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ABSTRACT. Polar actions on complex hyperbolic spaces without singular
orbits have been classified by Berndt and D\’iaz-Ramos. In this paper, we
$wi]]$ focus on geometry of their $orbit_{b},$ aIld lne1ltion classifications of the
minimal ones and Ricci soliton ones.

1. INTRODUCTION

A submanifold of a complex hyperbolic space $\mathbb{C}H^{n}$ is said to be homogeneous
if it is an orbit of an isometric action on $\mathbb{C}H^{n}$ . Note that by an isometric
action we always mean an action of a connected closed subgroup of the isome-
try group. Homogeneous submanifolds of $\mathbb{C}H^{n}$ have studied very actively and
deeply (refer to, for instance, [1, 6, 11, 12, 15] and references therein). They
are of particular interest from the viewpoint not only of submanifold geometry
of $\mathbb{C}H^{n}$ , but also of studies of homogeneous submanifolds in other symmetric
spaces of noncompact type.

In this paper, we consider the case where isometric actions on $\mathbb{C}H^{n}$ are polar,
and study the geometry of the orbits of such actions. An isometric action
on a Riemannian manifold $M$ is said to be polar if there exists a connected
complete submanifold $\Sigma$ of $M$ such that $\Sigma$ meets each orbit of the action and
is perpendicular to each orbit at every intersection point. Note that such a
submanifold $\Sigma$ is called a section of the action, and it is always a totally geodesic
submanifold (for instance, see [3, Theorem 3.2.1]). For more details of polar
actions, for instance, refer to [2, 4, 5, 9, 13, 14] and references therein.

We moreover restrict to the case where polar actions on $\mathbb{C}H^{n}$ induce homoge-
neous polar foliations, that is, have no singular orbits. In this case, the actions
have been classified by Berndt and D\’iaz-Ramos in [4]. They have proved that
there exist exactly $2n-1$ actions which induce nontrivial homogeneous polar
foliations of $\mathbb{C}H^{n}$ up to orbit equivalence. Recall that a homogeneous foliation
of $\mathbb{C}H^{n}$ is said to be trivial if the leaves are points in $\mathbb{C}H^{n}$ or the leaf coincides
with $\mathbb{C}H^{n}$ . Moreover, the author have classified orbits of such polar actions
up to isometric congruence, and have given explicit expressions of the orbits in
[15]. The subject of this paper is to review the above results on geometry of the
orbits, and also to announce our recent work on Ricci solitons (Subsection 3.2).
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Remark 1.1. Our results in this paper include the some known results in the
case of cohomogeneity one actions on $\mathbb{C}H^{n}$ in [1, 6, 12]. See Remark 3.3 and
3.12 for more details.

This paper is organized as follows. In Section 2, we recall the solvable model
of a complex hyperbolic space $\mathbb{C}H^{n}$ , and review the classifications of homoge-
neous polar foliations of $\mathbb{C}H^{n}$ and the orbits of such actinos. In Section 3, we
mention the curvature properties of the orbits in $\mathbb{C}H^{n}$ . Firstly, we mention
the minimality of the orbit and the classification of the minimal orbits, which
are obtained in [15]. Secondly, we announce our recent result on homogeneous
Ricci soliton submanifolds of $\mathbb{C}H^{n}$ . In particular, we classify the orbits which
are Ricci solitons.

2. PRELIMINARIES

2.1. The solvable models of complex hyperbolic spaces. In this subsec-
tion, we prepare the solvable models of complex hyperbolic spaces $\mathbb{C}H^{n}$ with
$n\geq 2$ , which we need in the following sections. We refer mainly to [8], [11].

Definition 2.1. We call a triple $(\mathfrak{s}, \langle, \rangle, J)$ the solvable model of $\mathbb{C}H^{n}$ if

(1) $\mathfrak{s}$ $:=span_{\mathbb{R}}\{A_{0}, X_{1}, Y_{1}, . . . , X_{n-1}, Y_{n-1}, Z_{0}\}$ is a Lie algebra whose bracket
relations are defined by

$[A_{0}, X_{i}]=(1/2)X_{i},$ $[A_{0}, Y_{i}]=(1/2)Y_{i},$ $[A_{0}, Z_{0}]=Z_{0},$ $[X_{i}, Y_{i}]=Z_{0},$

(2) $\langle,$ $\rangle$ is an inner product on $\mathfrak{s}$ such that the above basis is orthonormal,
(3) $J$ is a complex structure on $\mathfrak{s}$ defined by

$J(A_{0})=Z_{0}, J(Z_{0})=-A_{0}, J(X_{i})=Y_{i}, J(Y_{i})=-X_{i}.$

Let $S$ be the simply-connected Lie group with Lie algebra $\mathfrak{s}$ . One knows the
expression of the complex hyperbolic space as a homogeneous space, that is,

$\mathbb{C}H^{n}=SU(1, n)/S(U(1)\cross U(n))$ .

The Lie group $S$ coincides with the solvable part of the Iwasawa decomposition
of $SU(1, n)$ . Furthermore, we can naturally identify $\mathbb{C}H^{n}$ with the Lie group $S.$

More precisely, we have the following.

Proposition 2.2. Denote by the same symbols $\langle,$ $\rangle$ and $J$ the induced left-
invariant Riemannian metric and the complex structure on $S$ , respectively.
Then, $(S, \langle, \rangle, J)$ is holomorphically isometric to $\mathbb{C}H^{n}$ with constant holomorphic
sectional curvature $-1.$

2.2. Classifications of polar actions on complex hyperbolic spaces and
their orbits. In this subsection, we recall the classification of polar actions on
$\mathbb{C}H^{n}$ without singular orbits by Berndt and D\’iaz-Ramos. And then, we recall
the classification of the orbits of such actions by the author.

First of all, we introduce Lie subgroups $S_{b}(\varphi)$ of $S$ , which play essential roles
in the study of polar actions on $\mathbb{C}H^{n}$ without singular orbits. For $\varphi\in[0, \pi/2],$

let us define
$\xi_{0}:=\cos(\varphi)X_{1}+\sin(\varphi)A_{0}.$

We mean always $by\ominus the$ orthogonal complement with respect to $\langle,$ $\rangle.$
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Definition 2.3. For $b\in\{1, . . . , n\}$ and $\varphi\in[0, \pi/2]$ , we define $\mathfrak{s}_{b}(\varphi)$ as follows:

(1) if $\varphi\in[0, \pi/2)$ , then set

$\mathfrak{s}_{b}(\varphi):=\mathfrak{s}\ominus span_{\mathbb{R}}\{\xi_{0}, X_{2}, . . . , X_{b}\},$

where $b\in\{1, . . . , n-1\},$

(2) if $\varphi=\pi/2$ , then set

$\mathfrak{s}_{b}(\pi/2) :=\mathfrak{s}\ominus span_{\mathbb{R}}\{X_{1}, X_{2}, . . . , X_{b}\},$

where $b\in\{1, . . . , n\}.$

One can easily check that $\mathfrak{s}_{b}(\varphi)$ is a Lie subalgebra of $\mathfrak{s}$ of codimension $b.$

Note that $\mathfrak{s}_{b}(\pi/2)$ is nilpotent, whereas $\mathfrak{s}_{b}(\varphi)$ is solvable but is not nilpotent for
$\varphi\in[0, \pi/2),.$

Denote by $S_{b}(\varphi)$ the connected Lie subgroup of $S$ with Lie algebra $\mathfrak{s}_{b}(\varphi)$ .
Then, one can show that the action of $S_{b}(\varphi)$ on $\mathbb{C}H^{n}$ induces a homogeneous
polar foliation of cohomogeneity $b$ , and its section is a totally geodesic real
hyperbolic space $\mathbb{R}H^{b}$ . Furthermore, we have the following classification result.

Theorem 2.4 ([4]). An isometric action on $\mathbb{C}H^{n}$ induces a nontrivial homo-
geneous polar foliation of $\mathbb{C}H^{n}$ if and only if it is orbit equivalent to one of the
following:

(1) the action of $S_{b}(0)$ , where $b\in\{1, . . . , n-1\},$

(2) the action of $S_{b}(\pi/2)$ , where $b\in\{1, . . . , n\}.$

We next mention the classification of the orbits of polar actions on $\mathbb{C}H^{n}$

without singular orbits, up to isometric congruence. Denote by $0$ the origin of
$\mathbb{C}H^{n}.$

Theorem 2.5 ([15]). Every orbit of polar actions on $\mathbb{C}H^{n}$ without singular
orbits is isometrically congruent to one of the following:
(1) the orbit $S_{b}(\varphi).0$ , where $b\in\{1, . . . , n-1\}$ and $\varphi\in[0, \pi/2$ ),
(2) the orbit $S_{b}(\pi/2).0$ , where $b\in\{1, . . . , n\}.$

Remark 2.6. For $p\in \mathbb{C}H^{n}$ , the orbit $S_{b}(0).p$ is isometrically congruent to the
orbit $S_{b}(\varphi).0$ for some $\varphi\in[0, \pi/2$ ) ([15, Proposition 4.5]). In paticular, we note
that $\varphi$ is explicitly given by

$\varphi=\arcsin(\tanh(t_{0}/2))$ ,

where $t_{0}$ is the distance between the origin $0$ and the orbit $S_{b}(0).p$ . On the
other hand, the action of $S_{b}(\pi/2)$ has congruency of orbits ([15, Theorem 5.1]).
Namely, for each $b\in\{1, . . . , n\}$ , every orbit of $S_{b}(\pi/2)$ is isometrically congruent
to the orbit $S_{b}(\pi/2).0$ . Refer to [16] for more details of the congruency of orbits.

3. CURVATURE PROPERTIES

In this section, we study the curvature properties of the orbit $S_{b}(\varphi).0.$

Let us recall that $\mathbb{C}H^{n}$ can be identified with the Lie group $S$ . One thus can
identify the submanifold $S_{b}(\varphi).0$ with the Lie subgroup $S_{b}(\varphi)$ equipped with
the induced left-invariant metric. Throughout this section, therefore, we shall
express the curvatures in terms of the metric Lie algebra $\mathfrak{s}_{b}(\varphi)$ .
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3.1. The minimality. In this subsection, we mention the minimality of the
orbit $S_{b}(\varphi).0$ obtained in [15].

Proposition 3.1 ([15]). The mean curvature vector $\mathcal{H}$ of $S_{b}(\varphi)$ is given by

$\mathcal{H}=(1/2)(2n-b+1)\sin(\varphi)\xi_{0},$

Hence, the orbit $S_{b}(\varphi).0$ is minimal if and only if $\varphi=0.$

Recall that $\varphi=\arcsin(\tanh(t_{0}/2))$ , where $t_{0}$ denotes the distance between $0$

and $S_{b}(0).p$ . It hence follows from the monotonicity of this function that $\varphi=0$

if and only if $t_{0}=0$ . Altogether, we have the following result.

Theorem 3.2. For $\varphi\in[0, \pi/2$ ), the action of $S_{b}(O)$ has the unique minimal
orbit $S_{b}(0).0$ , whereas the action of $S_{b}(\pi/2)$ has no minimal orbits.

Remark 3.3. In the case of cohomogeneity one, namely, $b=1$ , the actions of
$S_{1}(\pi/2)$ and $S_{1}(O)$ on $\mathbb{C}H^{n}$ are well-known. Especially, Theorem 3.2 has been
proved in [1] (also refer to [6]).

(1) The action of $S_{1}(\pi/2)$ induces the so-called solvable foliation, and the orbit
$S_{1}(0).0$ is a unique minimal orbit. In fact, $S_{1}(0).0$ is known as the homo-
geneous ruled minimal hypersurface, and the other orbits are equidistant
hypersurfaces to $S_{1}(0).0.$

(2) The action of $S_{1}(\pi/2)$ , which is the nilpotent part of the Iwasawa decom-
position of $SU(1, n)$ , induces the so-called horosphere foliation, and every
orbit is known as a horosphere of $\mathbb{C}H^{n}$ . In this case, the action of $S_{1}(\pi/2)$

has congruency of orbits, and has no minimal orbits.

The mean curvature vector is said to be parallel if $\nabla_{X}^{\perp}\mathcal{H}=0$ holds for any
$X\in \mathfrak{s}_{b}(\varphi)$ , where $\nabla^{\perp}$ denotes the normal connection of $S_{b}(\varphi)$ . One can obtain
the following by direct calculations.

Proposition 3.4. The mean curvature vector $\mathcal{H}$ of $S_{b}(\varphi)$ is always parallel.

Remark 3.5. We note that the proposition above can be shown by the general
theory of polar actions. As we mentioned before, the action of $S_{b}(\varphi)$ is polar,
and the orbit $S_{b}(\varphi).0$ is a principal orbit of the action. Therefore, it follows from
[3, Corollary 3.2.5] that the mean curvature vector field on $S_{b}(\varphi).0$ is parallel
with respect to $\nabla^{\perp}.$

3.2. Ricci solitons. In this subsection, we announce our recent result on $ho-$

mogeneous Ricci soliton submanifolds of complex hyperbolic spaces $\mathbb{C}H^{n}$ . In
particular, we classify the orbits $S_{b}(\varphi)$ which are Ricci solitons.

First of all, let us recall the notion of Ricci solitons.

Definition 3.6. A Riemannian manifold $(M, g)$ is called a Ricci soliton if its
Ricci curvature $ric$ satisfies

$ric=cg+\mathcal{L}_{X}g$

for some $c\in \mathbb{R}$ and some vector field $X\in X(M)$ , where $\mathcal{L}_{X}$ denotes the usual
Lie derivative.

It is easy to see that the notion of Ricci solitons is a generalization of Einstein
manifolds. We now also recall the notion of algebraic Ricci solitons, which
essentially have been introduced by Lauret (see [17, 18

16



Definition 3.7. A metric Lie algebra $(\mathfrak{g}, \langle, \rangle)$ is called an algebraic Ricci soliton
if its Ricci operator $Ric:\mathfrak{g}arrow \mathfrak{g}$ satisfies

(3.1) $Ric=c\cdot id_{\mathfrak{g}}+D$

for some $c\in \mathbb{R}$ and some $D\in Der(\mathfrak{g})$ , where Der ( $\mathfrak{g}$ ) denotes the Lie algebra of
derivations on $\mathfrak{g}.$

Remark 3.8. Let $(G, g)$ be a simply-connected Lie group with a left-invariant
metric, and $(\mathfrak{g}, \langle, \rangle)$ be the corresponding metric Lie algebra. Then, one knows
that $(G, g)$ is a Ricci soliton if $(\mathfrak{g}, \langle, \rangle)$ is an algebraic Ricci soliton. In addition,
if $G$ is completely solvable, which means that the eigenvalues of any $ad_{X}$ are all
real, then the converse also holds. See [18] for more details.

By direct calculations, one can see that $S_{b}(\varphi)$ is completely solvable. There-
fore, we have only to study whether $\mathfrak{s}_{b}(\varphi)$ is an algebraic Ricci soliton for our
goal.

Firstly, we consider the case of $\mathfrak{s}_{b}(\pi/2)$ , that is, the nilpotent case. It is easy
to show that a direct sum as metric Lie algebras of an algebraic Ricci soliton
and an abelian Lie algebra is also an algebraic Ricci soliton. Hence, one has
the following.

Proposition 3.9. For each $b\in\{1, . . . , n\}$ , the metric Lie algebra $\mathfrak{s}_{b}(\pi/2)$ is
an algebraic Ricci soliton.

In the other cases, the structure theorem for algebraic Ricci solitons [18,
Theorem. 4.8] yields the following.

Proposition 3.10. For $b\in\{1, . . . , n-1\}$ and $\varphi\in[0, \pi/2$ ), the metric Lie
algbera $\mathfrak{s}_{b}(\varphi)$ is an algebraic Ricci soliton if and only if $b=n-1$ and $\varphi=0.$

Altogether, we have the following result.

Theorem 3.11. The orbit of $S_{b}(\varphi).0$ in $\mathbb{C}H^{n}$ is a Ricci soliton if and only if
(1) $b=n-1$ and $\varphi=0$ , or
(2) $\varphi=\pi/2.$

Remark 3.12. In the case of cohomogeneity one, Theorem 3.11 has been
proved in [12]. Note that the proofs in [12], which are based on the explicit
formulas for the Ricci operators, are direct and elementary.

REFERENCES

[1] J. Berndt, Homogeneous hypersurfaces in hyperbolic spaces, Math. Z., 229 (1998), no. 4,
589-600.

[2] J. Berndt, Polar actions on symmetric spaces, in: Proceedings of the Fifteenth Interna-
tional Workshop on Diff. Geom., 15 (2011), 1-10.

[3] J. Berndt, S. Console & C. Olmos, Submanifolds and holonomy, Chapman & Hall/CRC
Research Notes in Mathematics, 434. Chapman & Hall/CRC, Boca Raton, FL, 2003.

[4] J. Berndt & J. C. Diaz-Ramos, Homogeneous polar foliations of complex hyperbolic
spaces, Comm. Anal. Geom., 20 (2012), no. 3, 435-454.

[5] J. Berndt, J. C. D\’iaz-Ramos & H. Tamaru, Hyperpolar homogeneous foliations on sym-
metric spaces of noncompact type, J. Differential Geom., 86 (2010), no. 2, 191-235.

[6] J. Berndt & H. Tamaru, Homogeneous codimension one foliations on noncompact sym-
metric spaces, J. Differential Geom., 63 (2003), no. 1, 1-40.

17



[7] J. Berndt & H. Tamaru, Cohomogeneity one actions on noncompact symmetric spaces of
rank one, $\mathcal{I}rans$ . Amer. Math. Soc., 359 (2007), no. 7, 3425-3438.

[8] J. Berndt, F. Tricerri & L. Vanhecke, Generalized Heisenberg groups and Damek-Ricci
harmonic spaces, Lecture Notes in Mathematics, 1598. Springer- Verlag, Berlin, 1995.

[9] J. C. D\’iaz-Ramos, Polar actions in complex space forms, in: Proceedings of the Sixteenth
$Inte\gamma\gamma\iota$ational on Diff. Geom., 16 (2012), 71-90.

[10] J. C. D\’iaz-Ramos, M. Dom\’inguez-V\’azquez & A. Kollross, Polar actions on complex

hyperbolic spaces. preprint, arXiv:120S.2823v2.
[11] T. Hamada, Y. Hoshikawa & H. Tamaru, Curvature properties of Lie hypersurfaces in

the complex hyperbolic space, J. Geom., 103 (2012), no. 2, 247-261.
[12] T. Hashinaga, A. Kubo & H. Tamaru, Homogeneous Ricci soliton hypersurfaces in the

complex hyperbolic spaces, preprint, arXiv:1305.612Sv1.
[13] E. Heintze, X. Liu & C. Olmos, Isoparametric submanifolds and a Chevalley-type restric-

tion theorem, in: Integrable systems, geometry, and topology, 151-190, AMS/IP Stud.
Adv. Math., 36, Amer. Math. Soc., Providence, RI, 2006.

[14] E. Heintze, R. S. Palais, C. L. Terng & G. Thorbergsson, Hyperpolar actions on sym-
metric spaces, Geometry, topology, & physics, 214-245, Conf. Proc. Lecture Notes Geom.
Topology, IV, Int. Press, Cambridge, MA, 1995.

[15] A. Kubo, Geometry of homogeneous polar foliations of complex hyperbolic spaces, Hi-

roshima Math. J., to appear.
[16] A. Kubo & $\ddagger$ I. Tamaru, A sufficient condition for congruency of orbits of Lie grollps and

some applications, Geom. Dedicata, 167 (2013), 233-238.
[17] J. Lauret, Ricci soliton homogeneous nilmanifolds, Math. Ann., 319 (2001), 715-733.
[18] J. Lauret, Ricci soliton solvmanifolds, J. reine angew. Math., 650 (2011), 1-21.

DEPARTMENT OF MATHEMATICS, HIROSHIMA UNIVERSITY, HIGASHI-HIROSHIMA 739-8526,

JAPAN
$E$-mail address: akira-kubo@hiroshima-u.ac.jp

18


