
The current state of computer algebra system on

tablet devices

Mitsushi Fujimoto

Fukuoka University of Education $*$

1 Introduction

Infty project[l] developed and released some useful software including InftyReader–an OCR system

for mathematical documents. InftyEditor is one of the products developed by Infty project, and is a

mathematics typesetting tool. The author, a core member of Infty project, built into InftyEditor a

computing function for mathematical expressions[2]. In 2003, AsirPad[3], a computer algebra system

with a handwriting interface on PDA, was developed using the technology of InftyEditor. AsirPad can

communicate with Risa/Asir[4] through OpenXM protoco1[5], and calculate mathematical expressions

inputted by handwriting. This is an application for Zaurus that is a PDA with $400MHz$ CPU, $64MB$

memory, Linux OS, 3. 7inch VGA screen and the weight $250g$. The mainstream of the current mobile

devices is shifting to smartphones or tablet devices and some computer algebra systems for these platforms

are developed. In this article we explore the current state of computer algebra system on tablet devices.

2 Mathellan project and tablet devices

AsirPad was used to present a lecture on RSA cryptography at a junior high schoo1[6]. Ordinary

calculator is not available because encryption and decryption in RSA use division of large numbers. The

students learned how to encrypt/decrypt their messages through calculations by AsirPad. They could

input mathematical expressions and calculate without any special training. We could get a result for

usefulness of PDA and handwriting interface from this lecture.

In 2010, we started Mathellan Project, a mobile Math e-Learning project, to go the next step. The

current version of AsirPad can not provide math quizzes. Also, the current -Learning systems/LMS

are not good at displaying/inputting mathematical expressions and checking student answers to math

quizzes. The aim of this project is to develop a Math e-Learning system for pen-based mobile devices.

We call our Math e-Learning system Mathellan and consider the following as the basic requirements[7]:

\bullet displaying math expressions

\bullet inputting math expressions

\bullet including graphs of elementary functions

Hujimoto@fue.ac.jp

数理解析研究所講究録

第 1930巻 2015年 93-100 93

\bullet freehand drawing

\bullet automated checking of student answers.

We need a new platform instead of Zaurus in order to realize the above requirements. And we chose

tablet devices as a client of Mathellan.

3 Various Tablet devices

At present, a lot of manufacturers release tablet devices. The operating systems of them are Android,

Blackberry, iOS , webOS, Windows 8, and so on. However, the technical specifications of current tablet

devices are almost same as follows:

\bullet CPU: ARM architecture(v7), $32bit$

\bullet CPU core: 2 or 4

\bullet CPU speed: $600MHz-1.4GHz$

\bullet FPU: Hardware

\bullet GPU: Hardware

\bullet Memory: 512MB–IGB

\bullet Screen resolution: $1024x600-2048xl536$

\bullet Sensor: Multi-touch, Accelerometer, Gyroscope, GPS

The specification has improved very much compared with Zaurus. Thus, it is sufficient to implement

computer algebra systems on tablet devices.

4 Use of CAS from Tablet Devices

There are four methods to access to computer algebra systems from tablet devices. The first method
is to use a native application including a computer algebra engine on tablets (Method 1). The second
method is to access to a computer algebra system on the other machine through an application on tablets
(Method 2). The third method is to access to a computer algebra system on the other machine through a
web browser on tablets (Method 3). The last method is to use a work sheet including a computer algebra

kernel (Method 4).

The following is a table for computer algebra systems on tablets we investigated.

94

Method App name CAS engine OS Paid

MathStudio original Android/iOS \sqrtt

Mathomatic Mathomatic Android/iOS $\sqrt{}$

PariDroid PARI Android

Maxima on Android Maxima Android

Method 1 JavaYacas Yacas Android
(Native CAS App) Yacas for $iPhone1$) Yacas iOS $\sqrt{}’$

iCAS Reduce iOS 1

PocketCAS Giac/Xcas iOS $V’$

Pi Cubed original iOS $\sqrt{}’$

Python Math SymPy iOS

Method 2 WolframAlpha Mathematica Android/iOS \swarrow

(CAS through App) SageMath GAP, Maxima etc Android/iOS

WolframAlpha Mathematica N/A

Method 3
(CAS through Web) Omega Maxima N/A

Geogebra MathPiper etc Java

Method 4 Maple Player Maple iOS

(CAS work sheet) Wolfram CDF Player Mathematica iOS (not yet)

5 Implementation of a CAS engine for tablet devices

We adapt Method 1 for the client of Mathellan, and need the components, i.e. CAS engine/GUI/

communication mechanism with CAS engine/internal form for mathematical expressions, to realize it.

This method is also suitable for UNIX-based computer algebra systems. In this section, we concentrate

on building a CAS engine.

It is common to build console applications for UNIX-based OS by the following steps:

1. Downloading a source of an application:

e.g., wget http: $//***$. sourceforge. $org/***/***-2.0$. tar. gz

2. Extracting the source:

$e.g.$, tar zxvf $***-2.0$. tar. gz

3. Generating a Makefile for building the application:

e.g., cd $***-2.0;./$conf igure

4. Building the application:

e.g., make

5. Installing the application:

e.g., make install

$1)$ This is now unavailable for downloading from App Store.

95

We shall explain the compiling of the Risa/Asir’s source code for Android by (i) a self-build environ-

ment and (ii) a cross-build environment. Of course, we have to modify a portion of the source code with

respect to the OS and CPU architecture of tablets before building.

5.1 Self build environment

Most of computer algebra systems need some external libraries, e.g., garbage collector or arbitrary-

precision arithmetic library. Some of them are not presumed to be built by cross-build environments. In

such a case, self-build environment is the best way to avoid troubles with building. Risa/Asir needs a

garbage collector Boehm-GC. We made a binary of Risa/Asir for Zaurus as the CAS engine of AsirPad by

this way since a self-build environment for Zaurus was available. Unfortunately, this way is unavailable

for iOS because the terminal application for iOS is not provided and we cannot access to the file system

of iOS unless we remove the limitations of iOS by a hack.

On the other hand, terminal applications for Android are available through Google Play Store and

users can access to the file system of Android without a rooted account. Furthermore, a self-build

environment including gcc is provided by a user community. The following is a self-build process for

Risa/Asir on Android.

1. Download and installation of‘TerminalIDE’ through Google Play Store. This is not only a terminal

application but also includes a lot of command line tools.

2. Installation of GCC according to http: $//$rwiki. sciviews. $org/$doku. $php?id=getting$-started:

installation: android.

3. Compiling Boehm-GC.

wget http: $//www$. hpl. hp. $com/persona1/Hans_{-}Boehm/gc/gc_{-}source/gc$. tar. gz
tar zxvf gc. tar. gz

export CFLAGS$=//-D$ IGNORE DYNAMIC LOADING”

$./$conf igure $-$-pref ix$=$$HOME –disable-threads

make

make install

4. Compiling of Risa/Asir.

$./$ conf igure $-$ -pref ix$=$$HOME

make

make install

make install-lib

However, you will have a lot of collisions in header files. And you have to fix all collisions by modifying

source codes or header files to get a binary.

96

5.2 Cross build environment

Android NDK, a cross-build environment to develop $C/C++$ applications for Android, is provided

by Google. However, its C library is Bionic LIBC and is different from the standard C library GLIBC.

Therefore, developers need to modify a lot of source codes to use Bionic LIBC. Fortunately, some third-

party companies provide cross-build environments based on GLIBC. The following is a cross-build process

for Risa/Asir using Sourcery CodeBench Lite $Edition^{)}.$

1. Download and installation of ‘Sourcery CodeBench Lite Edition’ via the developer’s site 2) to your

Linux PC.

2. Setting environment variables.

export CROSS-COMPILE arm none linux gnueabi-

export ARCH arm

export CFLAGS$=^{1/}-I/opt/Sourcery_{-}G++_{-}Lite/armnone-linux-gnueabi/$

include $-static”$

export LDFLAGS$=//-L/opt/Sourcery_{-}G++_{-}Lite/arm-none$-linux-gnueabi/

lib $-static”$

export CC arm none linux gnueabi-gcc

export CXX arm none $linux-gnueabi-g++$

export STRIP arm none linux gnueabi-strip

export AR arm none linux gnueabi-ar

export AS arm none linux gnueabi as

export LD arm none linux gnueabi-ld

export RANLIB arm none linux gnueabi-ranlib

export OBJDUMP arm none linux gnueabi-objdump

export NM arm none linux gnueabi-nm

3. Compiling Boehm-GC for Android on a Linux machine.

wget http: $//www$. hpl. hp. $Com/persona1/Hans_{-}Boehm/gc//c.t$. gz
tar zxvf gc. tar. gz

export CFLAGS$=//-D$ IGNORE DYNAMIC LOADING $-I/opt/Sourcery_{-}G++_{-}Lite/$

arm none linux gnueabi/include -fsigned-char -stat $ic^{1/}$

$.$ /configure –prefix$=$$HOME $-$ -disable threads $–host=$

$arm-none$-linux-gnueabi–build$=i686-pc$-linux-gnu

make

make install

4. Compiling of Risa/Asir for Android on a Linux machine.

$.$ /configure –prefix$=$$HOME $-$ -host arm none linux-gnueabi

–build$=i686-pc$-linux-gnu

2) http: $//mm$. mentor. com/embedded software/sourcery $tools/sourcery-codebench/editions/$lite edition/

97

make

make install

make install-lib

In case of this method, it is important to use static libraries by -static option for GCC because

Android OS does not have GLIBC dynamic libraries.

6 Transfer to a target device and testing

Generally, binaries created by a cross-build environment are tested on an emulator. The Android

emulator on PC is not fast. If the binary is a Java application, we can use Intel x86 Emulator Acceler-

ator(HAXM) which is faster than the normal emulator. However, the CAS binary created by the above

environment cannot be executed on HAXM since it is not Java application. In such a case, it is effective

to transmit to the target device and to test on it.

’bansferring a binary to a target device is done as follows:

1. Connecting a target device to PC with a USB cable.

2. Executing the following commands in a terminal application on PC:

adb shell mkdir $/sdcard/$asir

adb push $./$asir /$sdcard/asir/$

adb shell chmod $755/sdcard/asir/$asir

It is very useful to display the screen of the target device on PC for the debugging and presentation.

We can use Android Screen Monitor[8] to realize it.

1. Connecting a target device to PC with a USB cable.

2. Executing the following commands in a terminal application on PC:

adb shell

exit

java -jar asm. j ar

3. Selecting the target device from the Android Device window.

The following screenshot is the screen of Nexus 7 monitored on PC using this tool.

98

The Risa/Asir binary for Android obtained by the above process is available from http: $//www$. fue.
ac. $jp/\sim fujimoto/asiroid/.$

7 Conclusion

In this article, we reported the current state of computer algebra systems on tablets and described

methods to build a computer algebra system with CUI from source codes. Console based computer

algebra systems are useful as CAS engines. However, a user needs a terminal application and a software

keyboard on the tablet to use them. The interaction with CAS engine through terminal is too inefficient.

A user have to switch the software keyboard over and over again to complete the input operation. We

need a GUI for computer algebra system on tablets.

Y. Honda developed a GUI of Maxima using WebView, and released it as ‘Maxima on Android’

on Google Play Store[9]. This application uses MathJax to display mathematical expressions, and can

output computational results beautifully. WebView is a core class in the WebKit. This method can be

used to develop applications for iOS having WebKit as a standard framework. We think that applications

should be developed by the method not depending on platform like this. On the other hand, the GUI

of AsirPad was developed using Qt. Qt is a cross-platform application framework, and can be used to

build applications for various operating systems: Windows, MacOS X, Linux, Solaris, QNX etc. The

next version of Qt seems to support Android and iOS . We are planning to use Qt to build the GUI for a

client of Mathellan.

References

[1] Infty project, http: $//www$. inftyproject. org

[2] M. Fujimoto, T. Kanahori and M. Suzuki, Infty Editor–A Mathematics Typesetting Tool with a

Handwriting Interface and a Graphical Front-End to OpenXM Servers, Computer Algebra–Algo-

rithms, Implementations and Applications, RIMS Kokyuroku vol.1335 (2003) pp. 217-226.

99

[3] M. Fujimoto and M. Suzuki, AsirPad-A Computer Algebra System with a Pen-based Interface on
PDA, Proceedings of the Seventh Asian Symposium on Computer Mathematics, Korea Institute for

Advanced Study (2005) pp. 259-262.

[4] M. Noro, et al., A computer algebra system $Risa/Asir$, http: $//www$. math. kobe-u. ac. $jp/Asir/$

asir. html

[5] M. Maekawa, M. Noro, N. Takayama, Y. Tamura and K. Ohara, The Design and Implementation

of OpenXM-RFC 100 and 101, Computer Mathematics (Proceedings of the Fifth Asian Symposium
on Computer Mathematics), World Scientific (2001) pp. 102-111.

[6] M. lfujimoto, M. Suzuki and T. Kmahori, On a classroom experiment using PDA and handwriting

interface (in Japanese), IPSJ Symposium Series vol.2006, no.8 (2006) pp. 331-338.

[7] M. Fujimoto and S. M. Watt, An Interface for Math eLearning on Pen-Based Mobile Devices,

Proceedings of the Workshop on Mathematical User-Interfaces, http: $//www$. activemath. $org/$

$workshops/MathUI/10/proc/Fuj$ imotoWatt. html (2010).

[8] Android Screen Monitor, http: $//$code. google. $com/p/android$-screen-monitor/(2009).

[9] Y. Honda, Maxima on Android, https: $//$sites. google. com/site/maximaonandroid/(2012).

Mitsushi Fujimoto

Department of Mathematics, Fukuoka University of Education

1-1 Akamabunkyo-machi, Munakata 811-4192, JAPAN.

Web: http: $//www$. fue. ac. $jp/\sim fujimoto/$

E–mail: fujimoto@fue.ac.jp

100

