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ABsTliAcT. We consider the ranking problem of learning a ranking function from the data

set of objects each of which is endowed with an attribute vector and a ranking label chosen
from the ordered set of labels. We propose a primal formulation with dual representation
of normal vector, and then propose to apply the kernel technique to the formulation. We
also propose algorithms based on the row and column generation in order to mitigate the
computational burden due to the large number of objects.

1. INTRODUCTION

This paper is concerned with a multi-class classification problem of $n$ objects, each of
which is endowed with an $m$-dimensional attribute vector $x^{i}=(xi, x_{2}^{i}, \ldots, x_{m}^{i})^{T}\in \mathbb{R}^{m}$ and
a label $\ell_{i}$ . The underlying statistical model assumes that object $i$ receives label $k$ , i.e.,
$\ell_{i}=k$ , when the latent variable $y_{i}$ determined by

$y_{i}=w^{T}x^{i}+ \epsilon^{i}=\sum_{j=1}^{m}w_{j}x_{j}^{i}+\epsilon^{i}$

falls between two thresholds $p_{k}$ and $p_{k+1}$ , where $\epsilon^{i}$ represents a random noise whose proba-
bilistic property is not known. Namely, attribute vectors of objects are loosely separated by
hyperplanes $H(w,p_{k})=\{x\in \mathbb{R}^{m}|w^{T}x=p_{k}\}$ for $k=1$ , 2, . . . , $l$ which share a common
normal vector $w$ , then each object is given a label according to the layer it is located in.

Note that neither $y_{i}’ s,$
$w_{j}$ ’s nor $p_{k}$ ’s are observable. Our problem is to find the normal vector

$w\in \mathbb{R}^{m}$ as well as the thresholds $p_{1},p_{2}$ , . . . , $p_{l}$ that best fit the input data $\{(x^{i}, \ell_{i})|i\in N\}.$

This problem is known as the ranking problem and frequently arises in social sciences and
operations research. See, for instance Crammer and Singer [2], Herbrich et al. [3], Liu [4],

Shashua and Levin [6] and Chapter 8 of Shawe-Taylor and Cristianini [8]. It is a variation of
the multi-class classification problem, for which several learning algorithms of the support
vector machine ( $SVM$ for short) have been proposed. We refer the reader to Chapters4.1.2

and 7.1.3 of Bishop [1], Chapter 10.10 of Vapnik [10] and Tatsumi et al. [9] and references
therein. What distinguishes the problem from other multi-class classification problems is

that the identical normal vector should be shared by all the separating hyperplanes. In this
paper based on the formulation fixed margin strategy by Shashua and Levin [6], we propose
a row and column generation algorithm to maximize the minimum margin for the ranking
problems.
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This paper is organized as follows. We give some definitions and notations in Section 2.
In Section3, we formulate the maximization of minimum margin with the hard margin
constraints and apply the dual representation of the normal vector to the formulation.
In Section4, we propose a row and column generation algorithm and prove the validity
of the algorithm. In Section5, after reviewing the kernel technique, we apply the kernel
technique to the hard margin problem with the dual representation. In Section6, 7 and 8,
we expand the discussions so far into the soft margin problem. In Section9, we demonstrate
an illustrative example for a small instance, then report computational experiments of our
algorithm in Section 10. In Sectionll, we discuss a desirable property of the separating
curves.

2. DEFINITIONS AND NOTATION

Throughout the paper $N=\{1, 2, . . . , i, . . . , n\}$ denotes the set of $n$ objects and $x^{i}=$

$(Xi, x_{2}^{i}, \ldots, x_{7}^{i_{n}})^{T}\in \mathbb{R}^{m}$ denotes the attribute vector of object $i$ . The predetermined set of
labels is $L=\{0, 1, . . . , k, . . . , l\}$ and the label assigned to object $i$ is denoted by $\ell_{i}$ . Let
$N(k)=\{i\in N|\ell_{i}=k\}$ be the set of objects with label $k\in L$ , and for notational
convenience we write $n(k)=|N(k)|$ for $k\in L$ , and $N(k..k’)=N(k)\cup N(k+1)\cup\cdots\cup N(k’)$

for $k,$ $k’\in L$ such that $k<k’$ . For a succinct notation we define

$X=[$ . . . $x^{i}$ . . . $]_{i\in N}\in \mathbb{R}^{m\cross n}$

$X_{W}=[\cdots x^{i}\cdots]_{i\in W}\in \mathbb{R}^{7n\cross|W|}$ (2.1)

for $W\subseteq N$ , and the corresponding Gram matrices

$K=X^{T}X\in \mathbb{R}^{n\cross n},$

$K_{W}=X_{W}^{T}X_{W}\in \mathbb{R}^{|W|\cross|W|}.$

We denote the $k$-dimensional zero vector and vector of $1$ ’s by $0_{k}$ and $1_{k}$ , respectively. Given
a subset $W\subseteq N$ and a vector $\alpha=(\alpha_{i})_{i\in W}$ we use the notation $(\alpha_{W}, 0_{N\backslash W})$ to denote the
$n$-dimensional vector $\overline{\alpha}$ such that

$\overline{\alpha}_{i}=\{\begin{array}{ll}\alpha_{i} when i\in W0 otherwise.\end{array}$

3. HARD MARGIN PROBLEMS $F$ SEPARABLE CASE

3.1. Primal Hard Margin Problem. Henceforth we assume that $N(k)\neq\emptyset$ for all $k\in L$

for the sake of simplicity, and adopt the notational convention that $p_{0}=-\infty$ and $p_{l+1}=$

$+\infty$ . We say that an instance $\{(x^{i}, l_{i})|i\in N\}$ is separable if there exist $w\in \mathbb{R}^{m}$ and
$p=(p_{1},p_{2}, \ldots,p_{l})^{T}\in \mathbb{R}^{l}$ such that

$p\ell_{i}<w^{T}x^{i}<p_{l_{i}+1}$ for $i\in N.$

Clearly an instance is separable if and only if there are $w$ and $p$ such that

$p\ell_{i}+1\leq w^{T}x^{i}\leq p\ell_{i}+1-1$ for $i\in N.$
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For each $k\in L\backslash \{O\}$ we see that

$\max w^{T}x^{i}\leq p_{k}-1<p_{k}<p_{k}+1\leq\min w^{T}x^{j},$

$i\in N(k-1) j\in N(k)$
implying

$\min\underline{w^{T_{x^{j}}}}- \max \underline{w^{T}}_{X^{i}}\geq\frac{2}{\Vert w\Vert}.$

$j\in N(k)\Vert w\Vert i\in N(k-1)\Vert w\Vert$

Then the margin between $\{x^{i}|i\in N(k-1)\}$ and $\{x^{j}|j\in N(k)\}$ is at least $2/\Vert w\Vert$ . Hence

the maximization of the minimum margin is formulated as the quadratic programming

(H)
minimize $\Vert w\Vert^{2}$

subject to $p\ell_{i}+1\leq(x^{i})^{T}w\leq p\ell_{i+1}-1$ for $i\in N,$

or more explicitly with the notation introduced in Section 2

(H)

minimize $\Vert w\Vert^{2}$

subject to $1-(x^{i})^{T}w+p_{\ell_{i}}\leq 0$ for $i\in N(1..l)$

$1+(x^{i})^{T}w-p_{\ell_{t}+1}\leq 0$ for $i\in N(O..l-1)$ .

The constraints therein are called hard margin constraints, and we name this problem (H) .

3.2. Dual Representation. A close look at the primal problem (H) shows that the follow-

ing property holds for the optimum solution $w^{*}$ . See, for example Chapter 6 of Bishop [1],

Shashua and Levin [6] and Theorem 1 in Sch\"olkopf et al. [7].

Lemma 3.1. Let $(w^{*},p^{*})\in \mathbb{R}^{m+l}$ be an optimum solution of (H) . Then $w^{*}\in \mathbb{R}^{m}$ lies in

the range space of $X$ , i. e., $w^{*}=X\lambda$ for some $\lambda\in \mathbb{R}^{n}.$

Proof. Let $w_{1}$ be the orthogonal projection of $w^{*}$ onto the range space of $X$ and let $w_{2}=$

$w^{*}-w_{1}$ . Then we obtain

$(x^{i})^{T}w^{*}=(x^{i})^{T}(w_{1}+w_{2})=(x^{i})^{T}w_{1}$ for $i\in N,$

meaning $(w_{1},p^{*})$ is feasible to (H) , and

$\Vert w^{*}\Vert^{2}=\Vert w_{1}\Vert^{2}+\Vert w_{2}\Vert^{2}\geq\Vert w_{1}\Vert^{2}.$

Hence by the optimality of $w^{*}$ we conclude that $w_{2}=0.$ $\square$

The representation $w=X\lambda$ is called the dual representation.

Substituting $X\lambda$ for $w$ yields another primal hard margin problem $(\overline{H})$ :

(H)
minimize $\lambda^{T}K\lambda$

subject to $p\ell_{i}+1\leq(k^{i})^{T}\lambda\leq p_{\ell_{i}+1}-1$ for $i\in N,$

where $(k^{i})^{T}=((x^{i})^{T}x^{1}, (x^{i})^{T}x^{2}, \ldots, (x^{i})^{T}x^{n})$ is the ith row of the matrix $K$ . Since $n$ is

typically by far larger than $m$ , problem (H) might be less interesting than problem (H) .
However the fact that this formulation only requires the matrix $K$ will enable the application

of kernel technique to the problem.
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4. ALGORITHM FOR HARD MARGIN PROBLEMS

In this section, we consider the problem (H) with dual representation of normal vector.
The dimension $m$ of the attribute vectors is usually much smaller than the number $n$ of
objects, hence we need a small number of attribute vectors for the dual representation.
Furthermore it is likely that most of the constraints are redundant at the optimal solution.
We introduce a subset $W$ , called working set, of $N$ and consider the following sub-problem.

$(\overline{H}(W))$

minimize $\lambda_{W}^{T}K_{W}\lambda_{W}$

subject to $p\ell_{i}+1\leq(k_{W}^{i})^{T}\lambda_{W}\leq p_{\ell_{i}+1}-1$ for $i\in W,$

where $(k_{W}^{i})^{T}$ is the row vector consisting $(x^{i})^{T}x^{j}$ for $j\in W$ . We propose to start the
algorithm with a sub-problem which is much smaller than the problem (H) in both variables
and constraints, and increment $W$ as the computation goes on. Note that the dimension of
$\lambda_{W}$ varies when the size of $W$ changes as the computation goes on.

Algorithm $RC\overline{H}$ (Row and Column Generation Algorithm for $(\overline{H})$ )

Step 1 : Let $W^{0}$ be an initial working set, and let $\nu=0.$

Step 2: Solve $(\overline{H}(W^{\nu}))$ to obtain $\lambda_{W^{\nu}}$ and $p^{\nu}.$

Step 3: Let $\Delta=\{i\in N\backslash W^{\nu}|(\lambda_{W^{\nu}},p^{v})$ violates $p_{\ell_{i}}+1\leq(k_{W^{\nu}}^{i})^{T}\lambda_{W}\leq p_{\ell_{i}+1}-1\}.$

Step 4: If $\Delta=\emptyset$ , terminate.
Step 5: Otherwise choose $\Delta^{\nu}\subseteq\Delta$ , let $W^{\nu+1}=W^{\nu}\cup\triangle^{\nu}$ , increment $v$ by 1 and go to

Step 2.

The following lemma shows that Algorithm RCH solves problem (H) upon termination.

Lemma 4.1. Let $(\hat{\lambda}_{W},\hat{p})\in \mathbb{R}^{|W|+l}$ be an optimum solution of $(\overline{H}(W))$ . If
$\hat{p}\ell_{i}+1\leq(k_{W}^{i})^{T}\hat{\lambda}_{W}\leq\hat{p}_{\ell_{i}+1}-1foralli\in N\backslash W$ , (4.1)

then $(\hat{\lambda}_{W}, 0_{N\backslash W})\in \mathbb{R}^{n}$ together with $\hat{p}$ forms an optimum solution of $(\overline{H})$ .

Proof. Note that $((\hat{\lambda}_{W}, 0_{N\backslash W}),\hat{p})$ is a feasible solution of (H) since $(k^{i})^{T}(\begin{array}{l}\hat{\lambda}_{W}0_{N\backslash W}\end{array})=$

$(k_{W}^{i})^{T}\hat{\lambda}_{W},$ $(\hat{\lambda}_{W},\hat{p})$ is feasible to $(\overline{H}(W))$ and satisfies (4.1).
For an optimum solution $(\lambda^{*},p^{*})$ of $(\overline{H})$ , let $w^{*}=X\lambda^{*},$ $w_{1}$ be its orthogonal projection

onto the range space of $X_{W}$ and $w_{2}=w^{*}-w_{1}$ . Then $w_{1}=X_{W}\mu_{W}^{*}$ for some $\mu_{W}^{*}\in \mathbb{R}^{|W|}$

and
$(\lambda^{*})^{T}K\lambda^{*}=\Vert w^{*}\Vert^{2}\geq\Vert w_{1}\Vert^{2}=(\mu_{W}^{*})^{T}K_{W}\mu_{W}^{*}$ (4.2)

by the orthogonality between $w_{1}$ and $w_{2}$ . For $i\in N\cap W$ it holds that

$(k_{W}^{i})^{T}\mu_{W}^{*}=(x^{i})^{T}X_{W}\mu_{W}^{*}=(x^{i})^{T}w_{1}=(x^{i})^{T}(w_{1}+w_{2})$

$=(x^{i})^{T}w^{*}=(x^{i})^{T}X\lambda^{*}=(k^{i})^{T}\lambda^{*},$

which is between $p_{\ell_{i}}^{*}+1$ and $p_{l_{i}+1}^{*}-1$ since $(\lambda^{*},p^{*})$ is feasible to $(\overline{H})$ . Then $(\mu_{W}^{*},p^{*})$ is

feasible to $(\overline{H}(W))$ . This and the optimality of $\hat{\lambda}_{W}$ yield the inequality

$(\mu_{W}^{*})^{T}K_{W}\mu_{W}^{*}\geq\hat{\lambda}_{W}^{T}K_{W}\hat{\lambda}_{W}=(\begin{array}{l}\hat{\lambda}_{W}0_{N\backslash W}\end{array})K(\begin{array}{l}\hat{\lambda}_{W}0_{N\backslash W}\end{array})$ . (4.3)
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The two inequalities (4.2) and (4.3) prove the optimality of $((\hat{\lambda}_{W}, 0_{N\backslash W}),\hat{p})$ . $\square$

Theorem 4.2. The Algorithm $RCH$ solves problem $(\overline{H})$ .

5. KERNEL TECHNIQUE FOR HARD MARGIN PROBLEMS

The matrix $K$ in the primal hard margin problem (H) with dual representation of normal

vector is composed of the inner products $(x^{i})^{T}x^{j}$ for $i,j\in N$ . This enables us to apply the

kernel technique simply by replacing them by $\kappa(x^{i}, x^{j})$ for some appropriate kernel function
$\kappa.$

Let $\phi:\mathbb{R}^{m}arrow \mathbb{F}$ be a function, possibly unknown, from $\mathbb{R}^{m}$ to some higher dimensional
inner product space $\mathbb{F}$ , so-called the feature space such that

$\kappa(x, y)=\langle\phi(x) , \phi(y)\rangle$

holds for $x,$ $y\in \mathbb{R}^{m}$ , where $\rangle$ is the inner product defined on $\mathbb{F}$ . In the sequel we denote
$\tilde{x}=\phi(x)$ . The kernel technique considers the vectors $\tilde{x}^{i}\in \mathbb{F}$ instead of $x^{i}\in \mathbb{R}^{m}$ , and finds

the normal vector $\tilde{w}\in \mathbb{F}$ and thresholds $p_{1}$ , . . . , $p_{l}$ . Therefore the matrices $X$ and $K$ should
be replaced by $\tilde{X}$ composed of vectors $\tilde{x}^{i}$ and $\tilde{K}=[\langle\tilde{x}^{i}, \tilde{x}^{j}\rangle]_{i,j\in N}$ , respectively. Note that

the latter matrix is given as

$\tilde{K}=[\kappa(x^{i}, x^{j})]_{i,j\in N}$ (5.1)

by the kernel function $\kappa$ . The problem to solve is

(H)
minimize $\lambda^{T}\tilde{K}\lambda$

subject to $p\ell_{i}+1\leq(\tilde{k}^{i})^{T}\lambda\leq p_{\ell_{i}+1}-1$ for $i\in N.$

Solving $(\tilde{H})$ to find $\lambda^{*}$ , the optimal normal vector $\tilde{w}^{*}\in \mathbb{F}$ would be given as

$\tilde{w}^{*}=\sum_{i\in N}\lambda_{i}^{*}\tilde{x}^{i},$

which is not available in general due to the absence of an explicit representation of $\tilde{x}^{i\prime}s.$

However, the value of $\langle\tilde{w}^{*},$ $\tilde{x}\rangle$ can be computed for a given attribute vector $x\in \mathbb{R}^{n}$ in the

following way:

$\langle\tilde{w}^{*}, \tilde{x}\rangle=\langle\sum_{i\in N}\lambda_{i}^{*}\tilde{x}^{i}, \tilde{x}\rangle=\sum_{i\in N}\lambda_{i}^{*}\langle\tilde{x}^{i}, \tilde{x}\rangle=\sum_{i\in N}\lambda_{i}^{*}\langle\phi(x^{i}) , \phi(x)\rangle=\sum_{i\in N}\lambda_{i}^{*}\kappa(x^{i}, x)$
.

Then by locating the threshold interval determined by $p^{*}$ into which this value falls, we can
assign a label to the new object with $x.$

In the same way as for the hard margin problem $(\overline{H})$ , we consider the sub-problem

$(\tilde{H}(W))$

minimize $\lambda_{W}^{T}\tilde{K}_{W}\lambda_{W}$

subject to $p\ell_{i}+1\leq(\tilde{k}_{W}^{i})^{T}\lambda_{W}\leq p_{l_{i}+1}-1$ for $i\in W,$

where $\tilde{K}_{W}$ is the sub-matrix consisting of rows and columns of $\tilde{K}$ with indices in $W$ , and
$(\tilde{k}_{W}^{i})^{T}$ is the row vector of $\kappa(x^{i}, x^{j})$ for $j\in W.$
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Algorithm $RC\tilde{H}$ (Row and Column Generation Algorithm for $(\tilde{H})$ )

Step 1 : Let $W^{0}$ be an initial working set, and let $v=0.$

Step 2: Solve $(\tilde{H}(W^{v}))$ to obtain $\lambda_{W^{\nu}}$ and $p^{v}.$

Step 3: Let $\Delta=\{i\in N\backslash W^{\nu}|(\lambda_{W^{\nu}},p^{\nu})$ violates $p\ell_{i}+1\leq(\tilde{k}_{W^{\nu}}^{i})^{T}\lambda w\leq p\ell_{i}+1-1\}.$

Step 4: If $\triangle=\emptyset$ , terminate.
Step 5: Otherwise choose $\triangle^{\nu}\subseteq\triangle$ , let $W^{\nu+1}=W^{\nu}\cup\triangle^{\nu}$ , increment $\nu$ by 1 and go to

Step 2.

The validity of the algorithm is straightforward from the following lemma, which is proved
in exactly the same way as Lemma 4.1

Lemma 5.1. Let $(\hat{\lambda}_{W},\hat{p})\in \mathbb{R}^{|W|+l}$ be an optimum solution of $(\tilde{H}(W))$ . If

$\hat{p}_{\ell_{i}}+1\leq(\tilde{k}_{W}^{i})^{T}\hat{\lambda}_{W}\leq\hat{p}_{l_{i}+1}-1$ for all $i\in N\backslash W,$

then $(\hat{\lambda}_{W}, 0_{N\backslash W})\in \mathbb{R}^{n}$ together with $\hat{p}$ forms an optimum solution of $(\tilde{H})$ .

Theorem 5.2. The Algorithm $RCH$ solves problem $(\tilde{H})$ .

6. SOFT MARGIN PROBLEMS FOR $NoN$-SEPARABLE CASE

6.1. Primal Soft Margin Problems. Similarly to the binary SVM, introducing nonnega-
tive slack variables $\xi_{-i}$ and $\xi+i$ for $i\in N$ relaxes the hard margin constraints to soft margin
constraints:

$p\ell_{i}+1-\xi_{-i}\leq w^{T}x^{i}\leq p\ell_{i+1}-1+\xi+i$ for $i\in N.$

Positive values of variables $\xi_{-i}$ and $\xi+i$ mean misclassification, hence they should be as small
as possible. If we penalize positive $\xi_{-i}$ and $\xi+i$ by adding $\sum_{i\in N}(\xi_{-i}+\xi_{+i})$ to the objective
function, we have the following primal soft margin problem with 1-norm penalty.

$(S_{1})$

minimize $\Vert w\Vert^{2}+c1_{n}^{T}(\xi_{-}+\xi_{+})$

subject to $p_{l_{i}}+1-\xi_{-i}\leq(x^{i})^{T}w\leq p_{\ell_{i}+1}-1+\xi+i$ for $i\in N$

$\xi_{-}, \xi_{+}\geq 0_{n},$

where $\xi_{-}=(\xi_{-1}, \ldots, \xi_{-n})$ , $\xi_{+}=(\xi_{+1}, \ldots, \xi_{+n})$ and $c$ is a penalty parameter. When 2-norm
penalty is employed, we have

$(S_{2})$

minimize $\Vert w\Vert^{2}+c(\Vert\xi_{-}\Vert^{2}+\Vert\xi_{+}\Vert^{2})$

subject to $p_{\ell_{i}}+1-\xi_{-i}\leq(x^{i})^{T}w\leq p_{\ell_{i}+1}-1+\xi+i$ for $i\in N$

$\xi_{-}, \xi_{+}\geq 0_{n}.$

Lemma 6.1. The nonnegativity constraints on variables $\xi_{-i}$ and $\xi+i$ of problem $(S_{2})$ are
redundant.

Proof. Let $(w, \xi_{-}, \xi_{+})$ be a feasible solution of $(S_{2})$ with the nonnegativity constraints
removed. If $\xi_{-i}<0$ for some $i\in N$ , replacing it with zero will reduce the objective function
value. Therefore $\xi_{-}$ and $\xi_{+}$ are nonnegative at any optimum solution of $(S_{2})$ . $\square$
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Thus our problem with 2-norm penalty reduces to

$(S_{2})$

minimize $\Vert w\Vert^{2}+c(\Vert\xi_{-}\Vert^{2}+\Vert\xi_{+}\Vert^{2})$

subject to $p\ell_{i}+1-\xi_{-i}\leq(x^{i})^{T}w\leq p_{\ell_{i}+1}-1+\xi+i$ for $i\in N.$

As proposed in Mangasarian and Musicant [5], the addition of a term $\Vert p\Vert^{2}$ to the objective
function yields the following two formulations $(S_{12})$ and $(S_{22})$ .

$(S_{12})$

minimize $\Vert w\Vert^{2}+c1_{n}^{T}(\xi_{-}+\xi_{+})+d\Vert p\Vert^{2}$

subject to $p\ell_{i}+1-\xi_{-i}\leq(x^{i})^{T}w\leq p_{\ell_{i}+1}-1+\xi+i$ for $i\in N$

$\xi_{-}, \xi_{+}\geq 0_{n},$

and

$(S_{22})$

minimize $\Vert w\Vert^{2}+c(\Vert\xi_{-}\Vert^{2}+\Vert\xi_{+}\Vert^{2})+d\Vert p\Vert^{2}$

subject to $p\ell_{i}+1-\xi_{-i}\leq(x^{i})^{T}w\leq p\ell_{i}+1-1+\xi+i$ for $i\in N,$

where $d$ is a penalty parameter.
Naturally, we could add to each of the above formulations the constraints

$p_{k’}+1-\xi_{-i}\leq(x^{i})^{T}w\leq Pk"-1+\xi+i$ for $k’,$ $k”\in L$ such that $k’\leq\ell_{i}<k$

It would, however, inflate the problem size and most of those constraints would be likely
redundant. Therefore we will not discuss this formulation.

6.2. Dual Representation. Obviously we can replace $\Vert w\Vert^{2}$ and $(x^{i})^{T}w$ in each of the
primal problems given in the preceding subsection by $\lambda^{T}K\lambda$ and $(k^{i})^{T}\lambda$ , respectively, to
obtain the primal problem with dual representation of normal vector. Take $(S_{1})$ for instance,
and we have

$(\overline{S}_{1})$

minimize $\lambda^{T}K\lambda+c1_{n}^{T}(\xi_{-}+\xi_{+})$

subject to $p\ell_{i}+1-\xi_{-i}\leq(k^{i})^{T}\lambda\leq p\ell_{i}+1-1+\xi+i$ for $i\in N$

$\xi_{-}, \xi_{+}\geq 0_{n}.$

7. ALGORITHM FOR SOFT MARGIN PROBLEMS

The algorithm for the soft margin problems may not differ substantially from that for the
hard margin problems. Take the primal soft margin problem $(\overline{S}_{1})$ with dual representation
of normal vector. The sub-problem to solve is

$(\overline{S}_{1}(W))$

minimize $\lambda_{W}^{T}K_{W}\lambda_{W}+c1_{|W|}^{T}(\xi_{-W}+\xi_{+W})$

subject to $p\ell_{i}+1-\xi_{-i}\leq(k_{W}^{i})^{T}\lambda_{W}\leq p_{\ell_{i}+1}-1+\xi+i$ for $i\in W$

$\xi_{-W}, \xi_{+W}\geq 0_{|W|}.$

We propose the following algorithm for $(\overline{S}_{1})$ in which we solve $(\overline{S}_{1}(W))$ repeatedly.

Algorithm $RC\overline{S}_{1}$ (Row and Column Generation Algorithm for $(\overline{S}_{1})$ )

Step 1 : Let $W^{0}$ be an initial working set, and let $\nu=0.$
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Step 2 : Solve $(\overline{S}_{1}(W^{v}))$ to obtain $(\lambda_{W^{\nu}},p^{\nu}, \xi_{-W^{\nu}}, \xi_{+W^{\nu}})$ .
Step 3 : Let $\triangle=\{i\in N\backslash W^{\nu}|(\lambda_{W^{\nu}},p^{\nu})$ violates $p\ell_{i}+1\leq(k_{W^{v}}^{i})^{T}\lambda_{W}\leq p_{\ell_{i}+1}-1\}.$

Step 4: If $\triangle=\emptyset$ , terminate.
Step 5: Otherwise choose $\Delta^{v}\subseteq\triangle$ , let $W^{\nu+1}=W^{\nu}\cup\triangle^{\nu}$ , increment $\nu$ by 1 and go to

Step 2.

Lemma 7.1. Let $(\hat{\lambda}_{W},\hat{p},\hat{\xi}_{-W},\hat{\xi}_{+W})$ be an optimum solution of $(\overline{S}_{1}(W))$ . If
$\hat{p}\ell_{i}+1\leq(k_{W}^{i})^{T}\hat{\lambda}_{W}\leq\hat{p}\ell_{i}+1-1 foralli\in N\backslash W,$

then $((\hat{\lambda}_{W}, 0_{N\backslash W}),\hat{p}, (\xi_{-W}^{\nu}, 0_{N\backslash W}), (\xi_{+W}^{\nu}, 0_{N\backslash W}))$ is an optimum solution of $(\overline{S}_{1})$ .

$f^{)}roof$. First note that $((\hat{\lambda}_{W}, 0_{N\backslash W}),\hat{p}, (\hat{\xi}_{-W}, 0_{N\backslash W}), (\hat{\xi}_{+W}, 0_{N\backslash W}))$ is feasible to $(\overline{S}_{1})$ . Let
$(\lambda^{*},p^{*}, \xi_{-W}^{*}, \xi_{+W}^{*})$ be an optimum solution of $(\overline{S}_{1})$ , let $w^{*}=X\lambda^{*}$ and $w_{1}$ be its orthogonal
projection onto the range space of $X_{W}$ . Then we see that the coefficient vector $\mu_{W}^{*}$ such
that $w_{1}=X_{W}\mu_{W}^{*}$ together with $(p^{*}, \xi_{-W}^{*}, \xi_{+W}^{*})$ forms a feasible solution of $(\overline{S}_{1}(W))$ , and
$\Vert w^{*}\Vert\geq\Vert w_{1}\Vert$ . Therefore in the same manner as Lemma 4.1, we obtain the desired result.

$\square$

The validity of the algorithm directly follows the above lemma.

Theorem 7.2. The Algorithm $RC\overline{S}_{1}$ solves problem $(\overline{S}_{1})$ .

8. KERNEL TECHNIQUE FOR SOFT MARGIN PROBLEMS

The kernel technique can apply to the soft margin problem in the same way as discussed
in Section 5.

For the kernel version of soft margin problems with dual representation of normal vector,
we have only to replace $K$ by $\tilde{K}$ given by some kernel function $\kappa$ . The kernel version of $(\overline{S}_{1})$

for instance, is given as

$(\tilde{S}_{1})$

minimize $\lambda^{T}\tilde{K}\lambda+c1_{n}^{T}(\xi_{-}+\xi_{+})$

subject to $p\ell_{i}+1-\xi_{-i}\leq(\tilde{k}^{i})^{T}\lambda\leq p_{\ell_{i}+1}-1+\xi+i$ for $i\in N$

$\xi_{-}, \xi_{+}\geq 0_{n}.$

In the same way as in the previous section we consider the sub-problem of $(\tilde{S}_{1})$ , which is
given as

$(\tilde{S}_{1}(W))$

minimize $\lambda_{W}^{T}\tilde{K}_{W}\lambda_{W}+c1_{|W|}^{T}(\xi_{-W}+\xi_{+W})$

subject to $p_{\ell_{i}}+1-\xi_{-i}\leq(\tilde{k}_{W}^{i})^{T}\lambda_{W}\leq p_{\ell_{i}+1}-1+\xi+i$ for $i\in W$

$\xi_{-W}, \xi_{+W}\geq 0_{|W|}.$

Algorithm $RC\tilde{S}_{1}$ (Row and Column Generation Algorithm for $(\tilde{S}_{1})$ )

Step 1 : Let $W^{0}$ be an initial working set, and let $v=0.$

Step 2 : Solve $(\tilde{S}_{1}(W^{\nu}))$ to obtain $(\lambda_{W^{v}},p^{\nu}, \xi_{-W^{\nu}}, \xi_{+W^{\nu}})$ .

Step 3: Let $\triangle=\{i\in N\backslash W^{\nu}|(\lambda_{W^{v}}, p^{\nu})$ violates $p\ell_{i}+1\leq(\tilde{k}_{W^{\nu}}^{i})^{T}\lambda_{W}\leq p\ell_{i}+1-1\}.$

Step 4: If $\triangle=\emptyset$ , terminate.
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Step 5: Otherwise choose $\Delta^{\nu}\subseteq\Delta$ , let $W^{\nu+1}=W^{\nu}\cup\triangle^{\nu}$ , increment $\nu$ by 1 and go to
Step 2.

We then obtain the following theorem.

Theorem 8.1. The Algorithm $RC\tilde{S}_{1}$ solves problem $(\tilde{S}_{1})$ .

9. ILLUSTRATIVE EXAMPLE

We show with a small instance how different models result in different classifications. The
instance is the grades in calculus of 44 undergraduates. Each student is given one of the four
possible grades $A,$ $B,$ $C,$ $D$ according to his/her total score of mid-term exam, end-of-term
exam and a number of in-class quizzes. We take the scores of mid-term and end-of-term
exams to form an attribute vector, and the grade as a label.

Since the score of quizzes is not considered as an attribute, the instance is not separable.
Hence the hard margin problem (H) is infeasible. The solution of the soft margin problem
$(S_{1})$ with $c=15$ is given in Fig. 1, where students of different grades are loosely separated
by three straight lines.

FIGURE 1. Classification by $(S_{1})$

Using the following two kernel functions defined as

$\kappa(x, y)=\exp(-\frac{1}{2\sigma^{2}}\Vert x-y\Vert^{2})$ (Gaussian kernel),

$\kappa(x, y)=(1+x^{T}y)^{d}$ (Polynomial kernel)

with several different values of $\sigma$ and $d$ , we solved $(\tilde{S}_{1})$ . The result of the Gaussian kernel
with $c=10$ and $\sigma=0.5$ is given in Fig. 2, where one can observe that the problem $(\tilde{S}_{1})$

with the Gaussian kernel is exposed to the risk of over-fitting. The result of the polynomial
kernel with $c=15$ and $d=4$ is given in Fig. 3. From Fig. 3, we observe that students of
different grades are separated by three gentle curves.
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$FI(_{\grave{J}}URE2$ . Classification by $(\tilde{S}_{1})$ with the $Gaussi_{J1}$ kernel

FIGURE 3. Classification by $(\tilde{S}_{1})$ with the polynomial kernel

10. COMPUTATIONAL EXPERIMENTS

We report the computational experiments with our proposed algorithms. The experiment

was performed on a PC with Intel Core i7, 3.07 GHz processor and 12.0 GB of memory. We
implemented the algorithms in Python, and used Gurobi5.6.3 as the QP solver.

We used several randomly generated instances, which are divided into two types. The

first type consists of separable instances and the second type consists of non-separable

instances. First we generated $n$ attribute vectors $x^{i}=(Xi, x_{2}^{i})$ at random from the unit
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square $[0$ , 1$]$ $\cross[0$ , 1 $]$ . Each object $i$ was assigned a label $\ell_{i}\in L=\{0$ , 1, . . . , 3 $\}$ according to
the following rule:

$p_{i_{\ell_{\in}}}= \max_{L}\{\ell\in L|_{X}i+x_{2}^{i}>p\ell\}$

where $(p_{0},p_{1},p_{2},p_{3})=(-\infty, 0.5,1.0,1.5)$ . Then this instance is separable. Perturbing each
element of the attribute vector, we have a perturbed attribute vector $(x_{1}^{i}+\epsilon_{1}^{i}, x_{2}^{i}+\epsilon_{2}^{i})$ ,
where $\epsilon i$ as well as $\epsilon_{2}^{i}$ is a random noise following a normal distribution with a zero mean
and a standard deviation of 0.03. Then we give a label $\ell_{i}$ to an object $i$ according to the
sum of elements of the perturbed vector instead of the value $xi+x_{2}^{i}$ . Due to the presence
of the random noise, the instance is not necessarily separable. We generate five datasets for
each instance with $n$ objects since the results may change owing to the random variables
used in the above instance generation method. We name the separable type datasets (the
non-separable datasets) “S.n. $q$

” (NS.n.q), where $q$ is a dataset ID.
We solved the separable instances by the algorithm $RCH$ and the non-separable instances

by the algorithm $RC\tilde{S}_{1}$ with $c=10$ . In all experiments we used the polynomial kernel with
a parameter $d=4$. To make the initial working set $W^{0}$ , we first calculate the value of
$x_{1}^{i}+x_{2}^{i}$ for each object $i$ , and choose three objects whose values are the highest, the lowest
and the median among objects assigned the same label. At Step5 in the algorithms, we
add at most two objects corresponding to the most violated constraints at $(\lambda_{W^{\nu}},p^{\nu})$ to the
current working set $W^{\nu}$ at a time, more precisely, we add the objects $i$ and $j\in N\backslash W^{\nu}$

such that

$i=[argmax]\{1-(\tilde{k}_{W^{\nu}}^{i})^{T}\lambda_{W^{\nu}}+p_{\ell_{i}}^{\nu}>0|i\in N\backslash W^{\nu}\},$

$j=. [argmax]\{1+(\tilde{k}_{W^{\nu}}^{i})^{T}\lambda_{W^{\nu}}-p_{\ell_{i}+1}^{\nu}>0|i\in N\backslash W^{\nu}\}.$

Table 1 shows the results of $RCH$ and $RC\tilde{S}_{1}$ for each instance, where the columns $\#$

iter , $\#$ added obj.” and
$\langle$

time” represent the number of sub-problems solved, the number
of added objects and the computation time in seconds, respectively. The entries “ave.”
and “st.dev.” show the average and the standard deviation across the five results of a
corresponding column.

TABLE 1. Results of $RCH$ and $RC\tilde{S}_{1}$

$\overline{\frac{instance.n\frac{\#er}{ave.st.dev}\frac{\#addedobj}{ave.st.dev}\frac{time(s.)}{ave.stdev0.320.18}}{S.100.1-S.l0051005.81.798.603.05}}$

S.500.1 –S.500.5 500 8.40 1.34 13.80 2.39 1.36 0.32

$\frac{S.1000.1-S.1000.5100011.800.8420.400.894.730.46}{NS.100.1-NS.100.510014.403.7123.404.162.060.83}$

$NS.500.1-NS.500.5$ 500 65.00 30.91 108.80 23.54 108.23 103.02
NS.1000.1 –NS.1000.5 1000 111.80 43.50 198.60 41.43 580.94 524.09

From Table 1, we observe that the number of added objects is much smaller than that of
the original problem in the separable case. In the non-separable case, we observe that the
number of iterations as well as the number of added objects is larger than the separable
case. Nevertheless the number of added objects was approximately 20% of the whole.
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11. MONOTONICITY ISSUE

In some situations it would be desirable that the separating curves have some monotonic-
ity property, namely an object with attribute vector $x$ be ranked higher than an object
with $y$ such that $y\leq x$ . Then we discuss the monotonicity of the separating curves in this
section.

Let $P$ be a hyperplane in $\mathbb{F}$ defined by

$P=\{\tilde{x}\in \mathbb{F}|\langle\tilde{w}^{*}, \tilde{x}\rangle=b\}$

for some constant $b\in \mathbb{R}$ and let $C$ denote its inverse image under the unknown function $\phi,$

i. e.,

$C=\{x\in \mathbb{R}^{m}|\phi(x)\in P\}.$

Then $x\in C$ if and only if $\langle\tilde{w}^{*},$ $\phi(x)\rangle=b$ . Since $\tilde{w}^{*}=\sum_{i\in N}\lambda_{i}^{*}\tilde{x}^{i}=\sum_{i\in N}\lambda_{i}^{*}\phi(x^{i})$ , we
obtain

$\langle\sum_{i\in N}\lambda_{i}^{*}\phi(x^{i}) , \phi(x)\rangle=b.$

Due to the bi-linearlity of the inner product we have

$\langle\sum_{i\in N}\lambda_{i}^{*}\phi(x^{i}) , \phi(x)\rangle=\sum_{i\in N}\lambda_{i}^{*}\langle\phi(x^{i}) , \phi(x)\rangle=\sum_{i\in N}\lambda_{i}^{*}\kappa(x^{i}, x)$
,

and then an expression of the inverse image

$C= \{x\in \mathbb{R}^{m}|\sum_{i\in N}\lambda_{i}^{*}\kappa(x^{i}, x)=b\}$

by the kernel function $\kappa.$

Suppose that the kernel function $\kappa(x^{i}, \cdot)$ is nondecreasing for $i\in N$ , in the sense that

$x\leq x’\Rightarrow\kappa(x^{i}, x)\leq\kappa(x^{i}, x$

and $\lambda_{i}^{*}\geq 0$ for $i\in N$ . Then $\sum_{i\in N}\lambda_{i}^{*}\kappa(x^{i}, x)$ is nondecreasing as a whole.

Lemma 11.1. The kernel function $\kappa(x^{i}, \cdot)$ is nondecreasing and $\lambda_{i}^{*}\geq 0$ for $i\in N.$ Then
the contours are nondecreasing.

The polynomial kernel

$\kappa(x^{i}, x)=(1+(x^{i})^{T}x)^{d}$

is nondecreasing with respect to $x$ if $x^{i}\geq 0$ for $i\in N$ . Therefore it would be appropriate
to use the polynomial kernel when all the attribute vectors are nonnegative including those
of potential objects, and the monotonicity is desirable. In this case the kernel hard margin
problem $(\tilde{H})$ should be added non-negativity constraints of variables $\lambda_{i}’ s$ :

(H)

minimize $\lambda^{T}\tilde{K}\lambda$

subject to $p\ell_{i}+1\leq(\tilde{k}^{i})^{T}\lambda\leq p_{\ell_{i}+1}-1$ for $i\in N$

$\lambda\geq 0.$

The problem remains an ordinary convex quadratic optimization, and the additional non-
negativity constraints do not make it more difficult to solve.

29



12. CONCLUSIONS

In this paper, we proposed to apply the dual representation of the normal vector to the

formulation based on the fixed margin strategy by Shashua and Levin [6] for the ranking

problem. The obtained problem has the drawback that it has $n$ of variables as well as $n$ of
constraints. However the fact that it enables the application of kernel technique outweighs

the drawback. Then we proposed a row and column generation algorithm. Namely, we start
the algorithm with a sub-problem which is much smaller than the master problem in both
variables and constraints, and increment both of them as the computation goes on. Further-

more we proved the validity of the algorithm. Through some preliminary experiments, our
algorithm performed fairly well. However it should need further research such as a setting

of the initial working set $W^{0}$ and a choice of $\triangle^{\nu}$ since a clever choice of these may enhance

the efficiency of the algorithm.
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