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1 Introduction

In this article we consider the existence problem of flat projective structures on man-
ifolds. Firstly we recall the definition of flat projective structures. Let $\nabla$ and $\nabla’$ be
torsion-free affine connections on a manifold $M$ of dimension $n.$ $\nabla$ and $\nabla’$ are said
to be projectively equivalent if there exists a 1-form $\lambda$ such that $\nabla_{X}Y-\nabla_{X}’Y=$

$\lambda(X)Y+\lambda(Y)X$ for vector fields $X$ and $Y$ on $M$ . A projective equivalence class
of $\nabla$ is called a projective structure and denoted by $[\nabla]$ . The affine connection $\nabla$

is called projectively flat if $\nabla$ is locally projectively equivalent to a flat affine con-
nection. If $\nabla$ is projectively flat, then $[\nabla]$ is called a flat projective structure. We
can rephrase projectively flatness by using tensors. For $n\geq 3$ the connection $\nabla$

is projectivley flat if Weyl’s projective curvature tensor vanishes, i.e. $W(X, Y)Z=$

$R(X, Y)Z+[P(X, Y)-P(Y, X)]Z-[P(Y, Z)X-P(X, Z)Y]=0$ (cf. [10]). For $n=2,$
$\nabla$ is projectivley flat if $\nabla_{X}P(Y, Z)=\nabla_{Y}P(X, Z)$ . Here $P$ is the $(1, 1)$-tensor defined
by $P(X, Y)= \frac{1}{n^{2}-1}[nRic(X, Y)+Ric(Y,$ $X$

When the base space is a Lie group, $\nabla$ is called left invariant if it satisfies $L_{a}^{*}\nabla=\nabla$

for the left translation by any element $a$ of the group. Concerning a left invariant flat
projective structure (abbrev. IFPS) on Lie group, Y.Agaoka [1] made a correspondence
between IFPSs and certain Lie algebra homomorphisms called (P)-homomorphisms by
using Cartan connections. Let $L$ be a $n$-dimensional Lie group with Lie algebra $\mathfrak{l}.$

Denote by $\{e_{1}, . . . , e_{n+1}\}$ the standard basis of $R^{n+1}$ and by $\{X_{1}, . . . , X_{n}\}$ a basis of $t.$

Then a Lie algebra homomorphism $f$ : $\mathfrak{l}arrow \mathfrak{s}((n+1, R)$ is called $a(P)$-homomorphism
if $f(X_{i})e_{n+1}=e_{i}+\alpha e_{n+1}$ for some $\alpha\in R$ . By using the Weyl’s curvature tensor the
correspondence can be directly stated as follows (see [5] for the proof): The set of
left invariant projectively flat affine connections $\nabla$ on $L$ is bijectively corresponding
to the set of (P)-homomorphisms $f$ : $\mathfrak{l}arrow \mathfrak{s}\mathfrak{l}(n+1, R)$ . The (P)-homomorphism $f$

corresponding to $\nabla$ is given by

$f(X)=(^{\nabla_{X}-\frac{1}{P(n+1}tr\nabla_{X}I_{n}}-X, \cdot) -\frac{1}{n+1}tr\nabla_{X}X)$ .
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Here we identified the representation space $R^{n+1}$ with $\mathfrak{l}\oplus R$ by the correspondence
$e_{i}+\alpha e_{n+1}rightarrow(X_{i}, \alpha)$ . Denote by $id:Rarrow R$ the identity representation. Then the
tensor product representation $f\otimes id:\mathfrak{l}\oplus Rarrow \mathfrak{g}\mathfrak{l}(R^{n+1}\otimes R)$ satisfies $f\otimes id(\mathfrak{l}\oplus R)e_{n+1}=$

$R^{n+1}$ Thus $f\otimes id$ gives an infinitesimal prehomogeneous vector space (abbrev. PV).
Conversely from a given infinitesimal prehomogeneous vector space $f\otimes id:\mathfrak{l}\oplus Rarrow$

$\mathfrak{g}\mathfrak{l}(n+1, R)$ we can obtain a left invariant projectivley flat affine connection on a Lie
group having Lie algebra $\mathfrak{l}$ . Let $\nabla$ be a left invariant projectively flat affine connection.
Then $\nabla$ is affinely flat iff the Ricci tensor vanishes. We also consider the existence
problem of Left invariant flat affine connections (abbrev. IFASs) on Lie groups. Note
that by the above correspondence we might say a Lie algebra admits an IFPS and
IFAS.

Example. $SL(2, R)$ acts on the upper half plane $RH^{2}$ transitively and the subgroup

$H=\{(\begin{array}{ll}e^{x} y0 e^{-x}\end{array})|x, y\in R\}$ acts on $RH^{2}$ freely and transitively. Thus $H$ is identified

with $RH^{2}$ by the mapping $a\mapsto a\sqrt{-1}.$ $RH^{2}$ has the metric $g= \frac{dx^{2}+dy^{2}}{y^{2}}$ and $g$ is
left invariant with respect to the action of $H$ . Thus we obtain the Lie group with

left invariant metric $(H, g)$ . The Lie algebra $\mathfrak{l}$ $:=Lie(H)$ is given by $\{(\begin{array}{ll}x y0 -x\end{array})$

$x,$ $y\in R\}$ . Put $X_{1}$ $:= \frac{1}{2}(\begin{array}{ll}1 00 -1\end{array}),$ $X_{2}$ $:=(\begin{array}{ll}0 10 0\end{array})$ . Then we obtain the 2-dimensional

Lie algebra $[X_{1}, X_{2}]=X_{2}$ , and the left invariant metric $g$ is described by the matrix

$(g(X_{i}, X_{j}))=(\begin{array}{ll}1 00 1\end{array})$ . The Levi-Civita connection is left invariant and its Christoffel

symbols are given by

$\nabla_{X_{1}}=(\begin{array}{ll}0 00 0\end{array}), \nabla_{X_{2}}=(\begin{array}{ll}0 1-1 0\end{array}).$

As a result $(H, g)$ is constant curvature $-1$ and Einstein $Ric=-g$ . The $Ric$ tensor
gives 1-forms

$Ric(X_{1}, \cdot)=(-1,0) , Ric(X_{2}, \cdot)=(0, -1)$ .

From these data we can construct (P)-homomorphism $f$ : $\mathfrak{l}arrow \mathfrak{s}\mathfrak{l}(3, R)$ .

$f(X_{1})=(\begin{array}{lll}\nabla_{X_{1}} X_{1}-Ric(X_{1} ) 0\end{array})=(\begin{array}{lll}0 0 10 0 01 0 0\end{array}), f(X_{2})=(\begin{array}{lll}0 1 0-1 0 10 1 0\end{array})$

Putting $e_{3}$ $:=t(0,0,1$ ) yields $f(\mathfrak{l})e_{3}\oplus<e_{3}>=R^{3}$ . Thus $f\otimes id$ : $\mathfrak{l}\oplus Rarrow \mathfrak{g}\mathfrak{l}(R^{3})$ gives
an infinitesimal PV.

We shall see that the representation $f$ is related to the 2 symmetric product of

identity representation $g$
$:=S^{2}id:\mathfrak{s}\mathfrak{l}(2, R)arrow \mathfrak{s}\mathfrak{l}(3, R)$ . Put $X_{3}$ $:=(\begin{array}{ll}0 01 0\end{array})$ and $v$ $:=$
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$t(1,0,1)$ . We define a matrix $P$ to be $(f(X_{1})v, f(X_{2})v, v)$ . Then we have

$P^{-1}\{g(X_{1}), g(X_{2}), g(X_{2}-X_{3})\}P=\{f(X_{1}), f(X_{2}), (\begin{array}{lll}0 2 0-2 0 00 0 0\end{array})\}.$

2 Low dimensional classification

About the sufficient condition for the existence of IFPSs and IFASs the following
result is known. Abelian Lie algebras, 3-step nilpotent Lie algebra (J.Scheuneman),
positively graded Lie algebras $\’{c}=\oplus_{i\geq 1}t_{i}$ (S.Yamaguchi) admit an IFAS. Let us consider
a semidirect sum $\mathfrak{h}\ltimes t$ of a Lie algebra $\mathfrak{h}$ admitting a flat affine connection $\nabla^{\mathfrak{h}}$ with
a positively graded Lie algebra $t=\oplus_{i\geq 1}f_{i}$ . If $\mathfrak{h}$ preserve the grading of $t$ , then $\mathfrak{h}\ltimes t$

admits a flat affine connection. When $\mathfrak{h}$ is abelain $\mathfrak{a}$ , this result is due to S.Yamaguchi.
The construction of a flat affine connection on $e$ and $\mathfrak{h}\otimes e$ is given as follows:

On $\mathfrak{e}$

$\nabla_{X}Y=\frac{j}{i+j}[X, Y]$ for $X\in\’{c}_{i},$ $Y\in e_{j}.$

On $\mathfrak{h}\ltimes t$

Concerning classification, nilpotent Lie algebras of dimension $\leq 6$ (H.Fujiwara) and
solvable Lie algebras of dimension $\leq 4$ (S.Yamaguchi) admit IFASs. On the other hand
perfect Lie algebras, i.e. $[t, \mathfrak{l}]\neq \mathfrak{l}$ , do not admit IFASs (J.Helmstetter).
Let $(be a Lie$ algebra $(of \dim\leq 5.$ Then $\mathfrak{l}$ admits $an$ IFAS $iff \mathfrak{l}\neq \mathfrak{s}\mathfrak{l}(2, R),$ $\mathfrak{o}(3, R)$ ,
$\mathfrak{s}\mathfrak{l}(2, R)\ltimes R^{2}$ (perfect). However always $\mathfrak{l}$ admits an IFPS (H.Kato [7]). On the other
hand $\mathfrak{s}\mathfrak{l}(2, R)\oplus \mathfrak{s}\mathfrak{l}(2, R)$ , $\mathfrak{s}\mathfrak{l}(2, R)\oplus \mathfrak{o}(3, R)$ , $0(3, R)\oplus \mathfrak{o}(3, R)$ , $\mathfrak{o}(1,3)$ admit no IFPSs.

Example. We consider the the Lie algebra $\mathfrak{g}_{2}$ . By definition $\mathfrak{g}_{2}$ is the Lie algebra

arising from the Cartan matrix $(\begin{array}{ll}2 -3-1 2\end{array})$ . Precisely $\mathfrak{g}_{2}$ is the Lie algebra generated by

$\{H_{i}, E_{i}, F_{i}\}_{i=1,2}$ by the serre relation $ad(H_{i})E_{j}=a_{ij}E_{j},$ $ad(H_{i})F_{j}=-a_{ij}F_{j},$ $[E_{i}, F_{j}]=$

$\delta_{ij}H_{i},$ $ad(E_{i})^{1-a}ijE_{j}=0(i\neq j)$ , $ad(F_{i)^{1-a}}ijF_{j}=0(i\neq j)$ . Put $x=E_{1},$ $y=E_{2}$ . Then
$\{x, y\}$ are the vectors corresponding to the set of simple roots. The Lie algebra $\mathfrak{g}_{2}$ does
not admit any IFPS, whilst the standard borel subalgebra $b$ of $\mathfrak{g}_{2}$ admits an IFAS.
Indeed the positive root part \’{c} of $b$ is spanned by $\{x, y, e_{2}, e_{3}, e_{4}, e_{5}\}$ , which satisfies
the bracket relation $[x, y]=e_{2},$ $[x, e_{2}]=e_{3},$ $[x, e_{3}]=e_{4},$ $[y, e_{4}]=e_{5},$ $[e_{2}, e_{3}]=e_{5}$ . Hence
$t$ is graded by positive integers as follows.

Thus $f$ admits an IFAS. The Cartan subalgebra spanned by $\mathfrak{h}=\{H_{1}, H_{2}\}$ preserves the
root space decomposition, thus $b=\mathfrak{h}\ltimes t$ admits an IFAS. From the serre relation we
can explicitly write down the bracket relation between $\{H_{i}\}$ and $\{x, y, e_{i}\}$ as follows.
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The Lie algebra $e$ has a codimension one subalgebra $t_{5}=<x,$ $e_{2},$ $e_{3},$ $e_{4},$ $e_{5}>$ . We can
modify the bracket relation and obtain another nilpotent Lie algebra $t_{5}’$ defined by
$[x, e_{2}]=e_{3},$ $[x, e_{3}]=e_{4},$ $[x, e_{4}]=e_{5},$ $[e_{2}, e_{3}]=e_{5}$ . The Lie algebra $g_{5}’$ is also graded
by positive integers and hence admits an IFAS. The corresponding (P)-homomorphism
$f$ : $P_{5}’arrow \mathfrak{s}\mathfrak{l}(6, R)$ is described as follows:

$f(x)=(\begin{array}{llllll}0 10 0 0 \frac{2}{3} 0 0 \frac{3}{4} 0 0 \frac{4}{5} 0 00 0 0 0 0 0\end{array}),$ $f(e_{2})=(- \frac{1}{3}000$
$0000$

$00 \frac{3}{05}$

$000$

$00$

$000001)$ , $f(e_{3})=(00000$
$- \frac{2}{5}0000$

$0000$

$000$

$00$

$001000)$ ,

$f(e_{4})=(\begin{array}{llllll}0 00 0 00 0 0 00 0 0 0 1-\frac{1}{5} 0 0 0 0 00 0 0 0 0 0\end{array}),$ $f(e_{5})=(\begin{array}{llllll}0 00 0 00 0 0 00 0 0 0 00 0 0 0 0 10 0 0 0 0 0\end{array}).$

Consequently semidirect sums of $\mathfrak{h}$ with $t,$ $t_{5},$ $t_{5}’$ admit an IFAS.

3 Castling transformations

If two manifolds $M_{1}$ and $M_{2}$ admit a flat affine connection, then naturally the product
$M_{1}\cross M_{2}$ admits a flat affine connection again. On the other hand we have a different
story about flat projective structures. Even if two manifolds admits a flat projective
structure, its product manifold does not necessarily admit a flat projective structure
again. Indeed the $n$-dimensional sphere $S^{n}$ admits a flat projective structure, but
$S^{n}\cross S^{n}(n\geq 2)$ does not admit any one (S.Kobayashi and T.Nagano [9]). Another
counter example is $SL(2, R)$ , which admits a left invariant flat projective structure.
In this case $SL(2, R)\cross SL(2, R)$ also does not admit any one. However $SL(2, R)\cross$

$SL(3, R)$ admits a left invariant flat projective structure (A.Elduque [3]). We expect
the combinatorics of product manifolds admitting a flat projective structure is quite
restricted. Concerning this problem castling transformations turned out to be useful
tool. Originally castling transformation is a notion for prehomogeneous vector spaces,

which can yield a new PV from a given one. Let $f$ : $\mathfrak{g}arrow \mathfrak{g}\mathfrak{l}(R^{m})$ be a representation.

Assume that $m>n$ . The transformation
(1) $f\otimes id:\mathfrak{l}\oplus \mathfrak{g}\mathfrak{l}(n, R)arrow \mathfrak{g}\mathfrak{l}(R^{m}\otimes R^{n})$

(2) $f^{*}\otimes id:\mathfrak{l}\oplus \mathfrak{g}\mathfrak{l}(m-n, R)arrow \mathfrak{g}\mathfrak{l}(R^{m*}\otimes R^{m-n})$

is called a castling transformation, which preserves the prehomogeneity. We introduce
the geometric version of castling transformation (see H.Kato [8] for details): To state
this geometric transformation we need flat Grassmannian structures. The definition is

due to W.Goldman [4]. Let $M$ be a manifold. Put $G=PGL(l)$ , $X=Gr_{m,l}$ . Let $x$ be
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a pt in $X$ . Denote by $G’$ the isotropy subgroup at $x$ of $G$ . Then we have $G/G’=X.$

A flat Grassmannian structure on $M$ is a maximal atlas $\{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha\in A}$ of $M$ satisfying
the following condition:

(1) $\varphi_{\alpha}:U_{\alpha}arrow O_{\alpha}\subset X$ is a diffeomorphism
(2) If $U_{\alpha}\cap U_{\beta}\neq\emptyset$ , then for each connected component $C$ of $U_{\alpha}\cap U_{\beta}$ there exists

$\tau(C;\beta, \alpha)\in G$ such that $\varphi\beta^{O}\varphi_{\alpha}^{-1}$ equals the map $\tau(C;\beta, \alpha)$ on $\varphi_{\alpha}(C)\subset X.$

If $G=PGL(n+1)$ and $X=P(R^{n+1})$ , then a maximal atlas $\{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha\in A}$ gives a
alternative definition of flat projective structures on $M$ . Moreover if $G=PGL(C^{n+1})$

and $X=P(C^{n+1})$ , in addition $M$ is a complex manifold and $\varphi_{\alpha}$ is a biholomorphic
map, then the atlas gives a flat complex projective structure. A flat Grassmannian
structure corresponds to an isomorphism class of flat Grassmannian Cartan connec-
tions, which is a useful tool to investigate geometric structures.

Now let us consider the model space $G=PGL(l)$ , $X=Gr_{m,l}$ . Denote by $\mathfrak{g}$ the
Lie algebra of $G$ and by $\mathfrak{g}’$ the one of $G’$ . A Grassmannian Cartan connection of type
$(n, m)$ is a pair $(P, \omega)$ where $P$ is a principal fiber bundle over $M$ with structure group
$G’$ and $\omega$ is a $\mathfrak{g}’$-valued 1-form satisfying the following condition
(1) for $u\in P,$ $\omega_{u}:T_{u}Parrow \mathfrak{g}$ :linear isomorphism
(2) for $g\in G’,$ $R_{g}^{*}\omega=Ad(g^{-1})\omega$

(3) for $Y\in \mathfrak{g}’,$ $\omega(Y^{*})=Y$

where $Y^{*}$ is the fundamental vector field corresponding to $Y.$

$(P, \omega)$ is called flat if $d \omega+\frac{1}{2}[\omega, \omega]=0.$

Now we recall how a flat Grassmannian structure gives rise to a flat Grassmannian
Cartan connection (see H.Kato [6] for the detailed correspondence). A given Grassman-
nian structure $\{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha\in A}$ on $M$ has a coordinate map $\varphi_{\alpha}:U_{\alpha}arrow O_{\alpha}\subset X=G/G’.$

Denote by $\pi$ : $Garrow X$ the projection. Then $\pi^{-1}(O_{\alpha})$ is regarded as a principal fiber
bundle over $U_{\alpha}$ with structure group $G’.$

$U_{\alpha}arrow O_{\alpha}k^{\prime\fcircle}\pi_{\alpha/}\varphi_{\alpha}^{-1}/\pi^{-1}(O_{\alpha})\downarrow\subset\subset XG\pi\downarrow$

Denote by $\omega$ the Maurer Cartan form of $G$ . Denote by $\omega_{\alpha}$ the restriction $\omega|_{\pi^{-1}(O_{\alpha})}$

of $\omega$ to the open subset. Thus we obtain a family of Cartan connections $\{(\pi^{-1}(O_{\alpha})$ ,
$\omega_{\alpha})\}_{\alpha\in A}$ . These data can be glued by the following relation: Elements $g\in\pi^{-1}(O_{\alpha})$

and $h\in\pi^{-1}(O_{\beta})$ are identified if $\pi_{\alpha}(g)=\pi_{\beta}(h)$ and $h=\tau(C;\beta, \alpha)g$ for connected
component $C\ni\pi_{\alpha}(g)$ of $U_{\alpha}\cap U_{\beta}$ . Then by gluing we obtain $P$ $:=\sqcup_{\alpha\in A}\pi^{-1}(O_{\alpha})/\sim$

and $\omega_{P}:=\omega_{\alpha}$ on $\pi^{-1}(O_{\alpha})$ , which give a Grassmannian Cartan connection.
A Grassmannian Cartan connection $(Q, \omega)$ induces a certain reduction of the frame

bundle $L(M)$ of $M$ as follows. Denote by $<v>$ the subspace of $R^{l}$ spanned by
$\{e_{1}, e_{2}, \cdots, e_{m}\}$ . Then we have $Gr_{m,l}=PL(l)/PL(l)_{<v>}$ . Consider the isotropy rep-
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resentation $\rho$ : $PL(l)_{<v>}arrow GL(M(n,$ $m$

$\rho:(\begin{array}{ll}A C0 B\end{array})\mapsto B\otimes tA^{-1}.$

Then the image is given by $\rho(PL(l)_{<v>})=GL(n)\otimes GL(m)$ . Thus $Q/ker\rho$ gives a
$GL(n)\otimes GL(m)$-bundle over $M$ . This quotient bundle $P_{t}M$ is regarded as a subbundle
of $L(M)$ .

Finally we state our geometric castling transformations. Let $M$ be a manifold
equipped with a Grassmannian Cartan connection $(Q, \omega)$ of type $(n, m)$ and $\Lambda_{1}a$

Maurer-Cartan form of $PGL(m)$ . Then we have the following:

Proposition 3.1. (1) $(Q\cross PGL(m), \omega\cross\Lambda^{1})$ is a flat Cartan connection over $N$

$\Leftrightarrow$ (2) $(Q\cross PGL(n), \omega^{*}\cross\Lambda^{1})$ is a flat Cartan connection over $N’$

We call this transformation a castling transformation of projective structures. Note
that (1) and (2) can be enlarged to projective Cartan connections. If (1) is flat, then
(2) and $(Q,\omega)$ are also flat. Thus in that case Cartan connections induces a flat
Grassmannian structure on $M$ and flat projective structures on $N$ and $N’.$

Now we describe the base space appearing in castling transformations. $N$ and $N’$

has the structure of principal fiber bundle indicated in the following diagram.
(1) $(Q\cross PGL(m), \omega\cross\Lambda_{1})$ $rightarrow$ (2) $(Q\cross PGL(n),\omega^{*}\cross\Lambda_{1})$

$\downarrow$ $\downarrow$

$Narrow PGL(m) N’arrow PGL(n)$
$\downarrow$ $\downarrow$

$M$ $M$

Recall that $(Q,\omega)$ induces a $GL(n)\otimes GL(m)$-structure $P_{t}M\subset L(M)$ .

Proposition 3.2. $N$ is isomorphic to the quotient manifold $P_{t}M/GL(n)\otimes GL(1)$ .

From a given manifold equipped with a flat projective structure by successive
castling transformations we can obtain an infinite sequence of projectively flat mani-
folds, which are connected by manifold equipped with a flat Grassmannian structure.
We shall illustrate a sequence of base spaces of successive castling transformations. Let
$M$ be a 2 dimensional manifold equipped with a flat projective structure. For instance
It is known that any closed surface and also any 2 dimensional Lie group admits a
flat projective structure. Then by successive castling transformations we obtain the

following sequence:

$Marrow\overline{L}(M)arrow\overline{L}(\overline{L}(M))arrow\overline{L}(\overline{L}(M))/PGL(2)arrow\cdots$

Here is the geometric meaning: $\overline{L}(M)$ is the projective frame bundle of $M$ . Since
$PGL(2)$ acts on $\overline{L}(M)$ , by the differential $PGL(2)$ also acts on $\overline{L}(\overline{L}(M))$ . Then by the
quotient we obtain a $PGL(5)$-bundle over $M$ . As a result $M,$ $\overline{L}(M)$ and $\overline{L}(\overline{L}(M))$ admit
a flat projective structure. $\overline{L}(\overline{L}(M))/PGL(2)$ admits a flat Grassmannian structure.
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When the given base space $M$ is a 2-dimensional Lie group $L$ we can more explicity
write down the base spaces as follows:

$\overline{L}(M)=L\cross PGL(2)$ , $\overline{L}(\overline{L}(M))=L\cross PGL(2)\cross PGL(5)$

$\overline{L}(\overline{L}(M))/PGL(2)=L\cross PGL(5)$ .

By successive castling transformations we can obtain the following tree of manifolds
equipped with a flat projective structure or a flat Grassmannian structure.

$2\cross 29$

$GL(169)\otimes GL(5)$

$2\cross 5\nearrow\cross 29 5\cross 29\cross 433 13\cross 34\cross 1325$

$\uparrow GL(13\overline{)\otimes}GL(2) GL(34\overline{)\otimes}GL(5) GL(89\overline{)\otimes}GL(13)$

The above tree is obtained from successive castling transformations starting from 2-
dimensional manifold $M$ equipped with a flat projective structure. The numbers de-
notes the base spaces. For instance 1 denotes $M$ and 2 denotes a $PGL(2)$-bundle over
$M,$ $2\cross 5$ denotes a $PGL(2)\cross PGL(5)$ -bundle over $M$ . A manifold having only the
underline is equipped with a flat projective structure, on the other hand a manifold un-
der which has a tensor product group is equipped with a flat Grassmannian structure.
The combinatorics of base spaces are described in the following way.

Theorem 3.3. The set of manifolds equipped with a flat projective structure on the
tree corresponds to the set of solution of the equation

$(*) 2+k_{1}^{2}+\cdots+k_{j}^{2}-j-3k_{1}\cdots k_{j}+1=0.$

Note that we can obtain the same kind of tree and quadratic equation by starting
from any dimensional manifold equipped with a flat projective structure or a Grass-
mannian structure (cf. H.Kato [8]).

As an application we can achieve a development in the classification problem of
projectively flat semisimple Lie groups. The preceding result given by Y.Agaoka [1],
H.Urakawa [14], A.Elduque [3] is stated as follows: Let $L$ be a simple Lie group. Then
$L$ admits a left invariant flat projective structure iff Lie $(L)=\mathfrak{s}\mathfrak{l}(n, R)$ or $\mathfrak{s}\mathfrak{l}(n, H)$ .
In the same paper Elduque [3] obtained the semisimple Lie group admitting a left
invariant flat projective structure $SL(2, R)\cross SL(3, R)$ .
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By using castling transformations we can obtain an infinite sequence of semisimple
Lie groups admitting a left invariant flat projective structure. In the classification of
reduced irreducible complex prehomogeneous vector spaces M.Sato and T.Kimura [11]
obtained the following PVs:
$\bullet$ $\rho=S^{3}id:GL(2, C)arrow GL(C^{4})$

$d\rho:(\begin{array}{ll}a bc d\end{array})\mapsto(^{3}3_{C}^{a}00 2a_{2}^{b}+do^{c} a+2d2b0c 3d300b)$

The point $v=t(1,0,0,1$ ) $\in C^{4}$ satisfies $d\rho(\mathfrak{g}\mathfrak{l}(2, C))v=C^{4}.$

$\bullet$ $\rho=S^{2}id\otimes id:SL(3)\cross GL(2)arrow GL(C^{6}\otimes C^{2})$

$S^{2}id\otimes id(A, B)(X_{1}, X_{2})=(A(aX_{1}+bX_{2})^{t}A, A(cX_{1}+dX_{2})^{t}A)$ $X_{1},$ $X_{2}\in Sym(3, R)$ .

A generic point is given by $(X_{1},X_{2})=\{(1 1 1), (1 2 3)\}.$

$\bullet\wedge^{2}id\otimes id:SL(5)\cross GL(4)arrow GL(C^{10}\otimes C^{4})$

Combining successive castling transformations with Sato-Kimura’s classification of
reduced irreducible PVs yields the following (cf. H.Kato [6]):

Theorem 3.4. A complex Lie group $L$ admits an irreducible invariant flat complex
projective structure iff its Lie algebra is of the form $\mathfrak{s}\mathfrak{l}(a)\oplus \mathfrak{s}\mathfrak{l}(m_{1})\oplus\cdots\oplus \mathfrak{s}\mathfrak{l}(m_{k})$ , where
$a=2$ , 3, or 5 $(k\geq 1, m_{i}\geq 1)$ and satisfies the equality $(**)$ $a^{2}+m_{1}^{2}+\cdots+m_{k}^{2}-$

$k-2am_{1}m_{2}\cdots m_{k}=0.$

4 projectively flat parabolic subgroups

Y.Takemoto and S.Yamaguchi [12] proved that solvable part $\mathfrak{a}\oplus \mathfrak{n}$ of the Iwasawa
decomposition $t\oplus\alpha\oplus \mathfrak{n}$ of semisimple real Lie algebra admits a left invariant flat
affine connection. However on parabolic subalgebras the existence problem has not
been settled yet. From the viewpoint of submanifolds we investigate this problem
concerning the parabolic subalgebras of special linear Lie algebras.

Y.Agaoka [1], H.Urakawa [14], A.Elduque [3] proved that a simple Lie group $L$

admits a left invariant flat projective structure iff Lie $(L)=\mathfrak{s}\mathfrak{l}(n, R)$ or $\mathfrak{s}\mathfrak{l}(n, H)$ . The
left invariant projectively flat affine connection is described as follows:

$\nabla_{X}Y$ $=$ $XY- \frac{trXY}{n}I_{n}$ for $X,$ $Y\in \mathfrak{s}\mathfrak{l}(n, R)$ (4.1)

$\nabla_{X}Y$ $=$ $XY- \frac{RetrXY}{n}I_{n}$ for $X,$ $Y\in \mathfrak{s}\mathfrak{l}(n, H)$ (4.2)

Now we define parabolic sublalgebra.$s$ , following H.Tamaru [13]. Let $\alpha$ be the di-
agonal of $\mathfrak{g}=\mathfrak{s}\mathfrak{l}(n, R)$ . Then the reduced root system $\triangle$ of $\mathfrak{g}$ with respect to $\alpha$ is
given by $\triangle=\{\lambda_{i}-\lambda_{j}(i\neq j$ Here $\lambda_{i} is$ defined $by \lambda_{i}(diag(a_{1}, \ldots, a_{n}))=a_{i}$ . Put
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$\alpha_{i}=\lambda_{i}-\lambda_{i+1}$ and then $\Lambda$ $:=\{\alpha_{1}, . . . , \alpha_{n-1}\}$ gives a set of simple roots. Let $\Lambda’$ be
a proper subset of A. Then $q_{\Lambda’}=\mathfrak{a}+\sum_{\alpha\in\Lambda\cup<\Lambda>}$ is called a parabolic subalgebra.
Analogously we can define parabolic subalgebras in $\mathfrak{s}\mathfrak{l}(n, H)$ . Then we can show that
parabolic subalgebras are autoparallel in $\mathfrak{s}\mathfrak{l}(n, R)$ and $\mathfrak{s}\mathfrak{l}(n, H)$ with respect to the
connection $\nabla(4.1)$ and (4.2). Thus we obtain the induced left invariant projectivley
flat affine connection $\nabla$ on $q_{\Lambda’}.$

Question: the connection $\nabla$ on $q_{\Lambda’}$ is projectively equivalent to a flat affine connection?

To deal with this question we introduce the invariants associated to representations. Let
$(be a Lie$ algebra $of$ dimension $n and f : \mathfrak{l}arrow gl(n+1, R)$ a Lie algebra representation.
Put $v:=t(x_{1}, \ldots, x_{n+1})$ . Denote by $\{X_{1}, \cdots , X_{n}\}$ a basis of [. We define a function $\phi$ :
$R^{n+1}arrow R$ by $\phi(v)$ $:=det(f(X_{1})v, \cdots, f(X_{n})v, v)$ . Then Y.Agaoka [2] showed that $\phi$

is a relative invariant polynomial, i.e. $d\phi_{v}(f(X)v)=\alpha(X)\phi(v)$ for some representation
$\alpha$ : $\mathfrak{l}arrow \mathfrak{g}\mathfrak{l}(1)$ . Note that if $f$ is $a(P)$-homomorpshim, then the associated invariant is
not zero. Practically the invariant $\phi$ can be used as follows: Let $\nabla$ be a left invariant
projectively flat affine connection on $L^{n}$ and $\phi$ : $R^{n+1}arrow R$ the invariant associated
to $\nabla$ . Then $\nabla$ is projectively equivalent to a flat affine connection iff $\phi(v)$ has a linear
factor involving $x_{n+1}$ (cf. [2]). Here are two examples of invariants.

1. $id\oplus id$ : $\mathfrak{g}\mathfrak{l}(2)arrow \mathfrak{g}\mathfrak{l}(4)$ gives a PV. Put $v$ $:=(a, b, c, d)$ . Then the invariant associated
to $id\oplus id$ is calculated as follows:

$\phi(v) = \det((\begin{array}{ll}1 00-1 \end{array}).v, (\begin{array}{ll}0 10 0\end{array}).v, (\begin{array}{ll}0 01 0\end{array}).v, v)$

$= \det(\begin{array}{llll} b 0 a 0 a b-bac d 0 c-d 0 c d\end{array})$

$= 2(ad-bc)^{2}.$

2. Let $\mathfrak{s}_{\Lambda’}$ be a solvable subalgebra of $\mathfrak{s}\mathfrak{l}(3, R)$ , which is defined to be $\mathfrak{s}_{\Lambda’}=<H^{1},$ $E_{12},$ $E_{13}>.$

Then $\mathfrak{s}_{\Lambda’}$ is autoparallel in $\mathfrak{s}\mathfrak{l}(3, R)$ with respect to the connection (4.1). Let $\nabla$ be the
induced projective flat affine connection on $\mathfrak{s}_{\Lambda’}$ . Denote by $f$ : $\mathfrak{s}_{\Lambda’}arrow \mathfrak{s}\mathfrak{l}(4, R)$ the
induced representation from $\nabla$ , which is given by

$f(H_{1})=(_{\frac{2}{9}}^{\frac{1}{3}}$

$0 \frac{2}{3}$

$\frac{2}{03}$

$0010)$ , $f(X_{2})=(\begin{array}{llll} 0-\frac{1}{3} 0 0 1 00 0 0 0\end{array}),$ $f(X_{3})=(\begin{array}{llll} 0 0-\frac{1}{3} 0 0 10 0 0 0\end{array})$

Put $v=t(a, b, c, d)$ . The invariant is defined by $\phi(v)$ $:=\det(f(H^{1})v, f(E_{12})v, f(E_{13})v, v)$ .
Then we have

$\phi(v)=(-\frac{1}{3}a+d) (- \frac{2}{9}a^{2}+\frac{1}{3}ad+d^{2})$ .

Thus $\nabla$ is projectively equivalent to a flat affine connection $\nabla’$ , which is described as
follows:
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$\nabla_{H^{1}}’=id_{\mathfrak{s}_{\Lambda}}, , \nabla_{E_{12}}’=0, \nabla_{E_{13}}’=0.$

By using invariants we can answer our question. Let us express $\Lambda’$ as $\{\alpha_{i_{1}}, \alpha_{2}, . . . , \alpha_{i_{k}}\}$

satisfying $i_{1}<i_{2}<\cdots<i_{k}.$

Theorem 4.1. (H. Kato [5]) The induced affine connection $\nabla$ on $q_{\Lambda’}$ is not projectively
equivalent to any flat afine connection iff we have $i_{1}=1,$ $i_{k}=n-1and|i_{r}-i_{r+1}|\leq 2$

for $1\leq r\leq k-1.$

Examples. The parabolic subalgebra $q_{\Lambda’}$ is checked if $\nabla$ is not projectively equivalent
to any flat affine connection.

(1) $\Lambda’=\{\alpha_{1}, \alpha_{2}, \alpha_{4}, \alpha_{5}\}$

$\bullet-\bullet-\circ-\bullet-\bullet\sqrt{}’$

(2) $\Lambda’=\{\alpha_{1}, \alpha_{2}, \alpha_{4}, \alpha_{7}\}$

(3)
$\bullet-\circ-\bullet\sqrt{}’$

$(\begin{array}{llll}* * * ** * * * * * * *\end{array}) (* **** **** ****)$

$\circ$ o–o–$\bullet$

$(\begin{array}{llll}* * * * * * * * * * *\end{array}) (* ** **** ****)$

On the other hand concerning the affine connection (4.2) on $\mathfrak{s}\mathfrak{l}(n, H)$ we have the
following:

Theorem 4.2. ([5]) The induced projectively flat affine connection $\nabla$ on $q_{\Lambda’}$ is not
projectively equivalent to any flat affine connection.
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