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1 Introduction

In this article, we define a hypo-graph of each continuous function from a compact metrizable
space to a non-degenerate dendrite, endow the space of hypo-graphs with certain topology
and discuss the topological properties of that space. In geometric functional analysis, being
a Baire space is one of the most important topological properties for a function space, and
hence, it is natural to ask when a function space is a Baire space. The main purpose of this
article is to provide necessary and suffcient conditions for the space of hypo-graphs to be a
Baire space. In the last section, we will consider the topological type of that space. This
article is a r\’esum\’e of the paper [2].

Throughout the article, we assume that all maps are continuous, but functions are not
necessarily continuous. Moreover, let $X$ be a compact metrizable space and $Y$ be a non-
degenerate dendrite with a distinguished end point O. We recall that a dendrite is a Peano
continuum containing no simple closed curves. The following fact is well-known [10, Chap-
ter V, (1.2)]:

Fact 1. Any two distinct points of a dendrite are joined by one and only one arc.

From now on, for any two points $x,$ $y\in Y$ , the symbol $[x, y]$ means the one and only one
arc between $x$ and $y$ if $x\neq y$ , or the singleton $\{x\}=\{y\}$ if $x=y.$

For each function $f$ : $Xarrow Y$ , we define the $hypo-graph\downarrow f$ of $f$ as follows:

$\downarrow f=\bigcup_{x\in X}\{x\}\cross[0, f(x)]\subset X\cross Y.$

Note that if $f$ is continuous, then the $hypo-$graph $\downarrow f$ is closed in $X\cross Y$ . By Cld$(X \cross Y)$

we denote the hyperspace of non-empty closed subsets of $X\cross Y$ endowed with the Vietoris
topology. Then we can regard the set

$\downarrow C(X, Y)=$ { $\downarrow f|f$ : $Xarrow Y$ is continuous}

of hypo-graphs of continuous functions from $X$ to $Y$ as a subset of Cld$(X \cross Y)$ . We equip
$\downarrow C(X, Y)$ with the subspace topology of $Cld(X\cross Y)$ .
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A closed set $A$ in a space $W$ is called a $Z$ -set in $W$ if for any open cover $\mathcal{U}$ of $W$ , there is a
map $f$ : $Warrow W$ such that for each point $x\in W$ , the both $x$ and $f(x)$ are contained in some
$U\in \mathcal{U}$ and $f(W)\cap A=\emptyset$ . This concept plays a central role in infinite-dimensional topology.
A $Z_{\sigma}$ -set is a countable union of $Z$-sets. As is easily observed, every $Z$-set is nowhere dense,

and hence any space that is a $Z_{\sigma}$-set in itself is not a Baire space. We shall give necessary
and sufficient conditions $for\downarrow C(X, Y)$ to be a Baire space as follows (Z. Yang [8] showed the

case that $Y$ is the closed unit interval $1=[0$ , 1$]$ and $0=0$):

Main Theorem. The following are equivalent:

(1) $\downarrow C(X, Y)$ is a Baire space;

(2) $\downarrow C(X, Y)$ is not a $Z_{\sigma}$ -set in itself;

(3) The set of isolated points of $X$ is dense.

2 Preliminaries

In this section, we introduce some notation and lemmas used later. The natural numbers is
denoted by $\mathbb{N}$ . For a metric space $W=(W, d)$ and $\epsilon>0$ , let $B_{d}(x, \epsilon)=\{y\in W|d(x, y)<\epsilon\}.$

A metric $d$ is convex if any two points $x$ and $y$ in $W$ have a mid point $z$ . When $d$ is convex
and complete, there exists a path between $x$ and $y$ isometric to the interval $[0,$ $d(x,$ $y$ Every
Peano continuum admits a convex metric, see [1] and [5, 6]. In the remaining of this article,
we use an admissible metric $d_{X}$ on $X$ and an admissible convex metric $d_{Y}$ on $Y$ . Arcs in a
dendrite have the following nice property with respect to its admissible convex metric [3]:

Lemma 2.1. There exists a map $\gamma$ : $Y^{2}\cross Iarrow Y$ such that for any distinct points $x,$ $y\in Y,$

the map $\gamma(x, y, *):I\ni t\mapsto\gamma(x, y, t)\in Y$ is an arc from $x$ to $y$ and the following holds:

$\bullet$ For each $x_{i},$ $y_{i}\in Y,$ $i=1$ , 2, $d_{Y}( \gamma(x_{1}, y_{1}, t), \gamma(x_{2}, y_{2}, t))\leq\max\{d_{Y}(x_{1}, x_{2}), d_{Y}(y_{1}, y_{2})\}$

for all $t\in I.$

Since $X$ and $Y$ are compact, the topology of Cld$(X \cross Y)$ is induced by the Hausdorff
metric $\rho_{H}$ of an admissible metric $\rho$ on $X\cross Y$ defined as follows:

$\rho_{H}(A, B)=\inf\{r>0 A\subset\bigcup_{(x,y)\in B}B_{\rho}((x, y), r) , B\subset\bigcup_{(x,y)\in A}B_{\rho}((x, y), r)\}.$

Fix any $A\in Cld(X\cross Y)$ . For each point $x\in X$ , let $A(x)=\{y\in Y|(x, y)\in A\}$ . Moreover,
for each subset $B\subset X$ , let $A|_{B}=\{(x, y)\in A|x\in B\}$ . The following lemma, that has been
proved in [7], is a key lemma of this article.

Lemma 2.2 (Digging Lemma). Let $Z$ be a metrizable space and $\phi$ : $Zarrow\downarrow C(X, Y)$ be a map.
Suppose that $X$ contains a non-isolated point $a$ . Then for each map $\epsilon$ : $Zarrow(O, 1)$ , there
exist maps $\psi$ : $Zarrow\downarrow C(X, Y)$ and $\delta$ : $Zarrow(O, 1)$ such that for each $x\in Z,$

(a) $\rho_{H}(\psi(x), \phi(x))<\epsilon(x)$ ,

(b) $\psi(x)(B_{d_{X}}(a, \delta(x)))=\{\{0\}\}.$
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3 Proof of Main Theorem

This section is devoted to proving the main theorem. For the sake of convenience, by $X_{0}$

we denote the set of isolated points of X. $Let\downarrow C(X, Y)$ be the closure $of\downarrow C(X, Y)$ in
$Cld(X\cross Y)$ . Then $\downarrow C(X, Y)$ is a compactification $of\downarrow C(X, Y)$ .

Lemma 3.1. The space $\overline{\downarrow C(X,Y)}=\{A\in Cld(X\cross Y)|(*)\}$ , where

$(*)$ for each $x\in X$ , (i) $A(x)\neq\emptyset$ , (ii) $[0, y]\subset A(x)$ if $y\in A(x)$ , and (iii) $A(x)$ is an arc
or the singleton $\{O\}$ if $x\in X_{0}.$

Sketch of proof. For simplicity, let $\mathcal{A}=\{A\in Cld(X\cross Y)|(*)\}$ . Obviously, $\downarrow C(X, Y)\subset \mathcal{A}.$

To show that $\mathcal{A}$ is a closed set in $Cld(X\cross Y)$ , take any sequence $\{A_{n}\}_{n\in \mathbb{N}}$ in $\mathcal{A}$ that converges
to $A\in Cld(X\cross Y)$ . Noting that

$A=\{(x, y)\in X\cross Y|$
such t
$hat\lim_{narrow\infty}(x_{n},y_{n})=(x,y)foreachn\in \mathbb{N},$

there i$s(x_{n},y_{n})\in A_{n}$

$\},$

we can easily prove that $A\in \mathcal{A}$ . Consequently, $\mathcal{A}$ is closed in $Cld(X\cross Y)$ .
We shall prove that $\downarrow C(X, Y)$ is dense in $\mathcal{A}$ . Take any $A\in \mathcal{A}$ and $\epsilon>0$ . We need only

to construct a map $f$ : $Xarrow Y$ such that $\rho_{H}(\downarrow f, A)<\epsilon$ . Since $A$ is compact, we can choose
points $(x_{i}, y_{i})\in X\cross Y,$ $i=1,$ $\cdots,$ $m$ , such that $x_{i}\neq x_{j}$ if $i\neq j$ , and

$\rho_{H}(X\cross\{0\}\cup\bigcup_{i=1}^{m}\{x_{i}\}\cross[0, y_{i}], A)<\epsilon/2.$

Let $\lambda=\min\{\epsilon, d_{X}(x_{i}, x_{j})|1\leq i<j\leq m\}/3>$ O. Using the map $\gamma$ : $Y^{2}\cross Iarrow Y$ as in
Lemma 2.1, we can define a map $f$ : $Xarrow Y$ as follows:

$f(x)=\{\begin{array}{ll}\gamma(0, y_{i}, (\lambda-d_{X}(x, x_{i}))/\lambda) if x\in B_{d_{X}}(x_{i}, \lambda) , i=1, \cdots, m,0 if x\in X\backslash \bigcup_{i=1}^{m}B_{d_{X}}(x_{i}, A) ,\end{array}$

which is the desired map. $\square$

We prove the implication (3) $arrow(1)$ in the main theorem.

Proposition 3.2. If $X_{0}$ is dense in $X,$ $then\downarrow C(X, Y)$ is a Baire space.

Sketch of proof. Let $\mathcal{F}$ be the collection of finite subsets of $X_{0}$ . For each $F\in \mathcal{F}$ and $n\in \mathbb{N},$

the set
$\mathcal{U}_{F,n}=\{A\in\overline{\downarrow C(X,Y)}|A(x)\subset B_{d_{Y}}(0,1/n)$ for all $x\in X\backslash F\}$

is open in $\overline{\downarrow C(X,Y)}$ . Then the union $\mathcal{U}_{n}=\bigcup_{F\in \mathcal{F}}\mathcal{U}_{F,n}$ is dense in $\overline{\downarrow C(X,Y)}$ . Indeed, for each
$\downarrow f\in\downarrow C(X, Y)$ and $\epsilon>0$ , we can choose $F\in \mathcal{F}$ so that $\rho_{H}(\downarrow f|_{F}, \downarrow f)<\epsilon$ because $X_{0}$ is dense
in $X$ . Define a map $g:Xarrow Y$ as follows:

$g(x)=\{\begin{array}{ll}f(x) if x\in F,0 if x\in X\backslash F.\end{array}$
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Then we have $\downarrow g\in \mathcal{U}_{F,n}\subset \mathcal{U}_{n}$ and $\rho_{H}(\downarrow g, \downarrow f)<\epsilon$ . Since $\overline{\downarrow C(X,Y)}$ is compact, the $G_{\delta}$-set
$\mathcal{G}=\bigcap_{n\in N}\mathcal{U}_{n}$ is a Baire space and dense in $\overline{\downarrow C(X,Y)}.$

Next, we show that $\mathcal{G}\subset\downarrow C(X, Y)$ . Take any $A\in \mathcal{G}$ . Observe that for any $x\in X\backslash X_{0},$

$A(x)=\{0\}$ . According to Lemma 3.1, for each $x\in X_{0},$ $A(x)$ is an arc or the singleton $\{0\},$

and therefore $A$ is a hypo-graph of some function $f$ : $Xarrow Y$ . Then $f$ is continuous. Hence
$A=\downarrow f\in\downarrow C(X, Y)$ , so $\mathcal{G}\subset\downarrow C(X, Y)$ . Consequently, $\downarrow C(X, Y)$ is a Baire space. $\square$

The following lemma is a counterpart to Lemma 5 of [8], but we can not prove it by
the same way. The reason is because for hypo graphs $\downarrow f,$ $\downarrow g\in\downarrow C(X, Y)$ and a point $x\in$

$X,$ $(\downarrow f\cup\downarrow g)(x)=\downarrow f(x)\cup\downarrow g(x)$ is not necessarily an arc or the singleton $\{O\}$ in $Y$ , so
$\downarrow f\cup\downarrow g\not\in\downarrow C(X, Y)$ . Using the Digging Lemma 2.2, we prove the following:

Lemma 3.3. Suppose that $\mathcal{A}=\mathcal{B}\cup Z\subset\downarrow C(X, Y)$ is a closed set such that $\mathcal{Z}$ is a $Z$ -set in
$\downarrow C(X, Y)$ , and there exists a point $x\in X$ such that for $every\downarrow f\in \mathcal{B},$ $\downarrow f(x)=\{0\}$ . Then $\mathcal{A}$

is a $Z$ -set $in\downarrow C(X, Y)$ .

Sketch of proof. It is sufficient to show that for any map $\epsilon:\downarrow C(X, Y)arrow(O, 1)$ , there is a
map $\phi:\downarrow C(X, Y)arrow\downarrow C(X, Y)$ such that $\phi(\downarrow C(X, Y))\cap \mathcal{A}=\emptyset$ and $\rho_{H}(\phi(\downarrow f), \downarrow f)<\epsilon(\downarrow f)$

for each $\downarrow f\in\downarrow C(X, Y)$ . Since $\mathcal{Z}$ is a $Z$-set, there exists a map $\psi:\downarrow C(X, Y)arrow\downarrow C(X, Y)\backslash \mathcal{Z}$

such that $\rho_{H}(\psi(\downarrow f), \downarrow f)<\epsilon(\downarrow f)/2$ for every $\downarrow f\in\downarrow C(X, Y)$ . Fix a point $y_{0}\in Y\backslash \{O\}$ with
$d_{Y}(0, y_{0})\leq 1$ and let

$t( \downarrow f)=\min\{\epsilon(\downarrow f)$ , $\rho_{H}(\psi(\downarrow f),$ $\mathcal{Z})$ , diam $Y\}/2>0$

for each $\downarrow f\in\downarrow C(X, Y)$ , where $\rho_{H}(\psi(\downarrow f), Z)$ means the usual distance between the point
$\psi(\downarrow f)$ and the subset $\mathcal{Z}in\downarrow C(X, Y)$ and diam $Y$ means the diameter of $Y.$

We consider the case that $x\not\in X_{0}$ (the case that $x\in X_{0}$ can be proved without using
Lemma 2.2). Using the Digging Lemma 2.2, we can find maps $\xi:\downarrow C(X, Y)arrow\downarrow C(X, Y)$ and
$\delta:\downarrow C(X, Y)arrow(O, 1)$ such that for each $\downarrow f\in\downarrow C(X, Y)$ ,

(a) $\rho_{H}(\xi(\downarrow f), \psi(\downarrow f))<t(\downarrow f)/2,$

(b) $\xi(\downarrow f)(B_{d_{X}}(x, \delta(\downarrow f)))=\{\{0\}\}.$

For each $\downarrow f\in\downarrow C(X, Y)$ , let

$\eta(\downarrow f)=\bigcup_{x’\in B_{d_{X}}(x\delta(\downarrow j))},\{x’\}\cross[0, \gamma(0, y_{0}, t(\downarrow f)(\delta(\downarrow f)-d_{X}(x, x’))/(2\delta(\downarrow f))],$

where $\gamma$ : $Y^{2}\cross Iarrow Y$ is as in Lemma 2.1. We define a map $\phi:\downarrow C(X, Y)arrow\downarrow C(X, Y)$ by
$\phi(\downarrow f)=\xi(\downarrow f)\cup\eta(\downarrow f)$ , which is the desired map. $\square$

We show the implication (2) $arrow(3)$ in the main theorem.

Proposition 3.4. If $X_{0}$ is not dense in $X,$ $then\downarrow C(X, Y)$ is a $Z_{\sigma}$ -set in itself.
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Sketch of proof. Take a countable dense subset $\{x_{n}|n\in \mathbb{N}\}$ of $X\backslash X_{0}$ . For each $n,$ $m\in \mathbb{N},$

the set
$\mathcal{F}_{n,m}=\{\downarrow f\in\downarrow C(X, Y)|d_{Y}(f(x_{n}), 0)\geq 1/m\}$

is closed $in\downarrow C(X, Y)$ . Applying the Digging Lemma 2.2 to the point $x_{n}$ , we can easily show
that each $\mathcal{F}_{n,m}$ is a $Z$-set $in\downarrow C(X, Y)$ .

Let $\mathcal{F}=\bigcap_{n\in \mathbb{N}}\bigcap_{m\in N}(\downarrow C(X, Y)\backslash \mathcal{F}_{n,m})$ . We prove that the closure $\overline{\mathcal{F}}$ of $\mathcal{F}in\downarrow C(X, Y)$ is
a $Z$-set. As is easily observed,

$\mathcal{F}=\{\downarrow f\in\downarrow C(X, Y)|f(x_{n})=0$ for each $n\in \mathbb{N}\}.$

Since $X_{0}$ is not dense in $X$ , we can choose a point $x\in X\backslash \overline{X_{0}}$ , where $\overline{X_{0}}$ is the closure of
$X_{0}$ . Then for every $\downarrow f\in\overline{\mathcal{F}}$ , we have $\downarrow f(x)=\{0\}$ . According to Lemma 3.3, $\overline{\mathcal{F}}$ is a $Z$-set in
$\downarrow C(X, Y)$ . Consequently, $\downarrow C(X, Y)=\overline{\mathcal{F}}\cup\bigcup_{m,n\in \mathbb{N}}\mathcal{F}_{n,m}$ is a $Z_{\sigma}$-set in itself. $\square$

4 Topological type $of\downarrow C(X, Y)$

Historically, the notion of infinite-dimensional manifolds arose in the field of functional anal-
ysis to classify linear spaces and convex sets topologically. Techniques from this theory has
been used for the study on function spaces, and hence typical infinite-dimensional manifolds,
especially their model spaces, have been detected among many function spaces. From the
end of $1980s$ to the beginning of $1990s$ , many researchers investigated topological types of
function spaces of real-valued continuous functions on countable spaces equipped with the
topology of pointwise convergence, refer to [4].

We can consider that spaces of hypo-graphs give certain geometric aspect to function
spaces with the topology of pointwise convergence. Let $Q=I^{N}$ be the Hilbert cube and
$c_{0}=\{(x_{i})_{i\in \mathbb{N}}\in Q|\lim_{iarrow\infty}x_{i}=0\}$ . In the case that $Y=I$ and $0=0$ , we can regard

$\downarrow USC(X, I)=$ { $\downarrow f|f$ : $Xarrow I$ is upper semi-continuous}

as a subspace in $Cld(X\cross I)$ . In [8], the following theorem is shown:

Theorem 4.1. Suppose that $X$ is infinite and locally connected. $Then\downarrow USC(X, I)=$

$\downarrow C(X, I)$ and the pair $(\downarrow USC(X, I), \downarrow C(X, I))$ is homeomorphic to $(Q, c_{0})$ .

For spaces $W_{1}$ and $W_{2}$ , the symbol $(W_{1}, W_{2})$ means that $W_{2}\subset W_{1}$ . We recall that a pair
$(W_{1}, W_{2})$ of spaces is homeomorphic to $(Z_{1}, Z_{2})$ if there exists a homeomorphism $f$ : $W_{1}arrow Z_{1}$

such that $f(W_{2})=Z_{2}$ . In the paper [7], the above result is generalized as follows:

Theorem 4.2. If $X$ is infinite and has only a finite number of isolated points, then the pair
$(\downarrow C(X, Y), \downarrow C(X, Y))$ is homeomorphic to $(Q, c_{0})$ .

The space $c_{0}$ is not a Baire space. In fact, it is a $Z_{\sigma}$-set in itself. According to the main
theorem, we can establish the following immediately.
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Corollary 4.3. $If\downarrow C(X, Y)$ is homeomorphic to $c_{0}$ , then the set of isolated points is not

dense in $X.$

Z. Yang and X. Zhou [9] strengthened Theorem 4.1 as follows:

Theorem 4.4. The pair $(\downarrow USC(X, I), \downarrow C(X, I))$ is homeomorphic to $(Q, c_{0})$ if and only if
the set of isolated points of $X$ is not dense.

It is still unknown whether the same result holds or not in our setting.

Probrem 1. If the set of isolated points of $X$ is not dense, then is the pair $(\overline{\downarrow C(X,Y)}, \downarrow C(X, Y))$

homeomorphic to $(Q, c_{0})$ ?
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