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Abstract. In this article, we study some dynamical decomposition theorems of spaces related to given
homeomorphisms. First, we introduce new notions of’bright spaces’ and’dark spaces’ of homeomorphisms
except $n$ times, and by use of the notions we show some dynamical decomposition theorems of spaces
related to given homeomorphisms. Next, we show that if $f$ : $Xarrow X$ is a homeomorphism of an
$n$-dimensional separable metric space $X$ with zero-dimensional set of periodic points, then $X$ can be
decomposed into a zero-dimensional bright space of $f$ except $n$ times and an $(n-1)$-dimensional dark
space of $f$ except $n$ times, and also by use of dark spaces, we can show some decomposition theorems of
$X$ related to dimension theory and dynamical systems. Finally, we study dynamical decompositions of
continuum-wise expansive homeomorphisms.

1 Introduction

In this article, we assume that all spaces are separable metric spaces and dimension means the topo-
logical dimension $dim$ . Also, let $\mathbb{N}$ and $\mathbb{Z}$ denote the set of natural numbers and the set of integers,
respectively. If $A$ is a subset of a space $X$ , then $c1(A)$ , $bd(A)$ and int(A) denote the closure, the boundary
and the interior of $A$ in $X$ , respectively. For a collection $\mathcal{G}$ of subsets of $X,$

$o rd(\mathcal{G})=\sup\{ord_{x}(\mathcal{G})|x\in X\},$

where $ord_{x}(\mathcal{G})$ is the number of members of $\mathcal{G}$ which contains $x.$

We introduce new notions of ‘bright spaces’ and ‘dark spaces’ of homeomorphisms except $n$ times,
and by use of the notions we prove some dynamical decomposition theorems of spaces related to given
homeomorphisms. For a homeomorphism $f$ : $Xarrow X$ of a space $X$ and $k\in \mathbb{N}$ , let $P_{k}(f)$ denote the set
of points of period $\leq k$ . Also, $P(f)$ denotes the set of all periodic poins of $f$ . A subset $Z$ of $X$ is a bright
space of $f$ except $n$ times $(n\in\{0\}\cup \mathbb{N})$ if for any $x\in X,$

$|\{p\in \mathbb{Z}|f^{p}(x)\not\in Z\}|\leq n,$

where $|A|$ denotes the cardinality of a set $A$ . Also we say that $L=X-Z$ is a dark space of $f$ except $n$

times. Note that for any $x\in X,$ $|O_{f}(x)\cap L|\leq n$ , where $O_{f}(x)=\{f^{P}(x)|p\in \mathbb{Z}\}$ denotes the orbit of $x,$

and also note that $L\cap P(f)=\phi$ . For a dark space $L$ of $f$ except $n$ times and $0\leq j\leq n$ , we put

$A_{f}(L,j)=\{x\in X||\{p\in \mathbb{Z}|f^{p}(x)\in L\}|=j\}(=\{x\in X||O_{f}(x)\cap L|=j$

$A_{f}(L,j)$ denotes the set of all point $x\in X$ whose orbit $O_{f}(x)$ appears in $L$ just $j$ times. Note that
$P(f)\subset A_{f}(L, 0)$ and $A_{f}(L, j)$ is $f$-invariant, i.e. $f(A_{f}(L,j))=A_{f}(L,j)$ and $A_{f}(L, i)\cap A_{f}(L,j)=\phi$ if
$i\neq j$ . Hence we have the $f$-invariant decomposition related to the dark space $L$ as follows;

$X=A_{f}(L, 0)\cup A_{f}(L, 1)\cup\cdots\cup A_{f}(L, n)$ .
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2 Dynamical decomposition theorems of homeomorphisms with
zero-dimensional sets of periodic points

It is well-known that a space $X$ has at most dimension $n(n\in\{0\}\cup \mathbb{N})$ $(i.e. \dim X\leq n)$ if and only if
$X$ can be represented as a union of $(n+1)$ zero-dimensional subspaces of $X$ (see [2, 12 The following
proposition may be known.

Proposition 2.1. Suppose that $X$ is a space with $\dim X=n(<\infty)$ and $f$ : $Xarrow X$ is a homeomorphism.
Then there exist $f$ -invariant zero-dimensional dense $G_{\delta}$ -sets $A_{f}(j)(j=0,1,2, . n)$ of $X$ such that

$X=A_{f}(0)\cup A_{f}(1)\cup\cdots\cup A_{f}(n)$ .

In [1], Arts, Fokkink and Vermeer proved the following interesting theorem of dynamical systems of
homeomorphisms under some dimensional conditions of periodic points.

Theorem 2.2. ([1, Theorem 8]) Suppose that $f$ : $Xarrow X$ is a homeomorphism of $a$ (metric) space $X$

with $\dim X\leq n(<\infty)$ . Then there $ex\iota sts$ a dense $G_{\delta}$ -set $Z$ of $X$ such that $\dim Z=0$ and

$X=Z\cup f(Z)\cup f^{2}(Z)\cup\cdots\cup f^{n}(Z)$

if and only if $\dim P_{k}(f)<k$ for each $1\leq k\leq n.$

In this article, under the condition of $\dim P(f)\leq 0$ , we prove more chaotic decomposition theorems

of dynamical systems of homeomorphisms. In [3, 4, 5, 8, 9], we studied some dynamical properties of
homeomorphisms with zero-dimensional set of periodic points. Now, we need the following lemma.

Lemma 2.3. (cf. [4, Lemma 3.5] and [3, Lemma 2.2]) Suppose that $X$ is a space with $\dim X=n(<\infty)$

and $f$ : $Xarrow X$ is a homeomorphism with $\dim P(f)\leq 0$ . Let $F$ be an $F_{\sigma}$ -set of $X$ with $\dim F\leq 0$ . Then

for each $j\in \mathbb{N}$ , there is a locally finite countable open cover $C(j)=\{C(j)_{\alpha}|\alpha\in \mathbb{N}\}$ of $X$ such that
(1) mesh$(C(j))<1/j,$
(2) $ord(\mathcal{G})\leq n$ , where $\mathcal{G}=\{f^{p}(bd(C(j)_{\alpha}))|\alpha\in \mathbb{N},$ $j\in N$ and $p\in \mathbb{Z}\}$ and
(3) $F\cap L=\phi$ , where $L=\cup\{(bd(C(j)_{\alpha}))|\alpha\in \mathbb{N}, j\in \mathbb{N}\}.$

The following theorem is a key result.

Theorem 2.4. Suppose that $X$ is a space with $\dim X=n(<\infty)$ and $f$ : $Xarrow X$ is a homeomorphism.

Then there exlsts a bright space $Z$ of $f$ except $n$ times such that $Z$ is a zero-dimensional dense $G_{\delta}$ -set of
$X$ and the dark space $L=X-Z$ of $f$ is $a(n-1)$ -dimensional $F_{\sigma}$ -set of $X$ if and only if $\dim P(f)\leq 0.$

Corollary 2.5. Suppose that $X$ is a space with $\dim X=n(<\infty)$ and $f$ : $Xarrow X$ is a homeomorphism.

Then there exists a zero-dimensional $G_{\delta}$ -dense set $Z$ of $X$ such that for any $(n+1)$ integers $k_{0}<k_{1}<$

. . . $<k_{n},$

$X=f^{k_{0}}(Z)\cup f^{k_{1}}(Z)U\cdots Uf^{k_{\mathfrak{n}}}(Z)$

if and only if $\dim P(f)\leq 0.$

Theorem 2.6. Suppose that $X$ is a space with $\dim X=n(<\infty)$ and $f$ : $Xarrow X$ is a homeomorphism

with $\dim P(f)\leq 0$ . If $L$ is a dark space of $f$ except $n$ times such that $L$ is an $F_{\sigma}$ -set of $X$ and $\dim(X-$
$L)\leq 0$ , then $\dim A_{f}(L, j)=0$ for each $j=0$ , 1, 2, $n$ . In particular, there is the $f$ -invariant zero-
dimensional decomposition of $X$ related to the dark space $L$ :

$X=A_{f}(L, 0)\cup A_{f}(L, 1)\cup\cdots\cup A_{f}(L, n)$ .
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Finally, as a special case we consider the case that $f$ : $Xarrow X$ is a continuum-wise expansive
homeomorphism of a compact metric space $X$ . A homeomorphism $f$ : $Xarrow X$ of a compact metric space
$(X, d)$ is expansive (see [11]) ifthere is $c>0$ such that for any $x,$ $y\in X$ with $x\neq y$ , there is an integer $k\in \mathbb{Z}$

such that $d(f^{k}(x), f^{k}(y))\geq c$ . Similarly, a homeomorphism $f$ : $Xarrow X$ of a compact metric space $(X, d)$

is continuum-wise expansive (see [6, 7]) if there is $c>0$ such that for any nondegenerate subcontinuum
$A$ of $X$ , there is an integer $k\in \mathbb{Z}$ such that diam $f^{k}(A)\geq c$ . Note that every expansive homeomorphism
is continuum-wise expansive. Such $c>0$ is called an expansive constant for $f$ . It is known that if a
compact metric space $X$ admits a continuum-wise expansive homeomorphism $f$ on $X$ , then $\dim X<\infty$

and every minimal set of $f$ is zero-dimensional (see [11] and [6]). Moreover, $\dim I_{0}(f)\leq 0$ , where

$I_{0}(f)=\cup$ {$M|M$ is a zero-dimensional $f$-invariant closed set of $X$ }

(see [7, Proposition 2.5]). In particular, $\dim P(f)\leq 0$ . We need the following proposition.

Proposition 2.7. ([6, Proposition 5.1]) Suppose that $f$ : $Xarrow X$ is a homeomorphism of a compact
metric space X. Then the following are equivalent.
(1) $f$ is continuum-wise expansive.
(2) There is $\delta>0$ such that if $C$ is any finite open cover of $X$ with mesh $(C)<\delta$ and any $\gamma>0$ , there is
a suficiently large natural number $N$ such that if $A,$ $B\in C$ , each component of $f^{-n}(c1(A))\cap f^{n}(c1(B))$

has diameter less than $\gamma$ for each $n\geq N.$

In the case of continuum-wise expansive homeomorphisms, by use of compact dark spaces we obtain
the following decomposition theorem.

Theorem 2.8. Suppose that $X$ is a compact metric space with $\dim X=n(<\infty)$ and $f$ : $Xarrow X$ is a
continuum-wise expansive homeomorphism. Then there exists a compact $(n-1)$ -dimensional dark space
$L$ of $f$ except $n$ times such that $\dim A_{f}(L,j)=0$ for each $j=0$ , 1, 2, $n$ . In particular, there is the
$f$ -invariant zero-dimensional decomposition of $X$ related to the compact dark space $L$ :

$X=A_{f}(L, 0)\cup A_{f}(L, 1)\cup\cdots\cup A_{f}(L, n)$ .

Remark. (1) In Theorem 2.8, the bright space $Z=X-L$ of $f$ is open in $X$ and $n$-dimensional. (2) In
Theorem 2.8, suppose that $\dim X=1$ . Then $L$ is a compact zero-dimensional dark space of $f$ except 1
time such that $\dim A_{f}(L, j)=0$ for each $j=0$ , 1 if and only if $L$ is a zero-dimensional compactum such
that $f^{i}(L)\cap L=\emptyset$ for any $i\in \mathbb{N}$ and $\dim(X-\bigcup_{i\in \mathbb{Z}}f^{i}(L))=0.$

Example. Let $f$ : $I=[0, 1]arrow I$ be the ‘tent’ map of the unit interval $I$ defined by $f(x)=2x$ for
$0\leq x\leq 1/2$ and $f(x)=2-2x$ for $1/2\leq x\leq 1$ . Consider the inverse limit

$X=\{(x_{i})_{i=1}^{\infty}\in I^{\infty}|f(x_{i+1})=x_{i}$ for $i\in \mathbb{N}\}\subset I^{\infty}$

of $f$ and the shift map $\tilde{f}$ : $Xarrow X$ defined by $\tilde{f}((x_{i})_{i=1}^{\infty})=(f(x_{i}))_{i=1}^{\infty}$ . Then $\tilde{f}$ is a continuum-wise
exapnsive homeomorphism of the Knaster continuum $X$ . Consider the subset

$L=\{(x_{i})_{i=1}^{\infty}\in X|x_{1}=1\}.$

Then we can easily see that $L$ is a zero-dimensional compactum (in fact, a Cantor set) such that $\tilde{f}^{i}(L)\cap L=$

$\phi$ for any $i\in \mathbb{N}$ and $\dim(X-\bigcup_{i\in \mathbb{Z}}\tilde{f}^{i}(L))=0$ and hence $L$ is a compact zero-dimensional dark space $L$

of $\tilde{f}$ except 1 time such that $\dim A_{\overline{f}}(L, 0)=0$ . In fact, $X=A_{\overline{f}}(L, 0)\cup A_{\overline{f}}(L, 1)$ is a zero-dimensional
decomposition of the Knaster continuum $X.$
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