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1 Introduction

In this article, we define a hypo-graph of each continuous function from a compact metrizable
space to a non-degenerate dendrite, endow the space of hypo-graphs with certain topology
and discuss the topological properties of that space. In geometric functional analysis, being
a Baire space is one of the most important topological properties for a function space, and
hence, it is natural to ask when a function space is a Baire space. The main purpose of this
article is to provide necessary and sufficient conditions for the space of hypo-graphs to be a
Baire space. In the last section, we will consider the topological type of that space. This
article is a résumé of the paper [2].

Throughout the article, we assume that all maps are continuous, but functions are not
necessarily continuous. Moreover, let X be a compact metrizable space and Y be a non-
degenerate dendrite with a distinguished end point 0. We recall that a dendrite is a Peano
continuum containing no simple closed curves. The following fact is well-known [10, Chap-
ter V, (1.2)]:

Fact 1. Any two distinct points of a dendrite are joined by one and only one arc.

From now on, for any two points z,y € Y, the symbol [z, y] means the one and only one
arc between z and y if z # y, or the singleton {z} = {y} if z =y.
For each function f: X — Y, we define the hypo-graph |f of f as follows:

= J{=} x[0,f(z)] c X xY.
zeX

Note that if f is continuous, then the hypo-graph |f is closed in X x Y. By Cld(X x Y)
we denote the hyperspace of non-empty closed subsets of X x Y endowed with the Vietoris
topology. Then we can regard the set

C(X,Y)={{f | f: X = Y is continuous}

of hypo-graphs of continuous functions from X to Y as a subset of Cld(X x Y) We equip
JIC(X,Y) with the subspace topology of Cld(X x Y).



A closed set A in a space W is called a Z-set in W if for any open cover U of W, there is a
map f: W — W such that for each point z € W, the both z and f(z) are contained in some
U €U and f(W)N A = 0. This concept plays a central role in infinite-dimensional topology.
A Z,-set is a countable union of Z-sets. As is easily observed, every Z-set is nowhere dense,
and hence any space that is a Z,-set in itself is not a Baire space. We shall give necessary
and sufficient conditions for {C(X,Y’) to be a Baire space as follows (Z. Yang [8] showed the
case that Y is the closed unit interval I = [0,1] and 0 = 0):

Main Theorem. The following are equivalent:
(1) {C(X,Y) is a Baire space;
(2) IC(X,Y) is not a Z,-set in itself;
(3) The set of isolated points of X is dense.

2 Preliminaries

In this section, we introduce some notation and lemmas used later. The natural numbers is
denoted by N. For a metric space W = (W, d) and € > 0, let By(z,¢) = {y € W | d(z,y) < €}.
A metric d is convez if any two points z and y in W have a mid point z. When d is convex
and complete, there exists a path between z and y isometric to the interval [0, d(z,y)]. Every
Peano continuum admits a convex metric, see [1] and [5, 6]. In the remaining of this article,
we use an admissible metric dx on X and an admissible convex metric dy on Y. Arcs in a
dendrite have the following nice property with respect to its admissible convex metric [3]:

Lemma 2.1. There exists a map v : Y2 x I =Y such that for any distinct points z,y € Y,
the map y(z,y,*) : I3t — y(z,y,t) €Y is an arc from z to y and the following holds:

o For each z;,y; € Y, i = 1,2, dy(v(z1,91,1), (22, ¥2, 1)) < max{dy(z1,z2),dy (v1,%2)}
forallt €1.

Since X and Y are compact, the topology of Cld(X x Y) is induced by the Hausdorff
metric pgy of an admissible metric p on X X Y defined as follows:

Ac |J By(=y),m.Bc | Bp((x,y),T)}-

(z,y)EB (z.y)€A

Fix any A € Cld(X x Y'). For each point z € X, let A(z) ={y € Y | (z,y) € A}. Moreover,
for each subset B C X, let A|p = {(z,y) € A | z € B}. The following lemma, that has been
proved in [7], is a key lemma of this article.

Lemma 2.2 (Digging Lemma). Let Z be a metrizable space and ¢ : Z —|C(X,Y) be a map.
Suppose that X contains a non-isolated point a. Then for each map € : Z — (0,1), there
exist maps ¢ : Z —-|C(X,Y) and 6 : Z — (0,1) such that for each x € Z,

(a‘) PH(¢($)7¢($)) < 6(11,‘),
(b) ¥(z)(Bax (a,8())) = {{0}}-

pu(A, B) = inf {r >0




3 Proof of Main Theorem

This section is devoted to proving the main theorem. For the sake of convenience, by Xj

we denote the set of isolated points of X. Let {C(X,Y) be the closure of |C(X,Y) in
Cld(X x Y). Then |C(X,Y) is a compactification of |{C(X,Y).

Lemma 3.1. The space |C(X,Y) = {4 € Cld(X xY) | (%)}, where

() for each x € X, (i) A(z) # 0, (i) [0,y] C A(z) if y € A(z), and (ii) A(z) is an arc
or the singleton {0} if z € X,.

Sketch of proof. For simplicity, let 4 = {4 € Cld(X x Y) | (x)}. Obviously, JC(X,Y) C A.
To show that A is a closed set in Cld(X xY'), take any sequence { Ay }ren in A that converges
to A € Cld(X x Y). Noting that

for each n € N, there is (z,,y,) € An }

4= { (@y) € X x¥ such that lim, oo (Tn, ¥n) = (z,9)

we can easily prove that A € A. Consequently, A is closed in Cld(X x Y).

We shall prove that JC(X,Y) is dense in A. Take any A € A and ¢ > 0. We need only
to construct a map f: X — Y such that pg(lf, A) < e. Since A is compact, we can choose
points (z;,3;) € X xY,i=1,--- ,m, such that z; # z; if i # j, and

pa(X x {0} U O{x,} x 0,4, A) < €/2.

Let A = min{e,dx(z;,2;) | 1 <i < j <m}/3 >0. Using the map v: Y?xI — Y asin
Lemma 2.1, we can define a map f: X — Y as follows:

fz) = { 708 (A= dx(2,2)/3) 3 € Bag(as N),i =1, ,m,
(x) - 0 ifreX \ Uzn;l de (xi7/\)a

which is the desired map. O
We prove the implication (3) — (1) in the main theorem.
Proposition 3.2. If X, is dense in X, then |C(X,Y) is a Baire space.

Sketch of proof. Let F be the collection of finite subsets of X;. For each F € F and n € N,
the set

Upn={A € |C(X,Y) | A(z) C By, (0,1/n) for all z € X \ F}
is open in JC(X,Y’). Then the union U, = JpcrUrn is dense in JC(X,Y). Indeed, for each
1f €lC(X,Y) and € > 0, we can choose F' € F so that pg({f|r,f) < € because Xj is dense
in X. Define a map g: X — Y as follows:

f(z) ifzeF,
9(”3):{0 if € X \F.



Then we have |g € Ur, C U, and py(lg,f) < €. Since JC(X,Y) is compact, the Gs-set
G = (pen Un is a Baire space and dense in {C(X,Y).

Next, we show that G C/C(X,Y). Take any A € G. Observe that for any z € X \ Xo,
A(z) = {0}. According to Lemma 3.1, for each z € Xy, A(x) is an arc or the singleton {0},
and therefore A is a hypo-graph of some function f : X — Y. Then f is continuous. Hence

A=|f elC(X,Y), so G C{C(X,Y). Consequently, |C(X,Y) is a Baire space. O

The following lemma is a counterpart to Lemma 5 of [§], but we can not prove it by
the same way. The reason is because for hypo-graphs | f,lg €JC(X,Y) and a point z €
X, ($fU lg)(z) ={ f(z)U | g(z) is not necessarily an arc or the singleton {0} in Y, so
LfUlg ¢/C(X,Y). Using the Digging Lemma 2.2, we prove the following:

Lemma 3.3. Suppose that A= BUZ C|C(X,Y) is a closed set such that Z is a Z-set in
1C(X,Y), and there exists a point x € X such that for every |f € B, 1f(z) = {0}. Then A
is a Z-set in |C(X,Y).

Sketch of proof. 1t is sufficient to show that for any map € :{C(X,Y) — (0,1), there is a
map ¢ LC(X,Y) 5LC(X,Y) such that (1C(X,Y)) N A =  and pa($(Lf), L) < (1)
for each |f €|/C(X,Y). Since Z is a Z-set, there exists a map 9 :JC(X,Y) =»|C(X,Y)\ Z
such that pg(¥(1f),df) < e(4f)/2 for every |f €|C(X,Y). Fix a point yo € Y \ {0} with
dy(0,90) <1 and let

t({f) = min{e(f), pu(¥({f), Z),diam Y’} /2 > 0

for each | f €|/ C(X,Y), where pgy(¥({f), Z) means the usual distance between the point
¥(1f) and the subset Z in JC(X,Y) and diam Y means the diameter of Y.

We consider the case that z ¢ X, (the case that £ € X, can be proved without using
Lemma 2.2). Using the Digging Lemma 2.2, we can find maps £ :JC(X,Y) —-{C(X,Y) and
0 :JC(X,Y) — (0,1) such that for each |f €JC(X,Y),

(@) pr(E(N), ¥(f)) <t(1f)/2,

(b) §(Lf)(Bux (z,6(1f))) = {{0}}.
For each |f €]C(X,Y), let

)= U &} x0,70,30,t(H)GUS) - dx(z,2)) /264,

x'€Bay (2,6} f))

where v : Y2 X I — Y is as in Lemma 2.1. We define a map ¢ :{C(X,Y) —-]C(X,Y) by
o(f) = €(f) Un(lf), which is the desired map. O

We show the implication (2) — (3) in the main theorem.

Proposition 3.4. If X, is not dense in X, then JC(X,Y) is a Z,-set in itself.



Sketch of proof. Take a countable dense subset {x,, | n € N} of X \ X;. For each n,m € N,
the set
Fom = {4f €C(X,Y) | dy(f(2), 0) > 1/m}

is closed in {C(X,Y). Applying the Digging Lemma 2.2 to the point z,, we can easily show
that each Fy, ,, is a Z-set in [C(X,Y).

Let F = Nyen Nimen(C(X,Y) \ Fom). We prove that the closure F of F in JC(X,Y) is
a Z-set. As is easily observed,

F={lf €]C(X,Y) | f(z,) = O for each n € N}.

Since Xj is not dense in X, we can choose a point z € X \ X, where X is 5 the closure of
Xo. Then for every |f € F, we have |f(z) = {0}. According to Lemma 3.3, F is a Z-set in
IC(X,Y). Consequently, |{C(X,Y) = FU Un nen Frm 18 & Zg-set in itself. O

4 Topological type of |C(X,Y)

Historically, the notion of infinite-dimensional manifolds arose in the field of functional anal-
ysis to classify linear spaces and convex sets topologically. Techniques from this theory has
been used for the study on function spaces, and hence typical infinite-dimensional manifolds,
especially their model spaces, have been detected among many function spaces. From the
end of 1980s to the beginning of 1990s, many researchers investigated topological types of
function spaces of real-valued continuous functions on countable spaces equipped with the
topology of pointwise convergence, refer to [4].

We can consider that spaces of hypo-graphs give certain geometric aspect to function
spaces with the topology of pointwise convergence. Let Q = IN be the Hilbert cube and
co = {(%i)ien € Q| limy00 7; = 0}. In the case that Y =T and 0 = 0, we can regard

{USC(X,I) = {lf | f: X — I is upper semi-continuous}

as a subspace in Cld(X x I). In (8], the following theorem is shown:

Theorem 4.1. Suppose that X is infinite and locally connected. Then | USC(X,I) =
IC(X,I) and the pair (JUSC(X,I),{C(X,1)) is homeomorphic to (Q, co).

For spaces W, and W5, the symbol (W), W) means that W, C W;. We recall that a pair
(W1, Wa) of spaces is homeomorphic to (Z1, Z5) if there exists a homeomorphism f : W; — Z;
such that f(W;) = Z,. In the paper [7], the above result is generalized as follows:

Theorem 4.2. If X is infinite and has only a finite number of isolated points, then the pair

(C(X,Y),{C(X,Y)) is homeomorphic to (Q, co).

The space cg is not a Baire space. In fact, it is a Z,-set in itself. According to the main
theorem, we can establish the following immediately.



Corollary 4.3. If |C(X,Y) is homeomorphic to ¢y, then the set of isolated points is not
dense in X.

Z. Yang and X. Zhou [9] strengthened Theorem 4.1 as follows:

Theorem 4.4. The pair (JUSC(X,I), C(X,1)) is homeomorphic to (Q,co) if and only if
the set of isolated points of X is not dense.

It is still unknown whether the same result holds or not in our setting.

Probrem 1. If the set of isolated points of X is not dense, then is the pair ({C(X,Y),{C(X,Y))
homeomorphic to (Q, cg)?
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