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The classification of TD-pairs

Tatsuro Ito *
Kanazawa University

1 Introduction

Tridiagonal pairs (TD-pairs) over C are classified by constructing all of them explicitly
as certain sort of tensor product of Leonard pairs (L-pairs). We give a summary of the
classification. Details will be published in a joint paper of Makoto Tagami, Paul Terwilliger
and myself.

The classification problem of TD-pairs [3} comes from an attempt to establish representa-
tion theory of the Terwilliger algebras [12] for P- and Q-polynomial association schemes [1].
A TD-pair arises from each irreducible representation of the Terwilliger algebra of a P- and
Q-polynomial association scheme. Strictly speaking, not all TD-pairs appear in this way.
The category of TD-pairs is wider than that of irreducible representations of the Terwilliger
algebras for P- and Q-polynomial association schemes, yet TD-pairs are the right target of
the classification since they capture the essence of irreducible modules for the Terwilliger
algebras.

First, we recall the definition of TD-pairs and some basic properties of them, following
[3]. Let V be a finite-dimensional vector space over the complex number field C. Let A,
A* be diagonalizable linear transformations of V. By V;, 0 < ¢ < d (resp. V;*, 0 < i < d*),
we denote the eigenspaces of A (resp. A*) and by 6;, 0 < i < d (resp. 6, 0 < i < d*), the
eigenvalues of A on V; (resp. A* on V;*). The diagonalizable linear transformations A, A* of
V are called a TD-pair if (i) there exists an ordering V', Vi, ..., V. of the eigenspaces of
A* such that

AV; SV Y+ Vi (1)
for 0 < i < d*, where V¥ = Vi | =0, (ii) there exists an ordering Vg, V1, ..., V4 of the
eigenspaces of A such that

AV, CVia+Vi+Vip (2)

for 0 < i < d, where V_; = Vg3 = 0, and (iii) V contains no proper subspace that is
invariant under the actions of both A and A*.

A TD-pair A, A* is isomorphic to a TD-pair B, B* if there exists a vector space isomor-
phism ¢ from the underlying vector space of A, A* to that of B, B* such that pA = By
and pA* = B*p.
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For a TD-pair A, A*, it is known that A, A* have the same number of eigenspaces, i.e.,
d+1=d*+1 and d is called the diameter of the TD-pair. A TD-pair is called trivial if
d = 0. In what follows, we assume TD-pairs are non-trivial unless otherwise stated.

Let A, A* be a TD-pair. An ordering {V;}¢, (resp. {V;*}&,) of the eigenspaces of A
(resp. A*) is called standard if it satisfies (2) (resp. (1)). If {V;}¢, (resp. {Vi*}%,) is a
standard ordering of the eigenspaces of A (resp. A*), then the reversed ordering {V;_;}%¢,
(resp. {V;_;}%,) is standard and A (resp. A*) has no other standard orderings of the
eigenspaces. A TD-pair A, A* together with a pair ({V;}4_,, {V*}%,) of standard orderings
for the eigenspaces of A, A* is called a TD-system and denoted by (A4, A*; {V;}L,, {Vi*}9,).
If a TD-pair A, A* is given in advance, a pair ({V;}¢_,, {V;*}L,) of standard orderings for
the eigenspaces of A, A* is called a TD-system for A, A*, allowing abuse of terminology.
Thus a TD-pair A, A* has exactly four TD-systems: if ({V;}4,, {Vi*}&,) is one of them,
then the other three are ({V_:}Lo, {V;'}o), ({Vitgr (Vi Hoah ((VisHoor (Vi i}oo).

In what follows, A, A* denote a TD-pair and we fix a TD-system ({V;}&,, {V*}4,) for
A, A*. Define the weight space U;, 0 < i < d, by

U= (V5 4 )N (Vik o+ Vi) ®)

Then it holds that
dimU; =dimV, =dimV,*, 0<i<d, (4)

and V is decomposed into the direct sum of U;, 0 < i < d. Let us denote the projection onto
Ui by F: V = @} U; — U; and set

d

R=A-3 4F, (5)
=0
d

L=A"-> 6F, (6)
i=0

where 6; (resp. ;) is the eigenvalue of A (resp. A*) on V; (resp. V;*). The linear transformation
R (resp. L) of V is called the raising (resp. lowering) map. In fact, it holds that
RU; C Uy, LU; CU;;, 0<i<d, (7)

where U_; = Ugyy = 0. Moreover R4 (resp. L%%) maps U; onto Uy_; (resp. Uy_; onto U;)
bijectively. Thus, we have two bijections

Rd_%i Ui - Ud—ia (8)

Ld42ii Ud—i — UZ (9)
for0<i< g, and dimU; = dim U,_; holds for 0 < ¢ < d. Weset p; = dimU;, 0 < i <

i <d,
and call the sequence po, p1, ..., pg the shape of the TD-pair 4, A*. By (4), (7), (8), (9),
the shape satisfies pp < p; < -+ < p[g] and p; = pgs, 0 < i < d.
2

It is conjectured in [3, Conjecture 13.5], and proved in [4], [8, Theorem 1.8] [10, Theorem
1.3], [11, Corollary 1.4] that the shape satisfies

pis(f), 0<i<d. (10)
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In particular, pp = 1 holds, namely the weight space U from (3) has dimension 1. (The fact
is that po = 1 is shown before (10). For more about (10), see [11].) If p; =1, 0 < i < d, the
TD-pair is called an L-pair (Leonard pair) [13]. The isomorphism classes of L-pairs are in
one-to-one correspondence with the Askey-Wilson polynomials with finite support [1], [13].
Define a polynomial ch(A) in A of degree d by

d
ch(X) = sz-xl (11)

The polynomial ch()) is called the character of the TD-pair A, A*. Then A, A* are an
L-pair if and only if ch()) = (1 —A%*1)/(1— ). It is conjectured in [3, Conjecture 13.7] that
there exist integers ¢1, s, - - , £, such that

ch(\) = H (_1(1——T (12)

Note that (12) is stronger than (10) and that the equality holds in (10) for every ¢ if and
only if 44 = ¢y = ... = {43 =1 with n = d holds in (12). The equation (12) is called the
character formula. It suggests that a TD-pair is certain sort of tensor product of n L-pairs
[3, Conjecture 13.8]. We shall come back to this point later in this section.

For a TD-pair A, A*, there exist scalars 3, vy, 7v*, §, 6* € C such that

APAT — (B+1)(A%A"A — AA*A?) — A"A® = y(A%A* — A"A%) + 6(AA* — A*4),  (13)
ABA — (B+1)(AAA* — A"AA™) — AA™ = 4*(A"2A — AA™) + 5" (A"A — AA*). (14)

If d > 3, the scalar 8 is uniquely determined. If d < 3, we can choose 3 arbitrarily. The
identities (13), (14) are called TD-relations (tridiagonal relations). The eigenvalues 6; of A
on V; are forced to satisfy

6 =02, — B0ir16; + 67 — (01 +6;), 0<i<d-1, (15)
and the eigenvalues 8} of A* on V;* to satisfy
5 = 02, = BOL, 0 + 02 — 7 (0, +6;), 0<i<d—1. (16)

One can easily check that under the identities (15), (16), the TD-relations (13), (14) are
rewritten in terms of the raising map R and the lowering map L from (5), (6) as follows:

R3L — (B+1)(R*LR — RLR*) — LR® = ;R?> on U, (17)
L*R — (B+1)(L*RL — LRL?) — RL® = —o;I* on Uiy, (18)

for 0 < i <d -2, where
o; = (B+ 1){0:0] — 0,207, 5 + (0i410; 5 + 0:1207,,) — (6:0;,, + 6:116])}. (19)

A TD-pair A, A* is called of type I, type 11, type III according to 8 # +2, =2, 8= —21in
the TD-relations.



Next, we summarize what has been done about the classification of TD-pairs and left
open to further studies. Let (A, A% {Vi}&,, {V*}¢,) be a TD-system. Recall dim U, = 1
by (10). So by (7), L'R’ acts on U, as a scalar ¢; € C:

L'Ru=omu (uelp), 0<i<d (20)

The sequence {o;}{, is known in [5, Theorem 1.6, Theorem 4.4], [7, Theorem 3.3, [8,
Remark 1.10, Corollary 1.12], [2, Theorem 3.1(iii)] to satisfy

0p = 17 ] 7é 07 (21)

Z (6o — 1) -~ (60 — Gi)(iag —67)--- (05— 6;) #0, (22)

where 0; (resp. 67) is the eigenvalue of A on V; (resp A* on V;*). Thus from a TD-system
(A, A5 {Vi}o, {Vi}e,), we get atrio ({6:}4,, {82}, {0:}L,) that satisfies (15), (16), (21),
(22). The trio determlnes the isomorphism class of the TD-system. Precisely speakmg, if a
trio ({6;}0, {6; Yoy, {0i}L,) is derived from a TD-system (A, A*; {V;},, {Vi*}L,) and also
from a TD-system (B, B*; {W;}&_, {W;}2,), then there exists a vector space isomorphism ¢
from the underlying vector space of A, A* to that of B, B* such that pA = By, pA* = B*yp
and ¢V; = W; (0 < i < d). Moreover a trio ({6;}L,, {6}y, {0:}%,) of sequences of scalars
comes from a TD-system if and only if (i) 6; # HJ, 67 # 03 for distinct 4,5 € {0,1,---,d}, (ii)
there exist scalars 3, v, 4, 7 6* such that {6;,}& (resp ({0* o) satisfies the 1dent1t1es (15)
(resp.(16)), and (iii) {o;}%, satisfies (21), (22). Let us call a trio ({6;}&,, {07 }40, {0:}0)
feasible if the conditions ( ), (ii), (iii) above hold. Then in a word, the following holds.

THEOREM 1. The isomorphism classes of T'D-systems are in one-to-one correspondence with
the feasible trios.

"T'his correspondence is shown in [5, Theorem 1.6, Theorem 1.7] for q-geometric TD-pairs,
in [7, Theorem 3.3] for q-Racah TD-pairs, in [8, Corollary 1.12] for generic TD-pairs, i.e.,
for the case of # = ¢+ ¢!, where ¢ is not a root of unity, and in [2, Theorem 3.1] for all
TD-pairs. It is in a way a classification of TD-pairs !, but it is rather a parametrization
theorem, not a structure theorem. It does not answer the following questions:

(Q1) Given a feasible trio ({6}, {67}y, {0:}2,), how to find the shape {pi}, of a TD-
system that corresponds to it, in particular how to show the character formula (12).

(Q2) Given a feasible trio ({6;}&, {67}, {0:}%,), how to construct a TD-system that
corresponds to it.

The fact is that the problems (Q1), (Q2) were solved first, Theorem 1 following as a corollary,
for g-geometric TD-pairs [5] and then for generic TD-pairs [8]. To solve (Q1) for generic TD-
pairs, the paper [8] defines a polynomial by the trio ({6;}&,, {6}, {0i} %), which is called
a Drinfel’d polynomial, and finds the shape {p;}%, by analyzing the zeros of the polynomial.
As for (Q2), all the generic TD-pairs are explicitly constructed in [8] as certain sort of tensor
product of L-pairs that corresponds to the structure of the zeros of the Drinfel’d polynomial.

'It turns into a classification of TD-pairs with the aid of [9, Theorem 9.3].
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There are two different lines of approaches to the classification problem of TD-pairs. The
one that appeared first is the series of papers [4], [5], [6], [8]. This line aims to solve the
problems (Q1), (Q2) for each of the three types of TD-pairs separately, assuming the ground
field is C, where necessary, to avoid complications caused in the course of arguments. It
was so far successful only for generic TD-pairs. The other one is the series of [9], [10], [7],
(11], [2] (plus some more related papers) that came later. This line aims to prove Theorem
1 in a uniform way, regardless of the types of TD-pairs and the ground field (so long as it
is algebraically closed). It has already accomplished that aim. The problems (Q1), (Q2)
are now completely solved over C for each of the three types of TD-pairs along the lines
of [4], [5], [6], [8]. In particular, the character formula is promoted from a conjecture to
a theorem. We shall give a summary of the classification of TD-pairs in this sense in the
following sections.

2 Standardization

Let A, A* be a TD-pair. We fix a TD-system ({Vi}&,, {Vi*}¢.,) for A, A*. For the parameter
g in the tridiagonal relations (13), (14), we set

B=d¢+q7" (23)

Then by solving (15), (16) we find the eigenvalues of A, 4* as follows: if ¢* # +1, ie., 4,
A* are of type I, then

0 =co+cgd” + g%, 0<i<d,
0 =co+ c}q% + c;‘q‘%, 0<i<d,
if > =1, i.e., A, A* are of type II, then

95=CO+CI’L'+C2’L.2, 0£1,Sd,
0 =ci+cli+ci?, 0<i<d;

if ¢? = —1, i.e., A, A* are of type III, then

0; = co+ (—=1)'(c1 + i), 0<i<d,
0 =c)+ (=1)%c; + i), 0<i<d.

In the above expressions of the eigenvalues, ¢y, c1, c2, ¢3, ¢}, ¢ are some constant from C.
If the TD-pair A, A* is of type III, we need to assume c; # 0, ¢; # 0, since the eigenvalues
are distinct. For TD-pairs of type I, II, three cases occur: (1) c2 # 0, ¢ # 0, (2) ¢2 # 0,
¢t =0o0rc =0,c; #0, (3) ca = ¢ = 0. Accordingly, the TD-pair A, A* is called the
first, the second, the third kind. If it is the second kind, we may assume c; # 0, c; = 0 by
interchanging A and A* if necessary.

Observe that if A, A* are a TD-pair, then affine transformations AA+u, A*A*+p* of them
are also a TD-pair (A, u, \*, u* € C, A # 0, A\* # 0). Affine transformations do not change the
type of a TD-pair. So we may assume the eigenvalues of A, A* are standardized as follows, by
applying some affine transformations or by choosing another TD-system ({V;},, {Vi*}&o)
for A, A*, if necessary:



type I : With non-zero scalars b, b* and (g,¢*) € {(1,1), (1,0), (0,0)},

91: — bq2i—d + 8b~—lq-2i+d7 0 S i g d’ (24)
9: — 8=t<b>kq2i-—d + b*—lq—2i+d7 0<s < d. (25)

type II : With scalars b, b* and (e,¢*) € {(1,1), (1,0), (0,0)},

ei:2z—d;b~l(62i—d;-b—1+1)’ 0<i<d, (26)
0;___2i—dn2tb*—1(€*2i—d42~b*—1+1)’ 0<i<d @)

type III : With scalars b, b*,
;= (—1)'(2i~d+1b), 0<i<d, (28)
07 = (-1)"(2i —d+b"), 0<i<d. (29)

If A, A* are of type I or type II, then they are the first, the second, the third kind according
to (e,€*) = (1,1), (1,0), (0,0). A TD-pair A, A* is called standardized, if their eigenvalues
are standardized. It is enough to classify standardized TD-pairs.

3 The TD-algebra A, the augmented TD-algebra 7

Let ¢ be a non-zero scalar and (¢,e*) one of (1,1), (1,0), (0,0). We call g the base.
Let A= A" denote the associative C-algebra with 1 generated by z, z* subject to the
following defining relations.

case of ¢ # +1 :

227 — 3l + 8222t — 220 = —e(g? — ¢7%)?[z, 2],
(TD)I{ 2%z — [3]y2*%22" 4 [3]y2*22*? — 220 = —e* (¢ — q2)2[2", 2], (30)

where 3], = (¢ —¢7®)/(g—q¢7") = +1+¢2% [X,Y] = XY - VX,

case of > =1 :

P2 = 32%2% 2 + 3222 — 228 = 2¢[2, 2]+ (1 =€)z, 27),
(TD) { 232 = 32°%22* + 32" 22 — 2% = 2e*[2*%, 2] 4+ (1 — &%)[2%, 2. (31)
case of ¢°> = —1 :

P2+ 22— 222t - 2 =4z, 2],

(TD)mm { 232 4 2222 — 2 22*? — 23 = 4[z*, z] (32)
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This algebra A is called the TD-algebra of type I, type II, type III according to the cases of
@ #+1,¢>=1,¢*> = —1. If Ais of type I or type II, the algebra A is called the first, the
second, the third kind accorging to (e,e*) = (1,1), (1,0), (0,0). The third kind TD-algebra
of type I is isomorphic to the positive part of the quantum affine algebra Uq(ag) and the
third kind TD-algebra of type II is isomorphic to the universal enveloping algebra of the
Onsager algebra.

Let T = 7;5’5*) denote the associative C-algebra with 1 generated by z,y, k*! subject to
the following defining relations.

case of ¢° # +1 :

kk'=kk=1,

kxk™' = ¢?z, kyk™' = q7 %y, 13
3y — [3],2%yz + [3],zyx? — y2® = dz(e*k® — ek ?)z, (33)
v’z — [3]gy’zy + [Bloyzy® — zy® = —by(e*k® — ek~?)y,

(augTD),

where § = —(q — q‘l)(q2 - q_z)(qs - q_S)-
case of g2 =1 :

( kz — zk =2z, ky—yk = —2y,
—12zkz if (e,e*) = (1,1),
)

23y — 3x%yz + 3zyzr? —yzd = { —6x2 if (e,¢*) = (1,0),
(augTD)H { { 0 if (E, 6*) = (0, 0), (34)
12yky if (e,e*) = (1,1),
v’z — 3ytzy + 3yzy® —xy® = 6y if (e,¢%) = (1,0),
0 if (g,e*) = (0,0).

\

This algebra T is called the augmented TD-algebra of type I, type II according to the cases
of ¢ # £1, ¢ = 1. The augmented TD-algebra 7 of type I or type II is called the first, the
second, the third kind accorging to (g,e*) = (1,1), (1,0), (0,0).

Let T = T3 with ¢ = —1, (¢,¢*) = (1,1) denote the associative C-algebra with 1
generated by z,y, k, 7 subject to the defining relations of

case of ¢? = —1 :
r?=1,
Tk—kr=0, Te+27=0, Ty+yr =0,
(augTD);  kx — zk =2z, ky— yk = —2y, (35)

3y + 22yx — zyx? — y2d = 162k,
3z + y?zy — yzy? — xy? = —16yky.

The algebra T is called the augmented T'D-algebra of type III.
In the rest of this section, we shall explain how TD-pairs are related to finite-dimensional

irreducible representations of the algebras A and 7. To observe A = A% is embedded
inT = q(s’et), we first introduce the elements z;, 2; of 7 defined as follows. Actually the
algebra homomorphism ¢; from A to 7 in the next proposition is injective, but we do not
need the injectivity of ¢; for the classification of TD-pairs.



type I : Forte C (t+#0),

z=z+th+et k! (36)
Z=y+etk 4+t (37)

type II : Fort e C,
kE+t—1, k+t—1

2 = s (e + 1), (38)
z:=y+k—;_1(e*k_;_l+1). (39)

type III : Fort € C,
z=x+7(k+1), (40)
2 =y+T1(k—1t). (41)

PROPOSITION 1. For each t, there ewists an algebra homomorphisn v, : ASS) — TL)
that sends z, 2* to z, z{, respectively.

Let V be a finite-dimensional irreducible 7-module. Then k is diagonalizable on V. Let
us denote the number of the eigenvalues of k& by d + 1. We call the integer d the diameter
and the pair (g, d) the ground parameters of the T-module V, where q is the base we chose
at the beginning. The ground parameters (q,d) are defined to be ezceptional if it satisfies
¢*@*1) =1 and ¢ # +1. So an irreducible T-module V has exceptional ground parameters
only when T is of type I.

Let U;, 0 < % < d, denote the eigenspaces of k on the irreducible 7-module V. We call
Ui, 0 <1 < d, the weight spaces and V = @?:0 U, the weight space decomposition. The
weight spaces are ordered by the action of z, y, namely it holds that

zU; C U1, yU; C Uiy, 0<0<d, (42)

where U_; = 0, Uy = 0 if the ground parameters are not exceptional, and U_; = Uy,
Ugy1 = Uy if the ground parameters are exceptional. The eigenvalues of k are

2i—d o
| sq if T is of type I, <
ko, = { s+2i—d if T is of type II or type III, O<i<d (43)

for some scalar s. Notice that ¢% # 1 holds for 1 < i < d in the case where 7T is of type I.

If zU; = 0 and yUp, = 0, then the 7-module V is called non-circulant. Notice that
an irreducible 7-module V' is always non-circulant if it does not have exceptional ground
parameters. If an irreducible 7-module is non-circulant, then the eigenspace Uy is uniquely
determined and so is the scalar s in (43). In this case, the eigenspace Uy is called the highest
weight space and the scalar s the type of the T-module, while the eigenspace Uy is called the
lowest weight space.

Let 7 be the augmented TD-algebra of type III. Then the weight space U;, 0 < i < d,
is invariant under 7 and the eigenvalue of 7 on U; is either (=1)%, 0 < 4 < d, or (—1)1,
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0 < < d. Since the augmented TD-algebra of type III has the automorphism that sends 7
to —7 and keeps z, y, k invariant, we may assume

Ty, = (1), 0<i<d. (44)

If the ground parameters (g, d) of the T-module V are not exceptional, the 7-module V/
is called regular. Notice that the T-module V is always regular if 7 is of type II or type III.
Assume T is of type I and the T-module V is regular. Then not only is the T-module V
non-circulant and hence the type s is determined, it satisfies

zhyz —zyzt = (¢—q¢ )3 [d—1][d] (¢*s* — es™H)z? on Uy, (45)
Yoy —yzy’ = —(¢—q7)*[d - 1] [d] (e"s* —es7*)y* on Uy, (46)
where [j] = (¢ —¢77)/(¢ — ¢”!) and Uj (resp. U) is the highest (resp. lowest) weight space.
We extend the range of the teminology ‘regular’ to the case where the ground parameters
(g,d) are exceptional. When the ground parameters (g, d) are exceptional, the 7-module V
is defined to be regular if (i) it is non-circulant and (ii) it satisfies (45), (46).

THEOREM 2. Let T be the augmented TD-algebra. Let V be a finite-dimensional irreducible
T-module. If the T-module V is reqular, then the highest weight space has dimension one:
dim Uy = 1.

Let V be a finite-dimensional vector space over C. Let A, A* € End (V) be a standardized
TD-pair, where End (V) is the endmorphism algebra consisting of all the linear transforma-
tions of V. We fix a TD-system ({V;}¢,, {Vi*}e,)- Let U;, 0 < i < d, be the weight spaces
from (3). The eigenvalues 6;, 6; of A, A* are expressed as in (24), (25), (26), (27), (28), (29)
according to the type of A, A*, using the scalars b, b*. Accordingly we choose scalars s, t as
follows:

typel : b=st b*=st"!; s2=0bb* t2=0bb"1.

type IL IIT : b=s+t, b*=s—t;, 2s=b+b*, 2t=0b-0b"

Let K denote the diagonalizable linear transformation of V whose eigenspaces coincide with
the weight spaces U;, 0 < ¢ < d, as follows:

type I : Ky, =s¢% % 0<i<d.

type ILIII : K|y, =s+2i—-d,0<i<d.

PROPOSITION 2. Let A, A* be a standardized TD-pair. Let A = A and T = T= be
the TD-algebra and the augmented TD-algebra whose type and kind are in accordance with
those of A, A*. From A, A*, there arise finite-dimensional irreducible representations of A
and T as follows.

(i) There exists a finite-dimensional irreducible representation py : A — End(V) of A
that sends z, z* to A, A*, respectively.

(i) There exists a finite-dimensional irreducible representation p; : T — End(V) of T
that sends x, y, k to R, L, K, respectively, where R, L are the raising, lowering maps
from (5), (6). Moreover, the irreducible T-module V via p; is reqular.

(i) It holds that py = py o us, where v, is from Proposition 1.



A converse of Proposition 2 holds in the following sense. Let p; : T — End(V') be a
finite-dimensional irreducible representation of the augmented TD-algebra T = 7;(5’6*) such
that the 7-module V via p; is regular. Let A = A,(f‘s*) be the TD-algebra. We consider the
representation

po=p1ot: A— End(V) (47)
of A, where t; : A —> T is the algebra homomorphism from Proposition 1. We set
A=po(z), A= po(z7), (48)

where 2, 2* are the generators of A. Then A, A* are diagonalizable linear transformations
of V and have the following eigenvalues {8;}% ., {0;}2_, respectively, according to the type
of the TD-algebra A = A" where d is the diameter of the T-module V:

type I : With s the type of the T-module V and t the parameter of ¢,

0; = stq® @ + st g7HH, 0<i<d, (49)
0r =e*st g% 4 s7Mg7HY, 0<i<d (50)

type II : With s the type of the T-module V and ¢ the parameter of ¢,

9i=2i_d+28+t_1(52i—d+28+t—1+1), 0<i<d (51)
GZ:2i—d+2s—t—1(6*2i—d+28—t—1+1), 0<i<d (52)

type III : With s the type of the 7-module V' and ¢ the parameter of ¢,
;= (=12 —d+s+t), 0<i<d, (53)
6 = (-1)"(2i—d+s—t), 0<i<d. (54)

PROPOSITION 3. Let A, A* be the diagonalizable linear transformations from (48). Assume
0; # 0; and 0 # 05 for distincti,j € {0,--- ,d}, where 6;, 7 are from (49), (50), (51), (52),
(58), (54) according to the type of the T'D-algebra A = A((f’s'). Then the pair A, A* satisfies
the conditions (i), (ii) for the definition of a TD-pair. In particular, if py is irreducible, then
A, A* become a TD-pair. ‘

Thus the classification problem of standardized TD-pairs is reduced to the following.
PROBLEM 1. Solve the problems (1), (2), (8) below.

(1) Construct, up to isomorphism, all the finite-dimensional irreducible representations
p1:T — End(V) of T such that the irreducible T-module V via py is reqular.

(2) For a finite-dimensional irreducible representation p; of T constructed in (1) above,
determine when the representation py = py otz : A — End(V) of A is irreducible,
where v, is from Proposition 1.

(8) Determine the isomorphism class of the A-module V' via py constructed in (2) above.
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4 Construction of a 7-module V as a tensor product
of evaluation modules

Let 7 = 7. be the augmented TD-algebra of type I. First we construct an evaluation
module for 7. Choose a positive integer ¢ and non-zero scalars a, s € C arbitrarily. Let

V(¢,a) be a vector space over C of dimension £ + 1 with a basis vy, v1, - , vy, and define
linear transformations k(s), z(s), y(s) of V(¢,a) by
k(s)vi = s " v, (55)
z(s)vi = —(g— g ) [i +1(as +es7 g vy, (56)
y(s)v = [€ =i+ 1(e"a s ¢ 4 5T iy, (57)

for 0 < i < ¢, where [j] = (¢ —¢77)/(g—q7}), v_1 = 0, vgy; = 0. If T is the second kind,
ie., (¢,€*) = (1,0), then the scalar a is allowed to be zero, in which case the line (57) should
be read with the understanding of e*a™! = 0. The vector space V is called an evaluation
module and a the evaluation parameter. In fact, V becomes a T-module on which &, z, y
act as k(s), z(s), y(s) respectively. The basis vg,v1, - , v is called a standard basis of the
evaluation module V. The scalar s is called the type of the evaluation module V.

Next we construct a 7-module as a tensor product of evaluation modules. Let V(4;, a;),

1 <7 < n, be an evaluation module with v(()i),v§i), e ,vg) a standard basis. Consider the
tensor product of the evaluation modules:
V= V(el, al) R R V(@n, Cl.n). (58)
The set {uj,,..;, |0<j1 <4, ,0<j, <.} is a basis of V, where
1 n
Uiy =00 @ @ 0l (59)

Let U; be the subspace of V spanned by uj, ... j, over all j1,- -+, j, with jy + - -+ + j,, = @
Ui= <uj1,---,jn l A+t in= 2) (60)

Then V is decomposed into the direct sum of U;, 0 < ¢ < d, where d = ¢; + - -- + £,,. Note
that Uy (resp. Uy) is a subspace of dimension 1 spanned by uy,... o (resp. uy,.... 4, )-

THEOREM 3. Let T = 72(5‘5') be the augmented TD-algebra of type I. For an arbitrary non-
zero scalar s € C, there exists a T -module structure on V such that k, x, y act on the basis
{Up, g 1 0< g1 <4y, -+ ,0 < G < 4,} from (59) as follows:

kg, oo o = S@ gy oy = J1+ -+ (61)

TUjy oy = Z(l R - Q1®z(s)R1® - ® Luy, .. jn, (62)
i=1

YUjp o o = Z(l R--RIX y(si) RLIR - ® l)uj1,-~~,jna (63)
i=1

where s; = sqZim1@v=b) d= g 4+ ... 0,



For the T-module V constructed above, we always assume ¢* # 1, 1 < i < d, so
that V = @)%, U; is the eigenspace decomposition of k on V. Note that k|y, = s¢%~¢,
zU; C Uiy, yU; C U;_y for 0 < i < d, where U_; = 0, Uz, = 0. Moreover (45), (46) hold
for the 7-module V. So if the T-module V is irreducible, it is regular. The non-zero scalar
s and the integer d are called the type and the diameter of the 7T-module V, respectively.

Let 7 = 7,.°°") be the augmented TD-algebra of type 11, i.e, g2 = 1. Choose a positive
integer £ and scalars a, s € C arbitrarily. The scalars a, s are allowed to be zero. Let V (¢, a)
be a vector space over C of dimension ¢ + 1 with a basis vg,vy,--- , v, and define linear
transformations k(s), z(s), y(s) of V(¢,a) by

k(s)vi = (2t — £ + s)u, (64)

z(s)v; = i+ D(a+e(s + ﬁ—_—gj—l))viﬂ, (65)
. 2t—£+1

y(shui=f—i+ 1)1 +e(a—s— T))Uz‘—l (66)

for 0 <4 < ¢, where v_; = 0, vg,; = 0. The vector space V is called an evaluation module
and a the evaluation parameter. In fact, V becomes a T-module on which k, z, y act as k(s),
z(s), y(s) respectively. The basis vg, v1,- -+ ,v, is called a standard basis of the evaluation
module V. The scalar s is called the type of the evaluation module V..

Let V(4;,a;), 1 <1i < n, be an evaluation module with vg), vii), ‘e ,’UZ) a standard basis.
Consider the tensor product of the evaluation modules V =V (¢{1,a1) ® - - ® V (€, an) as in
(58) and the basis {uj,,..;, | 0 < j1 < 41,--+,0 < jp <Ly} of V as in (59).

THEOREM 4. Let T be the augmented TD-algebra of type II. For an arbitrary scalar s € C,
there exists a T-module structure on'V such that k, =, y act on the basis {u;,,.. j, | 0 < j1 <
b, ,0 < jp < £,} from (59) as follows:

k?'Lle,...’jn = (22 — d =+ 8) ujl,'“;jn’ 1= jl +---4 jn, (67)

T Ujy e = Z(l R ®1Qx(s)®1Q - ® L)Ujy .. jns (68)
=1
'Ln

YUjpju =D (1® @10 Y(s) ®1® - ® Dy . jay (69)
=1

where s; = s+ 3,1 (25, — &), d =i+ -+ Ly

14

Note that the direct sum decomposition V = @?:o U; given by (60) is the eigenspace
decomposition of k and it holds that k|y, = 2i —d+ s, 2U; C Uiy, yU; C Ui for 0 <4 < d,
where U_; = 0, Uzy; = 0. Note also that Uy (resp. Uy) is a subspace of dimension 1 spanned
by uo,... o (resp. Uy, ... s,). The scalar s and the integer d are called the type and the diameter
of the 7-module V', respectively.

Let T be the augmented TD-algebra of type III. Choose a positive integer £ and scalars
a, s € C arbitrarily. The scalars a, s are allowed to be zero. Let V({,a) be a vector
space over C of dimension £+ 1 with a basis v, v1, - - , v, and define linear transformations
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7(s), k(s), z(s), y(s) of V(£,a) by
7(s)v; = (=1)*v;, (70)
k(s)v; = (2t — £ + s)vi, , (71)
[ 2(-1) (G4 1) vip if 7 is odd,
z(s)vi = { 2(—1)i (a+ s+ E=H) vy if i is even, (72)
2(-1) (-t 4+ 1) vy if £ —1 is odd,
y(s)vs = { 2(—1)i"Y (a — s — B=f=L) vy if £ — i is even, (73)

for 0 < 4 < £, where v_; = 0, ve41 = 0. The vector space V is called an evaluation module
and a the evaluation parameter. In fact, V becomes a T-module on which 7, k, z, y act as
7(s), k(s), z(s), y(s) respectively. The basis vg, vy, - - , v is called a standard basis of the
evaluation module V. The scalar s is called the type of the evaluatlon module V.

Let V(#4;,a;), 1 <14 < n, be an evaluation module with vo URTICI (1) a standard basis.
Consider the tensor product of the evaluation modules V = V(¢1, a,) ® -®V (£, a,) as in

(58) and the basis {u;,,.. j, |0<j1 <4y, ,0< g <fp} of Vasin (59).

THEOREM 5. Let T be the augmented TD-algebra of type III. For an arbitrary scalar s € C,
there exists a T-module structure on V such that 7, k, =, y act on the basis {u;,,.. j, | 0 <
1< by, ,0 < gn < £, } from (59) as follows:

Tujlr"yjn = (_1)1 ujlv'“vjn’ 7‘ = jl + et +]n) (74)
kuj, ..jo=02i—d+8)uj,..jn, =511 +Jn (75)
Tu.. j, = Z(T(s) ® - R7(s)Qz(s) ®1® - @ L)y ... ji» (76)

YUjy oo = (—l)dzn:(—l)zf'ﬂe"(T(s) ® - RT(8)QY(S)®L1® - @ Dy, jy  (T7)

i=1
where s; = s+ 30 (25, ~ 6,), d=bi+ -+ + .

Note that the direct sum decomposition V = EB?;O U; given by (60) is the eigenspace
decomposition of k and it holds that 7|y, = (—1)*, k|y, = 2i —d+ s, 2U; C Uia, yU; C Ui
for 0 < i < d, where U_; = 0, Uszy; = 0. Note also that Uy (resp. Uy) is a subspace of
dimension 1 spanned by ug,.. o (resp. ug,,.. s,). The scalar s and the integer d are called the
type and the diameter of the 7-module V, respectively.

REMARK 1. Theorems 3, 4, & suggest that the augmented TD-algebra can be embedded into
some bigger algebra equipped with a coproduct.

(1) The augmented TD-algebra of type I can be embedded into the U,(slz)-loop algebra
U,(L(sl;)). Theorem 3 is obtained through this embedding. For further details, see [8].

(2) The third kind augmented TD-algebra of type II can be embedded into the sly-loop
algebra L(sly), but it is unlikely that L(sly) is big enough to accommodate the first or
the second kind augmented TD-algebra of type I1.



(8) We can define the U,(sly)-loop algebra Uy(L(slz)) at ¢* = —1 in such a way that the
augmented TD-algebra of type III is embedded into it and Theorem & is obtained through
this embedding.

5 The Drinfel’d polynomial P/ ()\) of the 7-module V

Let 7 = 7, be the augmented TD-algebra. Let V = V(f1,a1) ® --- ® V(¢y,an) be
the 7-module constructed in Theorem 3, Theorem 4, or Theorem 5 as a tensor product of
evaluation modules. Note that the direct sum decomposition V = @?:o U; given by (60) is
the eigenspace decomposition of k, and it holds that (i) zU; C Usyy, yU; C U;_y for 0 <4 < d,
where U_; = 0, Uy = 0, and (ii) dim Uy = 1. So y'z* acts on Uy as a scalar o; for i € Zxq:

y' 2y, = o;. (78)
Note that 0g =1 and 6; =0 for ¢ > d + 1.

First assume that 7 = 7;(5’6*) is of type I or type II. Let d and s be the diameter and the
type of the T-module V, respectively. We define a monic polynomial Py (A) in A of degree
d, which is called the Drinfel’d polynomial of the T-module V. For T = T of type 1,
i.e., g% # £1, it is defined by

d
= >V H(A es T —ersq D), (19)

j=i+l

where [i] = (¢ —q¢79)/(g—q7 1), [i{)! = [{][i = 1] -+ [1]. For T = 771(6’5*) of type I, i.e., ¢ = 1,
it is defined by

d
PV()\)—Z - )’ 2 .H G+s—d? if (ge) = (1,1), (80)
Pv(A)=Z( 1)’ ,)2 H -(J+s—d) if(ee) =(1,0), (81)
PV(/\):Z(—l)i(TU!;E)\d“i if (e, &) = (0,0). (82)

Recall we can embed the third kind augmented TD-algebra 7 of type I into the U,(sl;)-loop
algebra U,(L(slz)). If the T-module V' comes from an irreducible U,(L(sl;))-module V" via
the embedding, then APy (A\~!) turns out to be the original Drinfel’d polynomial up to a
scalar multiple, where d is the degree of Py (\) [5].

Next assume that 7 = 7.7 is of type III, i.e., ¢* = —1. Let d and s be the diameter
and the type of the T-module V, respectively. We define two Drinfel’d polynomials P‘(/O)(/\),
P‘(,l)()\) for the 7-module V. The first one is the monic polynomial of degree [45!] defined
by

[45] (432]
z01—#161 Ooi
=3 (-2 ST LI o-@i-1+s-a?). (83)
=0 J=t+1
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The second one is the monic polynomial of degree [‘—l] defined by

(%)

PPO) = (-1 "@j’j’,zﬂu (2) +5 — d)?). (84)

=0 J=i+1

PROPOSITION 4. Let T = T be the augmented TD-algebra and V(£,a) the evaluation
module for T constructed in Section 4. The zeros of the Drinfel’d polynomial of the T -module
V(£,a) are given as follows.
(1) For T =T of type I,
-

—

Pyeay(N) = [[(A+ag ! +ea™'g* ) ifa #0, (85)
=0
Py () =X if (6,6*) = (1,0) and a = 0. (86)

(2) For T =T of type II,

el f +1
Py =](0 - (a paoctl ——)) if (6,7 =(1,1), (87)
- % —£+1
PV(e,a) (/\) = H(/\ +a+ T) if (8’ E*) = (1,0), (88)
=0
Preay(N) = (A+a)t if (5% = (0,0). (89)
(8) For T = 77,(5’5*) of type III,
2% —0+1
PtV = I O-E+r=" (90)
0<i<i—1
1=¢—-1mod 2
2% —0+1
PlaW= Il  Q-l+=F (91)
0<i<¢-1
1= ¢ mod 2

THEOREM 6. Let T = T°°) be the augmented TD-algebra. Let V = V(f,0)) ® - ®
V(£n,a,) be the T-module constructed in Theorem 3, Theorem 4, or Theorem 5 as a tensor
product of evaluation modules. The zeros of the Drinfel’d polynomial of the T-module V are
given as follows with the aid of Proposition 4. In particular, the type s of the T-module V
does not affect the Drinfel’d polynomial, although it appears in the definition of it.

(1) For T = T of type I or type I,

Py(X) = H Py (t,,00)(N)- (92)



(2) For T = 7;(6’6*) of type 111,

n

PP = [T A0y (93)
=1

PP =T PSe™\ N, (94)
=1

where n; = > _. £, mod 2 (n; € {0,1}) with the understanding of n, = 0.

v=i+1

6 The irreducibility and the isomorphism class of the
T-module V

Let T = 7;(5‘8*) be the augmented TD-algebra. Let V (¢, a) be the evaluation module for 7
constructed in Section 4.
If T is of type I, we define a g-string S(¢, a) associated with V' (¢, a) to be

S(¢,a) ={ag® " |0<i< -1} (95)

If (g,e*) = (1,0), notice that a is allowed to be zero, in which case we understand that
S(¢£,0) is a multi-set of £ zeros. The positive integer ¢ is called the length of the g-string
S(¢,a). Two g-strings S(¢,a) and S(¢',a’) are said to be in general position if either (i) one
is contained in the other as sets or (ii) the union as sets of the two g-strings does not make
up a g-string. So two g¢-strings are not in general position if and only if the union as sets
of the two g-strings becomes a g-string which has a longer length than that of each of the
two. In the case of (g,¢*) = (1,0), we understand that S(¢,0) is in general position with any
S(¢,a’) (a’ # 0) and not in general position with any S(¢,0).

If T is of type II, we define a string S(¢, a) associated with V' (¢, a) to be

Stta)=fa+ 2 o<i<e-1), (96)

The positive integer £ is called the length of the string S(¢,a). Two strings S(¢,a) and
S(¢',a’) are said to be in general position if either (i) one is contained in the other as sets
or (ii) the union as sets of the two strings does not make up a string.

If T is of type III, we define a signed string S™ (£, a) associated with V' (¢,a) to be

2—4+1
: 2

where i € {0,1}. The positive integer £ is called the length of the signed string St (¢, a).
Two signed strings S™ (¢, a) and S™)(¢,a') are said to be in general position if either (i)
one is contained in the other as sets or (ii) the union as sets of the two signed strings does

not make up a signed string. The transpose of a signed string S (¢, a), which is denoted by
tS!) (¢, a), is defined to be

S, a) = {(a+ (=) 0 < <01}, (97)

2t—0+1
2 9
Note that tS™ (£, a) = SM (¢, —a) if £ is odd, and tS™ (¢, a) = SE= (¢, —a) if £ is even.

tSM (¢, a) = {(—a — (=)™ [0 <i< -1} (98)

161



162

THEOREM 7. Let T = T.°°") be the augmented TD-algebra. Let V = V(ti,a) ® - ®
V(€,,a,) be the T-module constructed in Theorem 3, Theorem 4, or Theorem 5 as a tensor
product of evaluation modules. Let d and s be the diameter and the type of the T-module V.
Let Py (M) (resp. P‘(,")(/\) forn =0,1) be the Drinfel’d polynomial of the T -module V in the
case of type I or type II (resp. type III).

(1) Assume that T = 771(5’5*) is of type I. The T-module V is irreducible if and only if the
following (a) and (b) hold:

(a) Py()\) does not vanish at A = es™2 + &*s%, i.e., 04 # 0.

(b) For all distinct i, j € {1,--- ,n}, the g-strings S(¢;, a5*), S(¢;,a;’) are in general
position for any €;,€; € {£1} in the case of (€,€*) = (1, 1), the g-strings S(4;, a;),

S(¢;,a;) are in general position in the case of (¢,e*) = (1,0) or (0,0).

(2) Assume that T = T.5%) is of type II. The T-module V is irreducible if and only if the
following (a) and (b) hold:

(a) Py()\) does not vanish at A = ee*s? + &(1 — &*)s, i.e., 04 # 0.

(b) For all distinct 1, j € {1,--- ,n}, the strings S(¢;,€,a;), S(¢;,€;a;) are in general
position for any €;,€; € {£1} in the case of (e,€*) = (1,1); the strings S(4;, a;),
S(4;,a;) are in general position in the case of (€,€*) = (1,0); a; # a; in the case
of (g,€*) = (0,0).

(3) Assume that T = T is of type IIl. The T-module V is irreducible if and only if
the following (a) and (b) hold:

(a) PSP(\) does not vanish at A= s* forn=d+1 mod 2, i.e., 04 # 0.

(b) For all distinct i, j € {1,--- ,n}, the signed strings S™)(¢;,a;), S™)(¢;,a;) are
in general position and the signed strings S (£;, a;), tS™)(¢;,a;) are in general
position, where n; =3 0 _,, 6, mod 2, n; =3 0_.., £, mod 2.

Note that the irreducible T-modules V that appear in Theorem 7 are regular.

THEOREM 8. Let T = T be the augmented TD-algebra. Let V = V(l1,01) ® -+ ®
Vln,a,), VI =V(¥,a])®--QV(L,,a.,) be T-modules constructed in Theorem 3, Theorem
4, or Theorem 5 as a tensor product of evaluation modules. Let s, s’ be the types of the T -
modules V', V', respectively. Assume that V and V' are irreducible as T-modules. Then the
T -modules V and V' are isomorphic if and only if (a) s = s’ and (b) Py(\) = Py:/()\) in the
case of type I or type II; P‘(,")(/\) = P‘(/'Z)()\) forn = 0,1 in the case of type III. The condition
(b) is equivalent to saying that there exist a permutation 7 of 1,--- ,n such that the following
holds for 1 <i < n:

(1) In the case of type I,

S, a;) = S(E,,(i),afr’a;)) for some ey € {£1} if (e,€*) = (1,1) ;

(Rt

S, a}) = Sy, an)) o (6,€%) = (1,0) or (0,0).

(2Nl



(2) In the case of type II,

( ¢ ,‘) = S(gﬂ-(z'),&‘ﬂ(i)aw(i)) f07" some €q(;) € {:l:l} if (6,5*) = (]_, l),’
S(e',m 'L) S(eﬂ‘(i)aaﬂ(i)) Zf (575*) = (1,0) or (O, 0)

(8) In the case of type III,

SE (8 al) = ST (o), angsy) 0or LST) (Lriiy, @mgs)),

where n; =30 i, 6, mod 2, m; =330, £, mod 2.
THEOREM 9. Let T = T.°°") be the augmented TD-algebra of type I, type II or type III. For
any finite-dimensional irreducible T-module V' that is regular, there exist evaluation modules
V(i,a;), 1 <1 < n, for some n such that the T-module V is isomorphic to the T-module
V(l,01) ® --- @ V(£y, an) that is constructed in Theorem 3, Theorem 4, or Theorem 5 as a
tensor product of evaluation modules.

7 The classification of standardized TD-pairs

Let T = 7;(5’6*) be the augmented TD-algebra. Let V be a finite-dimensional irreducible
T-module that is regular. By Theorem 9, we may assume V is one of the 7-modules
constructed in Theorem 3, Theorem 4, or Theorem 5 as a tensor product of evaluation
modules: V = V({1,0)) ® -+ ® V(Kn,an) Let Py()) (resp. P”()) for n = 0,1) be the
Drinfel’d polynomial of the 'T -module V in the case where T is of type I or type II (resp.
type III). We denote the diameter and the type of the T-module V' by d and s, respectively.
Recall that ¢* # 1, 1 < i < d, is assumed if T is of type L.

Let p1 : T — End(V) be the finite-dimensional irreducible representation of 7 afforded
by the T-module V. Let A = A$*) be the TD-algebra. As in (47), we consider the
representation pg = p; oy : A — End(V) of A, where ¢, : A — T is the algebra
homomorphism from Proposition 1.

THEOREM 10. Let A = py(z), A* = po(z*) be the diagonalizable linear transformations from
(48). Assume 0; # 0; and 07 # 67 for distinct i,5 € {0,--- ,d}, where 6;, 0} are from (49),
(50), (51), (52), (53), (54) according to the type of the TD-algebra A = AF*<).

(1) The representation py of A is irreducible if and only if Py (\) does not vanish at A = t*+
ee*t=2 in the case of type I; Py () does not vanish at A = ee*t?—e(1—e*)t—(1—¢)(1—¢")
in the case of type II; P‘(,O)()\) does not vanish at X\ = t? in the case of type III.

(2) If po is irreducible, then the pair A, A* becomes a standardized TD-pair. This con-
struction by means of (48) exhausts all the standardized TD-pairs. Moreover in this
construction, the isomorphism class of a standardized TD-pair is in one-to-one cor-
respondence with the trio ({6;}4 0 {62}y, Py(X)) in the case of type I or type II, the
trio ({6}, {6: 3%, (P(O)(/\) ()\))) in the case of type III. More precisely, if a con-
struction produces a standardzzed TD-pair and a trio, then any other construction that
results in the same standardized TD-pair up to isomorphism (resp. the same trio) has
to produce the same trio (resp. the same standardized TD-pair up to isomorphism,).
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REMARK 2. By Theoreml0, we define the Drinfel’d polynomial of a standardized TD-
pair A, A* to be the polynomial P;/()\) in the case of type I and type II; to be the pair
(P‘(,O)()\), P‘(,l) (A)) of polynomials in the case of type III. This definition agrees with that of
[6] for type I and type II, but not for type III; the definition of [6] needs to be amended in
the case of type IIIL.
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