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MULTIPLE STONE-CECH EXTENSIONS
(DUAL STONE-CECH EXTENSIONS)

AKIO KATO

ABSTRACT. For a nowhere (locally) compact space we iterate Stone-
Cech compactification w1 many times to get a compact space where two
or more disjoint dense subsets are C*-embedded. The corresponding
compact spaces we get for Q (the rationals), P (the irrationals) and S
(the Sorgenfrey line) are not extremally disconnected, hence different
from their absolutes.

1. INTRODUCTION

This talk originates from van Douwen’s question in his paper “Remote
points” (see §19 of [4]) that:
What happens if we repeat taking remainders of Stone-Cech compactifica-
tions of the rationals

Q" =8Q\Q, Q" =8Q"\Q" Q™ ---.

He remarks that “it might be interesting to define Q@g, for o > w, using
inverse limits at limit stages” and that “there must be a -y for which the
natural map from Q2 to QO is a homeomorphism.” We will show in
this paper that the least such <y is the first uncountable ordinal w; (which
we will denote by 2 for notational convenience).

Let K be a compact space of countable m-weight, partitioned as a disjoint
union of two dense Lindel6f subspaces K = K~ U K. Then, in this paper,
iterating Stone-Cech compactification w; = Q many times, we will construct
a compact space Q(K) = K5 UK, 5" satisfying the following conditions:

(1) Q(K) admits a perfect irreducible map g : Q2(K) — K such that
9(Kg)=K~, g(K3)=K™.

(2) Both of K, K¢ are C*-embedded in Q(K).

Though, as is well known, the absolute (or the projective cover) of K also
satisfies the corresponding conditions as above (1), (2), we can show, in
most cases we deal with, that our compact space (2(K) is not extremally
disconnected, hence different from the absolute.
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Typical cases we are going to deal with are the following partitions.

- Example 1. K = [0,1,K~ = Q,KT = P where Q@ = (0,1) N Q and
P =[0,1]\Q. Obviously, Q is a homeomorphic copy of the rationals Q, and
P is that of the irrationals P.

Example 2. K= the Alexandroff double arrow space A, i.e., the lexi-
cographically ordered space A = [0,1] x {0,1}\{(0,0), (1,1)} which is the
union of two dense sets K~ = (0,1] x {0}, K+ =[0,1) x {1}, each of which
is a copy of the Sorgenfrey line S.

In this talk we show how to construct such an extension Q(K) in general.
The proofs and the details of its properties will appear in the forthcoming
paper [6].

All spaces are assumed to be completely regular and Hausdorff, and maps
are always continuous, unless otherwise stated. “Partition” is synonymous
with “disjoint union.”

As a suitable class for our purpose we consider the following class £ con-
sisting of Lindelof spaces X such that
(i) X is nowhere compact (or nowhere locally compact), i.e., X has no com-
pact neighborhood, and
(ii) every compact subset of X is included in some compact zero-set of X.
In terms of compactifications the condition (i) is equivalent to say that the
remainder ¢X\X of any/some compactification ¢X of X is dense in cX,
while the second one (ii) is equivalent to say that ¢X\X is Lindelof for
any/some compactification ¢X. The subclass of £ consisting only of first
countable spaces will be denoted by L£(1st).

The rationals Q, the irrationals P = R\Q =~ w¥, the Sorgenfrey line S (i.e.,
the real line with the half-open interval topology) are the typical members
of £(1st). That S belongs to L£(1st) can be seen by regarding the double
arrow space A in Example 2 as a compactification of S. All of

PxQ, SxQ, QxC, SxC SxP
belong to £. Note that P x C is nothing but [P because
PxCrw¥x2Yx (wx2)Y=w”=P.

For topological characterization of P x Q and Q x C see (7] and [8].

As a basic tool we use perfect irreducible maps, so we will list their properties
needed here. Let g be a map from X onto Y. For a subset U C X define
9°(U) €Y by

y € ¢°(U) if and only if g7 (y) C U,
ie., g°(U) =Y \g(X\U) C g(U). Note an obvious, but useful, formula

g°UNV)=¢°(U)Ng°(V)



for any sets U,V C X, which especially implies that ¢g°(U) N g°(V) = 0
whenever U NV = (. An onto map g is called irreducible if g°(U) # 0 for
every non-empty open set U. A collection B of nonempty open sets of X is
called a m-base for X if every nonempty open set in X contains some member
of B. The minimal cardinality of such a w-base is called the m-weight of X.
Observe that any dense subspace of X has the same m-weight as X, and that
any space of countable m-weight is separable. Consequently, any dense or
open subset of a space of countable 7-weight is also of countable m-weight,
and hence separable. So, for example, all of Q, fQ, Q* = BQ\Q are of
countable m-weight, and hence separable. A closed map with compact fibers
are called perfect. We assume a perfect map is always onto.

Fact 1.1. (Properties of Closed Irreducible Maps)
Let g : X =Y be any closed irreducible map. Then
(1) ¢g°(U) is non-empty and open whenever U is. Moreover,

cly g°(U) = cly g(U) = g(clxU)

for every open subset U C X, i.e., g carries a regular closed set clxU to a
regular closed set cly g°(U).
(2) g preserves ccc, i.e., X is ccc if and only if Y is. Similarly, g pre-

serves density and w-weight. In case g is perfect irreducible, it also preserves

nowhere compactness.
Next lemma shows how we can produce perfect irreducible maps.

Lemma 1.2. Let ¢ : X — Y be a perfect map and let & : bX — cY
be its extension where bX and cY are some compactifications of X and
Y respectively. Then ® maps the remainder of X onto that of Y, i.e.,
®(bX\X) = cY'\Y. Moreover,

(1) ¢ is perfect irreducible if and only if ® is.

(2) If ¢ is perfect irreducible and X (henceY also) is nowhere compact, then
the restriction of ® to the remainders

bX\X — cY\Y
1s also perfect irreducible. [l

Perfect irreducible maps we encounter frequently in this paper are those
induced by some homeomorphisms, i.e., when the above ¢ is an identity
map.

For an open set U of X we can define its maximal open extension to SX
by

Ex(U) = BX\dgx (X\U).
We denote the boundary of a subset W in Y by BdyW so that BdyW =
clyW\W if W is open in Y. Van Douwen [4] proved the following quite
useful formula:

(1-0) BdgxEx(U) = clgxBdx(U) for every open set U in X.
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A space with a clopen base is called 0-dimensional, and most spaces we
deal with in this paper are 0-dimensional. As is well known (cf. 16.16 in
[5]), for a Lindeof space X the 0-dimensionality of X is equivalent with that
of BX; in other words, the collection of Ex(U)’s where U ranges over all
clopen sets in X forms a clopen base for SX.

2. CONSTRUCTION OF DUAL EXTENSIONS

We use inverse systems only of the form

{X§7 9a,8; E}

where £ is an ordinal, and g, : Xg =+ X, (o < B < §) are bonding
maps, and denote its inverse limit as X = lim {Xq, ga,§}. Projections
(_._

are denoted by 7, : X = Xg, or 1o = wg = ga¢- We assume all inverse
systems in this paper are continuous, i.e.,

Xn =lim{Xa, ga,p, 7}

for each limit n < £. Recall that, if we take a base B, for each X,, the
collection |J,, 75" (Ba) forms a base for X.

The next lemma is well known for a system of compact spaces (cf. §11 in
[1]); what we need here is for a system of Lindelof spaces.

Lemma 2.1. (Factorization Lemma) Suppose cof(§) > w, and X, =
l+i1_n{Xa, 9a,8,€} s Lindelof. Then every map f : X¢ — R can be factorized

as f= )?o To for some a < & and some map f: X. — R,

Proof. Let B be a countable open base of R, and f : X; — R. Take any
U € B. Then, since f~1(U) is a cozero-set of X, it can be expressed that
fYU) = ﬂ‘;(U)(W) for some cozero-set W of X,y with a(U) < &. Put
a = sup{a(U) : U € B} < £&. Then this a has the property that for every
U € B there exists an open set W of X, such that f~1(U) = n;1(W).
Therefore Lemma 2.1 follows from the next lemma. d

Lemma 2.2 (Yong [9]). Let7: X =Y, f: X — Z and suppose 7 is onto.

Then f is factorized as f = fow for some map f:Y — Z if and only if
the space Z has an open base B with the property that:

For every U € B the open set f~Y(U) takes the form f~Y(U) = 7~ 1(W)
for some open set W C Y. d
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Now let K = XOuXx® pea compact space with a partition into nowhere
compact spaces X(©@ X1 Since both of X© X1 are dense in K, we
can see K as a compactification of either of X© or XM, Put X, = K,
X1 =B8X0, x@ = gxXO\ XD and let

$p: X1 =XV =xDux® 5 x5 =xOyx®
be the Stone extension of the identity map id: X(V) — X, Denote by
do: X@ - x©
the restriction of ®y. Next, putting Xy = 8X @, x6 =gx (2)\X (2), let
B1: Xo=BXD =xBux® 5 x;=x0 =xOyUx®
be the Stone extension of the identity map id: X(? — X® . Denote by
$1: XB® - x®

the restriction of ®;. Repeating these procedures of Stone-Cech compactifi-
cations infinitely many times, we get mappings ®,,d, (n € w) such that

where X, = XM X+ — gx(m)\ X(M) for m > 1,
is the Stone extension of the identity map id : X(*+t1) — X(™+1) and
br : X2y x ()
is the restriction of ®,. Then all of ®,,¢, (n € w) are perfect irreducible.
We can consider the system {X,, ®, }rncw and its induced ones

{XC™) b1 mew, {X@HD Goio}mew as inverse sequences, and take
their limits

Xy = lim {Xna (I)n}nEwa
—

X5 =1tm {XC™, gom i1} mew, X5 =Im {XC™, dom 2} me

Then it is easy to see that the projections n¥ : X, — X, are perfect
irreducible, and so, X, X are nowhere compact and X, = X;UX_ can be
seen as a compactification of X . Therefore, just replacing the starting Xy =
XOux® py X, = X5 UXZ, we can repeat the Stone-Cech extensions as
before to get {Xi+n, Pwintnew and Xy, = lji_n{Xw—i-n, ®intnew- Let us

do these extensions up to = w;. (For notational simplicity we use § for
the first uncountable ordinal w;.) Then we finally get a continuous inverse
system of length Q2

(2—0) Xq = l(iﬁl{Xa, .5, N}
with the following properties:

(1) Each X, (o < Q) is partitioned as X, = X5 U X into two disjoint
dense subsets, and
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X$ = X7, for even o, while X; = X, for odd .

[e%
(An ordmal of the form - + 2m where + is a limit ordinal and m € w is

called “even,” while an ordinal not even is “odd.” Note that limit ordinals
are even.)
(2) For any a < 8 < §2 the bonding map &, g is such that

Oop: Xp=X; UXS = Xo =X, UXS
Bo5(Xg5) = Xo, Pap(Xg)=X].
Moreover, ®, o+1 is the Stone extension of the following identity map:
id: X}, = XJ for even @, and id : X ; = X for odd a.
So, to be compatible with our beginning notation, we need to set
X;-m = X2+m+1 = X(2m+1)’ X2_m+1 = X2—m+2 = X(2m+2)’ (I)a,a—i-l = q)a

for m € w and o < w+w. In particular, Xo = XOux® = Xy UXSF, and
we call any one of spaces Xo, X ,Xgr the starting space.

<1>0 o,
=BXM « X,=pX3

¢1
<150 ¢2

Fic. 1. The first w steps

Naturally this inverse system {Xq, ®4,3, 2} has two subsystems

{X(;, aﬁv Q} {X+ (I)Zﬁ, Q}

with limits X, X;{ respectively, where
O, X Xy, ¥ X5 - XJ
are restrictions of ®, g. The corresponding projections will be denoted by
Ta:Xag = Xa, 71 Xq > X5, mh: X3 Xt
All maps @, g, <I>; 8 <I>:, 5 Mo Mgy s 7} are perfect irreducible. Consequently,

if one of the beginning spaces X ,XJ belongs to the class L, so do all of
X5, X$ (a < Q). Note also that if one of X;,X,,Xo has a countable



m-base, all of X, X1, X, (o < Q) have countable 7-bases.

The factorization lemma implies

Theorem 2.3. (Dually C*-embedded Extension)
Assume X5 € L, i.e., X§ € L. Then Xg, XE; € L, and both of them
are C*-embedded in Xq, i.e., symbolically,

B(Xq) = B(Xg) = Xa.
Proof. By symmetry it suffices to show that X, = 1311 {X,, @;’ 8 0}
is C*-embedded in Xq. Let f : X5 — [0,1] be any continuous function
on X . Then, by the /f\actorization lemma, we can find some a < € and
a continuous function f on X such that f = fom,. Once such an « is

chosen, any 3 > a plays the same role as a. Therefore we can assume that
a is odd. Then our construction assures that X7 is C*-embedded in X,,

so that the bounded function f can be extended to h : X, — [0,1]. The
function h o 7w, : Xq — [0, 1] is the desired extension of f. O

We call the space X in Theorem 2.3
the dual Stone-Cech Q-extension of the partition P : Xo = X5 U XJ" .

In general let Y = Y~ UY ™ be a partition of a space Y into two dense sub-
sets. Then we call Y = Y~ UY™ as a dually C*-embedded partition of Y,
if both of Y=, Y™ are C*-embedded in Y. With this terminology Theorem
2.3 can be rephrased that

Xo = X5 U XY is a dually C*-embedded partition if X; € L.

We can show that the space Xgq of (2-0) depends only on the partition
P, so that in particular we get the same space Xq = Q(Xp) if we exchange
the role of X and XaL in the above construction. For the proof of this fact
see the forthcoming paper [6]. So, let us denote Xq by Q(P), or simply by
Q(Xop) when the partition P is clear.

Now suppose a nowhere compact space X € L is given. Then, regarding
X = X, we get the subspace X of Xo which is uniquely determined by
the given space X. Let us denote this X by ©(X). Then Theorem 2.3
implies

Q(BX) = B (X))
for X € L. For example, we have
Q([0,1]) = Q(8Q) = B (AQ)) = Q(BP) = B ((P))
for the partition of [0,1] in Example 1, and
Q(A) = Q(BS) = B (2(S))
for the partition of A in Example 2. We can show that Q(A) is not homeo-

morphic with §2([0, 1]), by proving that ((A) contains no dense set of first
category which is C*-embedded (see [6]).
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Note that our construction becomes trivial if the given partition Xy =
Xy U X(]L itself is dually C*-embedded. Fortunately we can prove that is

not the case if X, € L(1st), i.e,,

Theorem 2.4. ([6]) Assume X(© = X5 € L(1st). Then no bonding map
Bop:Xp— Xo (< B<Q)

18 one to one.

3. CoMMON BOUNDARY POINTS

Let S be a dense subset of T. A point p € T\S is called remote from S,
or a remote point w.r.t. (S,T), if p ¢ clpF for every nowhere dense closed
subset F' of S. In case T = (S we simply call such a point p as a remote
point of S. Van Douwen [3, 4], and independently Chae and Smith [2], have
shown that:

Fact 3.1. Every non-pseudocompact space of countable m-weight has 2°€
many remote points.

A space T is said to be extremally disconnected at a point p € T (see [4])
if p ¢ clp Uy N clp Us for every pair of disjoint open sets Uy, Us in T. We
call such a point p an extremally disconnected point of T, or simply, an e.d.
point of T'. Obviously a space T is extremally disconnected if every point of
T is an e.d. point. If S is dense in T, we always have clpU = clp(U N S) for
every open set U of T'. So, an equivalent definition of an e.d. point is given
using only open subsets of any dense subset S C T':

p € T is an e.d. point if and only if p ¢ cly V1 N cly V, for every pair of
disjoint open sets V7, Vs in S.

Note that this definition does not depend on the choice of the dense subset
S, while it is clear that the notion of remote points depends on the choice
of the dense subset S. Note also that in case T, S are ccc (e.g., of countable
m-weight), we can choose the above Uj, Uz as cozero-sets of T, and V1, V> as
cozero-sets of S. The next fact proved by van Douwen [4] tells that
“remote” implies “e.d.” implies “C*-embedded.”

Fact 3.2. (1) If p € BX\X is remote from X, then p is an e.d. point of BX.
(2) Let X be dense in Y, and p € Y\X. If p is an e.d. point of Y, then
X is C*-embedded in X U{p} (CY).

The proof of the above (1) uses the formula (1-0) in §1.

Let us call a non-e.d. point of T' as a “common boundary point” of T,
that is, p € T is a common boundary point of T if p € clpr Uy N clyr Us for
some pair of disjoint open sets Uy, Us in T'. Similarly, a closed subset A C T



is called a common boundary set in T if A C clp Uy N cly Us for some pair
of disjoint open sets Uy, Us in T Let us abbreviate “common boundary” to
“co-boundary.” (Such p, A are called “2-point” or “2-set” in [4]. We prefer
geometric terminology.) Let Ed(T) denote the set of all e.d. points of T,
and put Cob(T") = T\Ed(T') which is the set of all co-boundary points of T

Theorem 3.3. ([6]) Assume X5 ,X; € L and that the starting space Xo =
X5 U XS contains a compact co-boundary set Fy such that F;, = Fy N
Xy, Fy = Fon X are nowhere compact and Fy C clUp NclVy in Xo
for some disjoint open sets Uy, Vo in Xo. Then we can find a compact co-
boundary set Fo in Xq = Q(Xo) such that

mo(Fa) = Fo and Fq C clx,(Uq) Neclxg (Va)

for disjoint open sets Ug = 7r0_1(U0), Va = 7r0‘1(V0) in Xq = Q(Xp). Hence,
for each x € Fy we get

5+ (z) N Cob(Xq) # 0.

Consequently, Cob(Xq) = Xq\Ed(Xq) is not empty, i.e., Xq = Q(Xo) s
not extremally disconnected.

Next easy lemma tells when the hypothesis of Theorem 3.3 is satisfied.

Lemma 3.4. Suppose Y € L(1st), and that Y contains a nowhere dense
closed subset F' € L(1st). Then we can find disjoint open subsets U,V such
that F CclUNclVinY. |

From this lemma it is easy to see that the typical examples Q,P,S €
L(1st) satisfy the hypothesis of Theorem 3.3. Let us illustrate a specific
simple partition of QQ, as in Lemma 3.4, into the form U U F UV where
F = clU N clV, using the standard Cantor set. Consider the standard
middle-thirds Cantor set

C= [0’ 1]\ U (ana bn)

new

where (an,by) (n € w) are disjoint open intervals in (0,1) with end points
an, by, € Q. Choose ¢, € (an,b,) NP for each n € w and put

U=QnJ(ancn), V=00 J(en,bn), F=@QNC.
new new

Then @ is partitioned as @ = U UF UV, and F = clgU\U =clgV\V = Q
is nowhere dense closed in Q.

We can conclude from Theorem 3.3 and Lemma 3.4 that neither Q([0, 1])
nor 2(A) is extremally disconnected.
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4. GENERALIZATION TO MULTIPLE EXTENSIONS

Now let us consider more general partitions. Suppose a compact space K
has a partition P such that

(4—0) P: K=(|JL)us
icA
where A C w, 2 < |A4] < w, and each L? (i € A) is dense in K. We put no

particular condition on § = K\ ;¢4 Lt; for example, S need not be dense,
or it may happen S = ). The case of §2 is

LP=x-,L'=X* A={0,1}, S=0.
Using inverse limits similar to §2, we can construct

(4-1) QP) = (|J L&) U Sa,

1€A
where Lh = n7}(L%), Sq = n~1(9), and 7 : Q(P) — K is a perfect irre-
ducible projection, with the following property similar to Theorem 2.3.

Theorem 4.1. ([6]) Suppose a partition P of (4-0) is such that each dense
subset L* (1 € A) 1s Lindedf. Then the corresponding Lindedf dense subset
4§ i (4-1) is C*-embedded in Q(P), i.e., QP) = B(LY) for each i € A.

In view of this theorem we can call Q(P)
the multiple Stone-Cech Q-extension w.r.t. the dense sets L* (i € A) of the
partition P.

We may think of various partitions P, and accordingly various multiple
extensions. See [6] for further details.

5. CONCLUSION

As is well known, for every space X there exists an extremely disconnected
space E(X) called the “absolute,” with a perfect irreducible map onto X.
Our space 2(X) lies in between X and E(X), and will serve as a useful
device to mediate X and E(X).
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