and ‘H have the same intersection arrays, Result 3.5 implies that [' & H.

It is not difficult to see that I satisfies Conditions (1) and (4) of Result 3.5.

Let I'(z) := {wi;}:i;, and, as usually, for distinct pairs (i,5) and (¢, j'), wi; ~ wy;» holds if and
only if i =4’ or j = j'. Denote by L; the maximal clique of I'(z) that contains the vertices w;; for

all 7, and by LjT the maximal clique of I'(z) that contains the vertices w;; for all . For a vertex
z €T, 2t denotes {z} UT(z).

Without loss of generality, we may assume that there is a vertex z € I'z(z) such that I'(z,z) C
Ly U Ly U L3. Define a subgraph % induced in I" by the vertex subset

{z} UL ULy U L3 U {2 €Ty(z) | I(z,2') C L1 U Ly U L3},
so that ¥(z) = L; U Lo U Lg.

In order to show that I" satisfies Conditions (2) and (3) of Result 3.5, one has to show the following.
Lemma 3.6 X is isomorphic to Bily(2,d).
The main result of this work is the following theorem.

Theorem 3.7 The bilinear forms graphs Bily(d,d), d > 3, are uniquely determined by their inter-
section arrays.
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