
Towards Type System by Computer Algebra Systems
in Programming Language

(Extended Abstract)

Hisashi MIYASHITA Tetsu YAMAGUCHI Takashi IWAGAYA
Cybernet Systems$*$ Maplesoft\dagger Cybernet Systems\ddagger

Gun EKI
Cybernet Systems\S

Computer Algebra Systems (CAS) have been expanding the application area from fundamental science
such as mathematics and physics to applied technologies such as mechanics, electronics, and nancial
engineering. However, it is still under way to integrate CAS features with Programming Language (PL)
features, and we presume it is because the differences between these two computation models are so large
that we have not justi ed good motivations to bridge the gap.

We propose Hybrid System would be a common important challenge that the integration of CAS and
PL requires since it typically requires CAS to describe continuous systems and PL to describe discrete
systems. We are now trying to verify controller software with plant models in CAS by using our MapleSim
modeling environment.

1 Introduction

Computer Algebra Systems (CAS) have been expanding the application area from fundamental science
such as mathematics and physics to applied technologies such as mechanics, electronics, and nancial
engineering. However, it is still under way to integrate CAS features with Programming Language (PL)
features.

There have been a lot of researches to seek the possibility that computer systems may solve mathemat-
ical problems by exploiting the technologies of CAS and PL. Since CAS provides critical functionalities to
translate, simplify, and solve mathematical expressions, mainly for proving theorems and solving logical
conditions, many applications written in PL need to use them for such purposes. However, we have not
yet successfully reached any common understanding on both computation models.

To the best of our knowledge, there have been at least three approaches to integrate CAS features on
PL environment:

Believing Approach (Simple Integration) This approach [1] allows to use CAS functionalities from
other programming environments. While we are able to use both features, we need to understand both
programming models and translate the results of CAS to use them in the other environment under
the trust in CAS. It may be a problem for more efficient and reliable computation. This approach is
effective to use CAS as a solver because users have only to care about the truth of the results while
the results are still unreliable.

himi@meadowy.org
\dagger

tetsuy@maplesoft.com

iiwagaya@cybernet.co.jp
\S g-eki@cybernet.co.jp

数理解析研究所講究録

第 1927巻 2014年 128-130 128

Autarkik Approach This approach reimplements CAS features in PL (or theorem prover) environ-
ment because proving mathematical theorems requires the full proofs for all of the algorithms in the
environment, which is driven by Curry-Howard isomorphism [6] that ensures any typed programs
be regarded as proofs. While this approach assures correctness of programs and their corresponding
theorems, it is quite hard to implement efficient CAS algorithms with the proofs so that it would be
too slow for mathematical computations [2].

Skeptical Approach Although Autarkik approach ensures that the results are proven to be correct,

the computation without CAS is not effcient and lacking the important functionalities to manipulate

mathematical expressions. In particular to the applications of systems of equations, it will be problem-

atic for users to prove theorems. In Skeptical Approach, we can use CAS functionalities to transform
mathematical expressions and then need to check the validity that the transformed expressions equal
to the original expressions by using the theorem prover. Maple-Coq [2] adopts this approach for users
to use both functions of Maple and Coq.

Still, all of the approaches are intended to use the functionalities of CAS and PL or optimize per-

formance of theorem provers. We believe, however, we can invent innovations by fusing CAS and PL to
open up new applications among the areas of mathematics, programming, and modeling. For example, if

we can verify programs by using CAS functionalities, it will open up new possibilities to establish more
efficient and productive programming environment.

We presume it is caused that the fundamental differences of the computation models between CAS
and PL. In the algebraic view, CAS is based on ring or eld theories in their computation model in
order to reduce or optimize input equations to efficient ones, while PL requires more primitive algebraic
structures, e.g., typed lambda calculus is equivalent with Cartesian closed categories [3], which assumes
much looser algebraic structure than ring and eld. Therefore, it is not typical to nd problems that
require both levels of computation models. If some problems require exible computation models, they
would use PL or category based theories, otherwise, they require only limited expressive power, they
would use CAS for efficient computation.

The observations we discussed so far suggest that we need to nd out common important challenges
for CAS and PL researchers to vigorously take up. In this paper, we propose Hybrid Systems as this
challenge, which consists of CAS-based mathematical expressions and PL-based software. However, we
believe that there would be other problems that needs both CAS and PL, but it should be future work.

2 Hybrid Systems

Hybrid system is a system consisting of elements behaving both continuously and discretely, which are
typically called continuous and discrete systems, respectively. In many cases, continuous systems are
physical systems, such as mechanical and electrical systems, while discrete systems are realized by using
software.

Due to this characteristics, hybrid system is a motivating example that requires CAS to describe
continuous systems in Differential Algebraic Equations (DAEs) and PL to describe discrete systems in
software. Note that since physical systems in lumped element models can be described by using DAEs,
which can be captured as ring algebra and thus we can exploit CAS to simulate such systems.

We are now trying to establish embedded software veri cation in hybrid systems by exploiting control-
loop structure of such systems. We illustrate the schema of the veri cation in Figure 1. Since the most
of the hybrid systems are forming control loops where controllers by software control plants by multi-
domain physical elements such as mechanics and electronics, we can formalize the speci cation of the
control software by using the formal speci cation of plant models.

We have been developing MapleSim [4] modeling environment to describe multi-domain plant models
in formalized mathematical equations, and thus we are expecting to derive preconditions and postcondi-
tions of controller software in such equations. As stated in [5], these conditions can be translated into
type system in PL and thus CAS is expected to be used for type checking of such software.

129

Figure 1: Verifying controller software by using plant models

3 Concluding Remarks

As we have discussed, the existing researches suggest that while the integration of CAS and PL is
proposed to enrich the functionalities and optimize their computation, we have not yet established “killer
applications” that critically need such integration.

We presume that this is caused by the chasm between algebraic structures between CAS, based on
ring and eld theories, and PL, based on the looser algebraic structures such as category theory. Since it
is a fundamental difference in their computation models, convincing reasons why we need the integration
between CAS and PL are not so apparent.

Therefore, identifying valuable challenges that require both of the computation models would be an
important next step to justify such integration.

We propose hybrid systems consisting of discrete (PL) and continuous (CAS) systems for this chal-
lenge, and now trying to use plant models in CAS to describe formal speci cations of controller software
in control-loop systems. By using our MapleSim systems, we expect to reduce such plant models in DAE
to mathematical equations and then verify controller software to establish new type systems for software.

References

[1] Andrew Adams, Martin Dunstan, Hanne Gottliebsen, Tom Kelsey, Ursula Martin, and Sam Owre.
Computer algebra meets automated theorem proving: Integrating Maple and PVS. In Theorem
proving in higher order logics, pages 27-42. Springer, 2001.

[2] David Delahaye and Micaela Mayero. Dealing with algebraic expressions over a eld in Coq using
Maple. J. Symb. Comput., $39(5):569-592$, May 2005.

[3] G\’erard Huet. Cartesian closed categories and lambda-calculus. In Combinators and Rmctional
Programming Languages, pages 123-135. Springer, 1986.

[4] Maplesoft. MapleSim, http: $//www$.maplesoft.com/products/maplesim/.

[5] Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. Hoare type theory, polymorphism and
separation. Journal of Functional Programming, $18(5-6):865-911$, 2008.

[6] Morten Heine $S\emptyset$rensen and Pawel Urzyczyn. Lectures on the Curry-Howard isomorphism, volume
149. Elsevier, 2006.

130

