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1 Introduction

The dynamic Nelson-Siegel (DNS) model has drawn attention of many practitioners and aca-
demics because of its tractability, and empirical in-sample fitting and out-of-sample forecasting
performance, as well as the Nelson-Siegel property. In many studies, it is extended to account for
regime shifts in the behavior of term structure dynamics, and is shown to have better forecasting
performance than most forecasting models $(\prime\iota I1\ltimes$ & Zhu, 201 The arbitrage-free version of
this, arbitrage-free Nelson-Siegel (ANFS) model differs only by a deterministic adjustment term.
In a single-regime setting, Sim & Ohnishi (2011) found that the DNS which does not have this
deterministic arbitrage adjustment term appears to outperform the AFNS that does in terms
of forecasting Japanese Government Bond (JGB) yields, suggesting that the arbitrage-free con-
dition is not important for forecasting JGB yields. In this study, we investigate the difference
between these models within regime-switching setting for the JGB yields data. In $pa\dot{r}$ticular,
we explore within two-regime setting the importance of this deterministic arbitrage adjustment
term in terms of fitting and forecasting yield curves, regime identification.

The interest rates are known to exhibit pattern of regime shits. Regime-shift behavior in
the interest rates dynamic is attributed to not only monetary policy regimes2, but also to the
changes in business cycle conditions. In order to capture such behavior, regime shift term
structure models are considered. Such models incorporate such important features as flexibility
for fitting, ability to capture nonlinear term structure dynamics, ability to mimic violations of
the expectation hypothesis, good forecasting performance, etc,

There are many approaches to term structure modeling with regime shifts incorporated. One
is to consider the discrete-time affine arbitrage-free term structure models. This kind of models
are considered for example in $Bt\iota$nsal & $Z1\downarrow ou(2()(2)$ , and Dai et al. $(2()(7)$ . Bansal & Zhou
$(20()2)$ employ discrete-time CIR models. Assuming constant transition probabilities, and that
regime-shift risk is not priced, they find that regime-shift lnodels can account for violations of
the expectation hypothesis, and that regimes are closely related to business cycles. On the hand,
$D_{\dot{C}^{-}\}}i_{(_{ノ}^{\backslash }}t$ al. $(200^{\vee}\prime)$ empirically implement the discrete-time Gaussian models assuming that regime-
shift risk is priced and that transition probabilities are factor-dependent. Another approach is to
consider the continuous-time affine arbitrage-free term structure models. This includes Landen
$(^{\underline{\supset}}000)$ , $\backslash :Vn$ & $Zel]g$ (2007), Elliot & $Si1/(^{\underline{9}}009$ ). However, due to the model complexity, the
empirical implementation based on such models is not well documented. The other approach
is the econometric modeling approach. Within this approach, the models are not derived from
the arbitrage-free condition. The focus is on fitting and forecasting as well as the interaction
between interest rates and other macroeconomic variables. To take this approach, thus it is

1 This work was supported by JSPS KAKENHI Grant Number 25-6058.
2In order to drive economic growth, central banks of many important developed country such as Japan and

the US have adopted ZIRP as part of their monetary policy.
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not possible to gain any understanding about market prices of risk. Regime-switching dynamic
Nelson-Siegel models considered $in/_{\lrcorner}^{r}\prime\subset xn\{(^{\supset dhi}es(^{\urcorner}e((\tau 1$ . (2011), and $Xi_{\subset\lambda 1\urcorner}g$ & hu (2013) belong to
this class of models. Xiang & Zhu (2013) show using US Treasury data that regime-shift DNS
has better forecasting performance than most forecasting models.

For empirical study on JGB, Koeda (2013) constructs an arbitrage-free term structure model
which subjects short-term rates to regime shifts driven by monetary policy (zero interest rate
policy (ZIRP) regime and normal regime). The model is intended to capture features such as
the zero lower bound of the policy interest rate and the Bank of $Japan^{)}s$ forward guidance of
interest rates using the setup of Oda & $Ued_{i}\iota$ (2007) for ZIRP exit rules. He shows that under
the ZIRP regime, the effect of deflation (inflation) on lowering (raising) bond yields amplifies
on the long end of yield curves, compared with a case under the normal regime.

This study extends the DNS and AFNS models to the case when parameters are subjected
to regime shifts. Just like the regime-shift DNS (RSDNS), the regime-shift AFNS (RSAFNS)
considered is not derived from the arbitrage-free condition, and so is not an arbitrage-free term
structure model. It is just RSDNS with a deterministic term, which is also subjected to regime
shifts because the regime-shift volatility parameters appear in the term. As mentioned above
since RSDNS is well known to be a good forecasting model, we are interested in the question: Is
the term that appears in the single-regime AFNS could be of importance for improving fitting
and forecasting yields as well as identifying the regime? To answer this question, this paper
conducts empirical study using weekly data of JGB zero-coupon yields,

Estimating the models using Markov Chain Monte Carlo method, we find that RSAFNS
outperforms RSDNS for both fitting and forecasting JGB yields. RSAFNS is also able to identify
high and low volatility regimes, which is intimately related to the stage of business cycle, much
clearer than RSDNS. One drawback of introducing the deterministic term to the RSDNS is that
the model’s dynamic factors may no longer represent long-term rates, and the slope of the yield
curve.

Section- describes the RSDNS and RSAFNS models. Section 3 presents the empirical study.
Especially, the data used is described, and the regime identification is discussed in detail. The
performance comparison between single-regime and regime shift models are discussed in section
4, Section 5 concludes the paper.

2 Regime-shift DNS and regime-shift AFNS

The regime-shift process is modeled as a discrete-time homogeneous Markov chain $S$ . The regime
variable $S_{t}$ take the value 1 if the state of the world is in regime 1 and 2 if it is in regime 2,

Let $P$ denote the regime transition probability matrix (under physical probability measure), ie.,
$P_{ji}=Pr(S_{t+1}=j|S_{t}=i)$ . The Markov chain $S$ can be represented by a vector process $\xi$ where
the random vector $\xi_{t}$ takes value in the set of canonical unit vectors $\{e_{1}, e_{2}\}$ . It is easy to see
that

$\mathbb{E}[\xi_{t+1}|\xi_{t}]=P\xi_{t}$ . (1)

With this notation, any parameter $\psi$ that depends on regime can be represented as $\psi_{S_{t}}=$

$\psi(\xi_{t})=\psi’\xi_{t}$ , where $\psi=(\psi_{0},$ $\psi_{1}$

Also assume that agents in the economy can observe the current regime and price bonds
based on models derived within the non regime shift setting, but with the parameters switched
according to the current regime. In other words, the regime-shift term structure models con-
sidered in this paper are not derived from the arbitrage-free condition. Many papers study the
importance of arbitrage-free condition, but there is no consensus among the findings. When
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focusing on the forecasting ability of a model, whether it satisfies arbitrage-free condition or not
may not be important.

In addition, unlike in Kocda (20]3), the models considered in this paper do not subject
short-term rates to regime shifts driven by monetary policy. In other words, the models are
allowed to identify the regimes, which can be either the ZIRP regime and the normal regime,
or something else (such as high and low volatility regimes). We consider in particular the DNS,
and AFNS models with regime-shift parameters. They shall be called RSDNS, and RSAFNS
respectively.

RSDNS

$y_{t}(\tau_{n}) = \hat{B}(\tau_{n})’X_{t}+\epsilon_{n,t}, n=1, 2, N$ , (2)

$\epsilon_{t}= (\epsilon_{1,t}\rangle \epsilon_{n,t})’|_{\xi_{t}}\sim N(0, \sigma_{\epsilon}^{2}(\xi_{t})I)$ ,

where

$\hat{B}(\tau_{n})’=[1, \frac{1-e^{-\lambda\tau n}}{\lambda\tau_{n}}) [\frac{1-e^{-\lambda\tau_{n}}}{\lambda\tau_{n}}-e^{-\lambda\tau_{n}}]]$ (3)

and $y_{t}(\tau_{n})$ is observed zero-coupon yield of time-to-maturity $\tau_{n}$ . Conditional on $\tilde{\xi}_{T}=(\xi_{1}, \ldots, \xi_{T})$ ,
$\epsilon_{t},$ $t=1,$ $T$ are assumed serially independent. $X_{t}$ is a 3-dimensional vector of latent dynamic
factors and is given by

$X_{t}=\mu(\xi_{t})+FX_{t-1}+\nu_{t}, \nu_{t}|_{\xi_{t}}\sim N(0, G(\xi_{t}))$ (4)

where

$\mu(\xi_{t})=\{\begin{array}{ll}(1- e^{-\kappa_{L}\triangle t})\theta_{L}(\xi_{t})(1- e^{-\kappa s\Delta t})\theta_{S}(\xi_{t})(1- e^{-\kappa_{C}\Delta t})\theta_{C}(\xi_{t})\end{array}\}, F=\{\begin{array}{lll}e^{-\kappa_{L}\triangle t} 0 00 e^{-\kappa s\Delta t} 00 0 e^{-\kappa_{C}\triangle t}\end{array}\}$ , (5)

and

$G(\xi_{t})=[-\sigma\frac{2(\xi_{t})}{2\kappa_{L}}(1-e^{-2\kappa_{L}\Delta t})00 -\sigma_{2\kappa s_{0}}^{2}\mapsto^{(\xi_{t})}(1-e^{-2\kappa s^{\Delta t}})0 \frac{\sigma_{C}^{2}(\xi_{t})}{2\kappa_{C}}(1-e^{-2\kappa c\Delta t})00]$ (6)

Conditional on $\tilde{\xi}_{T}=(\xi_{1}, \ldots, \xi_{T})\nu_{t},$ $t=1,$ $T$ are assumed serially independent, and are
independent of $\epsilon_{t},$ $t=1,$ $T.$

RSAFNS

$y_{t}(\tau_{n}) = \hat{B}(\tau_{n})’X_{t}+\hat{A}(\tau_{n}, \xi_{t})+\epsilon_{n,t}, n=1, 2, N$ , (7)

$\epsilon_{t}= (\epsilon_{1,t}, \epsilon_{n,t})’|_{\xi_{t}}\sim N(0, \sigma_{\epsilon}^{2}(\xi_{t})I)$ ,

where

$\hat{B}(\tau_{n})’$ $=$

$\hat{A}(\tau_{n}, \xi_{t})$ $=$
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and $y_{t}(\tau_{n})$ is observed zero-coupon yield of time-to-maturity $\tau_{n}.$
$X_{t}$ is a 3-dimensional vector of

latent dynamic factors and is given as in (4). The assumptions about the conditional indepen-
dence of $\epsilon_{t}$ and $\nu_{t}$ are the same as that of RSDNS. Conditional on $\tilde{\xi}_{T}$ and $\tilde{X}_{T}=$ $(X_{1}, X_{T})$ ,
$\nu_{t},$ $t=1,$ $T$ are assumed serially independent, and independent of $\epsilon_{t},$ $t=1,$ $T.$

Note that each element of $X_{t}=(X_{L,t}, X_{S,t}, X_{C,t})$ is corresponding to level factor, slope
factor, and curvature factor. The parameters $\theta_{l}\kappa_{i)}\sigma_{i},$ $i\in\{L, S, C\}$ respectively represent the
factors’ long run means, mean reversion rates, and volatilities. $\lambda$ is the decay rate parameter
that determines the speed of decay of loadings on slope and curvature. In the above models,
except for the mean reversion rates and decay rate parameter, the long run means and volatilities
are subjected to regime shifts.

3 Empirical study

3.1 Data

We use JGB zero-coupon yields constructed by Kikuchi & $Shint_{(}mi$ (2012) using the the method
proposed by Steeley (1991). Kikuchi & $Shint_{\dot{c}\{\downarrow 1}i$ (2012) show that the Steeley’s method is
the best among popular yield-curve estimation methods based on some considered criteria. The
daily data based on this method is downloaded from Bank of Japan $(BoJ)$ ’s website. We convert
daily data to weekly data by choosing estimates on Thursday (if available, and on Wednesday if
not) as the weekly estimates. We skip those weeks where both the estimates on Thursday and
Wednesday are not available The time-to-maturity spectrum included in our study are 0.5,
1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 18, and 20 year, and the sample consists of 692 weekly
observations covering the period from January 1999 to December 2012,

Figure 1 plots 6-month, 5, 10, and 20-year yields over the sample periods considered. It is easy
to see from this figure that the short rate shifts between two regimes: the near-zero rate regime,
and the normal regime. In fact, $BoJ$ introduced and lifted zero-interest rate policy (ZIRP)

several times according to the macroeconomic conditions. During the sample period considered,
ZIRP was lifted for the period from August 2000 to February 2001, and for the period from July
2006 to the end of 2008. Figure 2 shows the result of fitting a Markov mixed normal distribution
model to the 6-month yield. In the ZIRP regime $(S_{t}=1)$ , $y(6m)\sim N(0.0022,0.0006^{2})$ , with the
transition probabilities: $Pr(S_{t}=1|S_{t-1}=1)=0.9947$ , and $Pr(S_{t}=2|S_{t-1}=1)=0.0053$ . On
the other hand, in the normal regime $(S_{t}=2)$ , $y(6m)\sim N(0.0060,0.0011^{2})$ , with the transition
probabilities: $Pr(S_{t}=2|S_{t-1}=2)=0.9870$ , and $Pr(S_{t}=1|S_{t-1}=2)=0.0130$ . The expected
period of staying in the ZIRP regime (resp. normal regime) is about 3.6 years (resp. 1.5 years),

3.2 Estimation method

The models are estimated using the Markov Chain Monte Carlo (MCMC) method. To generate
factor and regime variables, the forward and backward sampling approach is employed. As initial
values for the regime variable, the realizations drawn from smoothed probabilities obtained from
fitting Markov mixed normal distribution model to the 6-month yield as described above are
used. All linear parameters can be generated by Gibbs sampling algorithm. The decay rate
parameter $\lambda$ in both models, and the factor volatility parameters $\sigma_{L}^{2},$ $\sigma_{S}^{2},$ $\sigma_{C}^{2}$ , and mean reversion
rates $\kappa_{L},$ $\kappa s,$ $\kappa_{C}$ in the RSAFNS model, are nonlinear. These parameters are generated from
the Random Walk Metropolis (RWM) algorithm. In the RWM step, calibrating scale parameter
is crucial to achieve good approximation to the target distribution. If it is too small, we will

3Although daily data are available, we adopt weekly data instead for ease of computation, and for better long
horizon forecasts.
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Figure 1: Zero-coupon yields
Figure 2: Fitting MS mixed normal distribution
model to 6-month yields.

accept every draws and the convergence is slow. Too high the scale parameter, we will likely
reject every draws. Optimally efficient acceptance rate for RWM is known to be 0.234 (Roberts,
Gehnan, Gilks ct al., 1997). To calibrate the scale parameter for RWM, the algorithm used by
reldhiitter & Nielsen (2012) is employed. At every 100th draw, the acceptance ratio of each
parameter is evaluated. If it is smaller than 0.2, the scale is cut in half, and if it is larger than
0.5, the scale is doubled. This calibration step is carried out for the first half the burnt-in period
because the convergence result only applies if the scale is constant. For both models, 25,000
draws are generated. Out of this, 10,000 draws are used as the burnt-in period. See Appendix
A for detail derivation of posterior functions.

3.3 Estimation result

In this subsection, the estimation results of both models are presented. Especially, the focus is
on the regime identification and factor interpretation.

3.3.1 Results for RSDNS

Table 1 reports parameter estimates and standard errors (given in the parenthesis), as well p-
value for the null hypothesis that parameter estimates are equal under both regimes. Figure $3a$

shows area plot of smoothed probabilities1 along with line plots of a short-term rate (0.5-year
yield), a slope (difference between 10-year and 0.5-year yields), and a long-term rate (20-year
yield). Figure $3b$ shows area plot of smoothed probabilities of regime 1 along with line plots
of the estimated level factor $X_{L}$ , the negative of slope factor $-X_{S}$ , and the estimated short
rate $r=X_{L}+X_{S}$ . First, the estimates of volatilities under both regimes are not significantly
different. However, the absolute value of the slope’s long-run mean $\theta_{S}$ in regime 1 is significant
smaller than that in regime 2 at 10% significant level. Thus, regime 1 is identified as regime of
flattening yield curves. From $Figure_{\backslash }^{=}{\}a$ it easy to confirm that regime 1 identified by the model
corresponds to the period of decreasing in the slope of yield curves because long-term rates are
falling and/or short term-rates are rising.

There can be three possible situations that lead to the flattening of yield curves. First,
long-term rates shrink because market expects that future inflation is falling. Second, flattening
yield curves indicate anticipation of future economic downturn. Third, as part of monetary

4The smoothed probabilities are obtained using smoother algorithm described in Kim & $Ne$ ] $sou(\ovalbox{\tt\small REJECT} 999)$ .
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policy when inflation and unemployment rates reach a target level, $BoJ$ lifts ZIRP allowing

short-term rates to rise even if long-term rates are decreasing. In contrast to regime 1, regime 2

can be identified as period of steepening yield curves characterized by increasing long-term rates

and slope, which in turn indicates market expectations for future economic growth and rising

inflation.

Table 1: Estimation result (RSDNS)

$\frac{Regime1Regime2p-va1ue}{\theta_{L}0.0233(0.0048)^{*}0.0313(0.0026)^{*}0.2306}$

$\theta_{S}$ - $O$ .0178 $(O.0050)^{*}$ $-0.0295(0.0026)^{*}$ 0.0714
$\theta_{C}$ $-0.0378(0.0296)$ $-0.0338(0.0167)^{*}$ 0.8760
$\sigma_{L}$ 0.0040 $($0.0003 $)^{*}$ 0.0041 $($0.0002 $)^{*}$ 0.4429
$\sigma s$

$O$ .0045 $($0.0003 $)^{*}$ 0.0046 $($0.0002 $)^{*}$ 0.7055
$\sigma c$

$O$ . 0121 $($0.0008 $)^{*}$ 0.0131 $(O.0007)^{*}$ 0.3310
$\sigma_{e}$ 0.0003 $($0.0000 $)^{*}$ 0.0006 $($0.0000 $)^{*}$ $O$ .0000
$\kappa_{L}$ 0.7062 $($0.2689 $)^{*}$

$\kappa_{S}$ 0.7917 $($0.2856 $)^{*}$

$\kappa c$ 0.6242 (0.3328)
$\lambda$ 0.3542 $($0.0014 $)^{*}$

$\underline{Pr(S_{t}=i|S_{t-1}=i)}$0.9674 $(0.0075)^{*}$ $0.9856(0.0043)^{*}$ $-$

Note: $*$ indicates the estimate is significantly different from0at5% significance level. The standard errors are
given in the parenthesis. p–value is for the null hypothesis that parameter estimates are equal under both regimes.

(a) Short rates, slope, and long-term rates (b) Estimated factors

Figure 3: Smoothed probabilities of regime 1 (RSDNS)

Next, we are interested in the interpretation of the estimated paths of the dynamic factors.
Table 3 reports correlations between the estimated path of the level, slope, curvature, and short

rate, and the empirical level, slope, curvature, and short-term rates, respectively. Three rows of
correlation values are reported for each factor. The first row shows values for the whole sample

period. The second shows values for the subsample period from the 1st week of January 1999
to the 3rd week of July 2006, whereas the third shows those for the subsample period from the

last week of July 2006 to the last week of December 2011. For the slope and curvature factors,

the correlation with their empirical counterparts is high for the 3 sample periods. For the level

factor, the correlation with the long-term rates is weak for the whole sample period and high

for subsample period 1. However, for subsample period 2, there is almost no correlation at all.
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It may appear that the NS-type models fail to maintain their propert for period of economic
turmoil.

(a) RSDNS-identified regimes (b) RSAFNS-identified regimes

Figure 4: Smoothed probabilities of regime 1 and GDP growth

In addition to regime identification and factor interpretation, estimates of other parameters
are important too. First, it is a stylized fact that interest rate factors are highly persistent.
The estimated mean reversion rates are so small indicating that the three factors are highly
persistent. Also, the estimates of the decay parameter $\lambda$ is 0.3542, which is about the same
as the estimate from the DNS model. Furthermore, from the estimated value of the transition
probabilities, we are able to calculate an expected period of stay in each regime, which is about
0.59 years for regime 1, and about 1.34 years for regime 2. Finally, since the observed yields
tend to be higher in regime 2 than in regime 1, so are the observed errors. Indeed, the estimated
standard deviation is $6bps$ in regime 2 compared to $3bps$ in regime 1.

3.3.2 Results for RSAFNS

The estimation results of the RSAFNS model are given in Table Figure $4b$ , 5, and 6. First,
consider what we can say about the two regimes identified by the model. The estimated values
of factor volatilities are significantly higher in regime 2 than in regime 1, and so regime 2 is
characterized by high volatilities, and regime 1 is characterized by low volatilities. It is widely
documented that high volatility is often observed during economic recession (Dai et al. (2007),
$Xi_{c}u)g$ & $7_{\lrcorner}!.)u(^{\underline{)}}\prime 013))$ . Indeed, this is the case for our result. From Figure $4b$ , it is obvious
that the high volatility regime consists of a prolonged period of slow economic growth, and
the 2008-2009 period of economic recession. This result is even more obvious than that of the
RSDNS model (where the estimates of factor volatilities are not significantly different). On
the other hand, the low volatility regime is characterized by the 2006-2007 period of flattening
yield curves, and the year 2010 period of economic recovery. It is also interesting to note that
the 2006-2007 period of flattening yield curves is followed by the 2008-2009 period of economic
recession (or period of steepening yield curves), which is in turn followed by the year 2010 period
of economic recovery. Once again, this suggests that the economic condition was as anticipated
by the market. Thus, RSAFNS identifies the two regimes as the high volatility regime (bad
time regime) with large magnitude of deterministic adjustment term (see Figure 6), and the low
volatility regime (normal regime) with small magnitude of deterministic adjustment term. The
expected period of stay in high (resp. low) volatility regime is 3.21 (resp. 1.13) years.

In addition, we investigate if the dynamic factors can be interpreted as long-term rates,
slope, and curvature of yield curves. For the three sample periods considered, the level factor
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Table 2: Estimation result (RSAFNS)

$\frac{Regime1Regime2p-va1ue}{\theta_{L}0.0324(0.0031)^{*}0.0374(0.0050)^{*}0.4015}$

$\theta_{S}$ $-0.0239(0.0043)^{*}$ $-0.0363(0.0042)^{*}$ 0.0359
$\theta_{C}$ $-0.0528(0.0089)^{*}$ $-0.0337(0.0074)^{*}$ 0.1264
$\sigma_{L}$

$O$ . 0020 $($0.0002 $)^{*}$ 0.0077 $($0.0001 $)^{*}$ 0.0000
$\sigma_{S}$ 0.0031 $($0.0003 $)^{*}$ 0.0055 $($0.0003 $)^{*}$ 0.0000
$\sigma_{C}$ O. 0115 $($0.0008 $)^{*}$ *0.0169 (O. 0013) 0.0001
$\sigma_{e}$ 0.0003 $($0.0000 $)^{*}$ 0.0005 $($0.0000 $)^{*}$ 0.0000
$\kappa_{L}$ 0.6418 (0.3998)
$\kappa_{S}$ 0.5315 (0.2982)
$\kappa c$ 0. $5599(0.2555)^{*}$

$\lambda$ 0.2881 $(O.0002)^{*}$

$Pr(S_{t}=i|S_{t-1}=i)$ 0.9830 $($0.0055 $)^{*}$ 0.9940 $($0.0026$)^{*}$

Note: $*$ indicates the estimate is significantly different from $0$ at 5% significance level. The standard errors are
given in the parenthesis. p.value is for the null hypothesis that parameter estimates are equal under both regimes.
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1 1
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$\fbox{Error::0x0000} \alpha$
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(a) Short rates, slope, and long-term rates (b) Estimated factors

Figure 5: Smoothed probabilities of regime 1 (RSAFNS)
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Time-to-maturity

Figure 6: RSAFNS’s adjustment term

and slope factor have weak correlation with their empirical counterparts. The reason for this is
that the estimate of the decay rate parameter $\lambda$ is only about 0.29 much lower than 0.35, which
mean that the loadings on the slope and curvature factors decay slower than in the RSDNS
model. Finally, notice that for the subsample period 2, the level factor appears to have no
correlation with the long-term rates at all. Once again, this suggests that the NS-type models
fail to maintain the NS property for the period of economic turmoil.

3.3.3 The estimated paths of the short rate

It is well known that affine term structure models that do not ensure positivity of the short rate
are not good at dealing with situation where the instantaneous interest rates are near zero lower
bound (ZLB). Figure 7 shows plots of the paths of the short rate estimated by the single-regime
models. As can be seen, when the interest rates are near ZLB, the filtered estimates of the
short rate are likely to take on negative value. Now we want to investigate whether allowing
parameters in DNS and AFNS to switch between regimes can improve the filtered estimates of
the short rate. Figure 8 show plots of the paths of the short rate estimated by RSDNS and
RSAFNS. It is obvious that the regime-shift models can better capture short rate near ZLB
than the single-regime models. Furthermore, the filtered estimates of the short rate implied by
RSAFNS take on almost non-negative value at all.

4 Performance comparison

This section focuses o11 the comparison, in term of in-sample fitting and out-of-sample forecast-
ing, of five competing models: DNS, AFNS, MAFNS, RSDNS, and RSAFNS.

4.1 Fitting performance

RMSEs of the five models are plotted in Figure 9. It is not obvious to tell which one among these
have the best performance. However, the regime shift models are able to fit better for the short
and long end of the yield curves, for which the single regime models appear to have difficulty.
The average RMSEs of DNS, AFNS, MAFNS, RSDNS, and RSAFNS, are respectively 4.83,
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Table 3: Identified factors

$\frac{13-year15-year18-year20-year}{X_{1}^{RSDNS}0.74670.80870.85120.8679}$

0.8690 0.8959 0.9184 0.9321
$-0.1452$ 0.0105 0.2469 0.2881

$X_{1}^{RSAFNS}$ 0.5610 0.5975 0.6132 0,6373

0.7270 0.7652 0.7954 0.8174
$-0.1345$ 0.0268 0.2145 0.1714

$\frac{0.5-year-13-year0.5-year-15-year0.5-year-18-year0.5-year-20-year}{X_{2}^{RSDNS}0.91690.93380.93960.9543}$

0.9279 0.9451 0.9643 0.9730
0.8529 0.9407 0.9752 0.9781

$X_{2}^{RSAFNS}$ 0.7630 0,7718 0.7690 0,7920

0.7970 0.8296 0.8606 0.8817
0.6492 0.7917 0,8524 0.8246

$2^{*}5$-year $2^{*}5$-year $2^{*}5$-year $2^{*}5$-year

$\frac{-0.5--13-year-0.5--15-year-0.5--18-year-0.5--20-year}{X_{3}^{RSDNS}0.93910.96860.97840.9681}$

0,9543 0,9709 0.9704 0.9584
0.9829 0,9892 0.9933 0.9915

$X_{3}^{RSAFNS}$ 0.9263 0,9351 0.9273 0.9206
0.9635 0,9754 0.9755 0.9638
0.8692 0.8927 0.9026 0.8892

$\frac{0.5-year1-year1.5-year2-y}{r^{RSDNS}0.77470.76030.69530.6274}$

0.6160 0.4016 0.2414 0.1273
0,9156 0.8677 0.8416 0.8173

$r^{RSAFNS}$ 0.8489 0,8263 0.7674 0.7086
0.6906 0.5116 0.3596 0.2468
0,9383 0.9058 0,8870 0.8692

Note: The values reported are the correlation between the estimated level, slope, curvature factors, short rate
(rows), and the empirical level, slope, curvature, and short-term rates (columns), respectively. $iy$ denotes i-y
yields. All sample (1st row): 08-Jan-l999 to 30-Dec-20ll. Subsamplel (2nd row): 08 Jan-1999 to 21-Jul-2006.
Subsample2 (3rd row): 28-Jul-2006 to 30-Dec-20ll.
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Figure 7: Estimated paths of short rates (DNS, AFNS, MAFNS)

Figure 8: Estimated paths of short rates (RSDNS, RSAFNS)
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4.59, 458, 4.76, 4.41bps. It seems that over-all RSAFNS has the best fit. Nevertheless, since
the three single-regime models already have very good fitting performance, in terms of this the
advantage of introducing regime-shift parameters is slim.

Time-to-maturity

Figure 9: Root mean square errors

4.2 Forecasting performance

To compare out-of-sample forecasting performance, consider forecasting horizons of 4 weeks and
12 weeks. Forecasts are made for the period from the 2nd week of November 2010 to the last
week of December 2011. We obtain 58 observations for the 4 week ahead forecasts, and 50
observations for the 12 week ahead forecasts (Appendix }} shows how to compute forecasts and

forecast errors’ covariance matrix). Table 4 reports the value of RMSEFs in basis points, as
well as the value of Diebold-Mariano (DM) statistic. For the 4 week ahead forecasts, RSAFNS
outperforms RSDNS for almost all maturities. For the 12-week forecasts, except for maturities
less than 5 years RSAFNS outperform RSDNS for most of the maturities. It is thus almost

obvious that RSAFNS has the best overall performance.
Figure 10 shows plots of RMSFEs for the three single-regime models and the two regime-shift

models. Clearly, the regime-shift models dominate the single-regime models for almost all the

maturities and for both forecasting horizons. The reason for this can probably be attributed to
the fact that the regime-shift models are able to capture dynamics of short rate at the near ZLB

better than the single-regime models.

4.3 Economic value of predicting excess return

In this section, the economic value of the excess-return predictability of RSAFNS in compare
to RSDNS is evaluated. Consider a mean-variance investor who constructs every four weeks a
dynamically rebalanced portfolio of $N$ risky zero-coupon bonds and one risk-free zero-coupon
bond. Her problem is to minimize the portfolio variance subject to a given target portfolio
expected excess return $xr_{p}^{*}$ , i.e.,

$\min_{w_{t}}\{w_{t}’\Sigma_{t+h|t}^{rx}w_{t}\}$

s.t. $w_{t}’\mu_{t+h|t}^{rx}=xr_{p}^{*}$

145



Table 4: Forecast results

This table reports RMSFE (in basis points) and Diebold Mariano (DM) statistics. Under the null hypothesis of
equal forecasting accuracy, the DM statistic follows a standard normal distribution.

Time-to-maturity Time-to-maturity

(a) 4-week ahead (b) 12-week ahead

Figure 10: Root mean square forecast errors
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where $w_{t}$ is $a(N, 1)$ -vector of portfolio weights on the risky zero-coupon bonds; $\mu_{t+h|t}^{rx}$ , and $\Sigma_{t+h|t}^{rx}$

are respectively the conditional expectation, and variance of bond excess return (Appendix $C$

shows how these values can be computed). Solving this optimization problem give us

$w_{t}= \frac{xr_{p}^{*}}{C_{t}}(\Sigma_{t+h|t}^{rx})^{-1}\mu_{t+h|t}^{rx}$ , (10)

where $C_{t}=(\mu_{t+h|t}^{rx})’(\Sigma_{t+h|t}^{rx})^{-1}\mu_{t+h|t}^{rx}$ . If $\mu_{t+h|t}^{rx}$ , and $\Sigma_{t+h|t}^{rx}$ are calculated from a model $\mathcal{M}$ , then
the optimal weights are those given by $\mathcal{M}$ . Denote by $w_{t}^{\mathcal{M}}$ these optimal weights. The portfolio
gross return of this strategy is

$R_{p,t+h}^{\mathcal{M}}=1+r_{f}T_{h}+(w_{t}^{\mathcal{M}})’rx_{t+h},$

where $rx_{t+h}$ is the excess returns of the risky zero-coupon bonds at time $t+h,$ $T_{h}$ is the holding
period.

To assess the economic value of the predictability of RSAFNS, the performance fee as in
Della Corte $p\{$ al. (2008), Thornthon & $Va|pn\dagger e(2\langle)12)$ , and Xiang & $Z\}_{1}$ (2013) is adopted. $A$

performance fee is defined as a maximum fee a quadratic utility investor would be willing to pay
to switch from the benchmark model (RSDNS) to the competitive model (RSAFNS). That is
the performance fee $\Phi$ is such that

$\sum_{j=t_{f}}^{N_{i}-h}\{(R_{p,t+h}^{RSAFNS}-\Phi)-\frac{\delta}{2(1+\delta)}(R_{p,t+h}^{RSAFNS}-\Phi)^{2}\}=\sum_{j=t_{f}}^{N_{i}-h}\{R_{p,t+h}^{RSDNS}-\frac{\delta}{2(1+\delta)}(R_{p,t+h}^{RSDNS})^{2}\}$ , (11)

where $\delta$ denotes the investor’s degree of relative risk aversion, $N_{i}$ is the number of periods of
investment. It is easy to see that the performance fee defined as in (11) is positive means that
RSAFNS has positive economic value compared to RSDNS. Since, RSAFNS nests RSDNS, the
improvement in the forecasting ability can be totally attributed the deterministic term. Thus,
the positive value of the fee suggests that the deterministic term has an economic value in terms
of forecasting bond excess return.

To evaluate the economic value of the deterministic term, this study calculates the perfor-
mance fee measure for an investment period of seven months. Since the portfolio is rebalanced
dynamically every month, the 1-month yield is the risk free rate. However, the data of 1-month
yield is not available. It is thus obtained from linear interpolation. Also 2, 3, 20-y zero-coupon
bonds are considered as largest admissible set of risky bonds,

The out-of-sample performance fees are reported in Table 5 for different value of target
portfolio excess returns and different admissible set of risky bonds. For example, for the set
{2,3, $\cdots$ ,20}, for a target portfolio excess return of 1% (annual rate), the performance fee is
5.2488 basis points. Not surprisingly, the fees increase with the increase in target portfolio excess
return. The positivity suggests that the deterministic term has economic value for forecasting
the bonds {2,3, $\cdots$ ,20}’ excess return. However, with different set of bonds, the performance
fee switches sign. It turns out to be negative for the admissible set {6,7, $\cdots$ ,20}. So it is not
possible to come to a conclusion using this measure. Nevertheless, when considering different
combinations of risky bonds, as reported Table 6, it turns out that as the number of bonds
available for investing increases, the positive ratio of the performance fee also increases. This
suggests that the strategy given by RSAFNS is more likely to perform better than RSDNS. This
in turn suggests an economic value of the deterministic term for forecasting bond excess return.
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Table 5: Out-of-sample performance fee

$xr^{*}=1\% xr^{*}=1.5\%$Risky bonds
$p$ $p$

$xr_{p}^{*}=2\%$ $xr_{p}^{*}=2.5\%$ $xr_{p}^{*}=3\%$

{2,3, $\cdots$ ,20} 5.2488 7.8719 10.4952 13.1187 15.7424
{2,3, $\cdots$ ,10} 12.3551 18.5385 24.7267 30.9124 37.1048
$\{6,7,\ldots,20\}$ $-1.3964$ $-2.0955$ $-2.7942$ $-3.4926$ $-4.1906$

$\frac{\{6,7,\ldots,19\}4.59726.89729.199311.503413.8095}{Note:Theinvestor’ sre1ativeriskaversionissetto\delta=5.Thetargetportfolioexcessreturnsareannua1ratesin}$

percents, and $\Phi^{)}s$ are annual rates in basis points.

Table 6: Signs of the performance fees for different combinations of risky bonds $(\delta=5, xr_{p}^{*}=2\%)$

$\frac{k-combinationPositiveNegativePositiveRatio}{2107640.6257}$

3 717 268 0.7279
4 3033 843 0.7825
5 9583 2045 0.8241

Note: This table report the number of $k$-combinations $($from $the set of 19$ risky bonds $\{2,3,\ldots 20\})$ where $\Phi$ is

positive, and negative, as well as the ratio of the number of positives.

5 Summary

In this paper, the dynamic Nelson-Siegel model and the arbitrage-free Nelson Siegel model with

parameters subjected to regime shifts is considered. Just like RSDNS, RSAFNS is not derived

from the arbitrage-free condition, and so is not an arbitrage-free term structure model. RSAFNS
isjust RSDNS with a deterministic term that is also subjected to regime \S hifts. Since RSDNS is

well known to be a good forecasting model, it may be interesting to examine if the arbitrage-free
adjustment term which appears in the single-regime AFNS could be of importance for improving

fitting and forecasting yields as well as identifying the regime. The answer to this question is
$a^{(}YES’$ . The empirical study on Japanese Government Bond zero-coupon yields showed that

RSAFNS outperformed RSDNS for both fitting and forecasting JGB yields. RSAFNS was also

able to identify high and low volatility regimes, which are related to the stage of business cycle,

much clearer than RSDNS. One drawback of introducing the deterministic term to RSDNS is

that the model’s dynamic factors may no longer represent level, slope as in the RSDNS model.
In addition, we found that the regime-shift models remarkably dominate the single-regime NS-
type models for forecasting JGB yields. Therefore, for a forecasting model, RSAFNS should be

preferred to RSDNS, and the single-regime NS-type models.

A MCMC Algorithm

Given the observed zero-coupon yields $\tilde{y}_{T}$ $:=(y_{1}, \ldots, y_{T})$ , we estimate $\tilde{X}_{T}$ $:=(X_{1}, X_{T})$ ,
$\overline{\xi}_{T}$ $:=(\xi_{1}, \ldots, \xi_{T})$ , and the parameters $\Theta:=(\theta’, \kappa’, \sigma’, \lambda, q’, \sigma_{\epsilon}’)_{\rangle}’$ where $\theta=(\theta_{L}’, \theta_{S}’, \theta_{C}’)’,$

$\kappa=(\kappa_{L}, \kappa s, \kappa c \sigma=(\sigma_{L}’, \sigma_{S\rangle}’\sigma_{C}’)’,$ $q=(q_{11}, q_{22})’$ (with $q_{11}=Pr(\xi_{t}=e_{1}|\xi_{t-1}=e_{1}),$ $q_{22}=$

$Pr(\xi_{t}=e_{2}|\xi_{t-1}=e_{2} \sigma_{\epsilon}=(\sigma_{\epsilon_{)}1}, \sigma_{\epsilon,2})’.$

Note that the generations of $\tilde{X}_{T},$ $\tilde{\xi}_{T},$
$\lambda,$ $q$ , and $\sigma_{\epsilon}$ are almost identical for both models;

however, the generations of $\theta,$
$\kappa,$

$\sigma$ are different depending on each model. Therefore, I first
describe the algorithm for the generations $\tilde{X}_{T},$ $\tilde{\xi}_{T},$

$\lambda,$
$q$ , and $\sigma_{\epsilon}$ for both models, and then the

algorithms for the generations of $\theta,$
$\kappa,$

$\sigma$ for each model.
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First of all, the following conditional posteriors (likelihood functions) are useful.

$\bullet$ Given $\Theta,$ $\tilde{X}_{T},$ $\tilde{\xi}_{T}$ , the conditional posterior of $\tilde{y}_{T}$ is

$p( \tilde{y}_{T}|\Theta,\tilde{X}_{T},\tilde{\xi}_{T}) = (2\pi)^{-T/2}\prod_{t=1}^{T}(\sigma_{e}^{2}\cdot\xi_{t})^{-N/2}\exp\{-\frac{1}{2}(\sigma_{e}^{2}\cdot\xi_{t})^{-1}\hat{\epsilon}_{t}’\hat{\epsilon}_{t}\},$

where $\hat{\epsilon}_{t}=y_{t}-BX_{t}$ for the DNS model, and $\hat{\epsilon}_{t}=y_{t}-BX_{t}-A\cdot\xi_{t}$ for the AFNS model.

$\bullet$ For $i=L,$ $S,$ $C$ , the conditional posterior of $\tilde{X}_{i,T}$ given $\Theta,$
$\tilde{\xi}_{T}$ is

$p( \tilde{X}_{i,T}|\Theta,\tilde{\xi}_{T}) = p(X_{i,1}|\Theta,\tilde{\xi}_{1})\prod_{t=2}^{T}(2\pi\sigma_{\nu_{i}}^{2}\cdot\xi_{t})^{-1/2}\exp\{-\frac{1}{2}(\sigma_{\nu_{i}}^{2}\cdot\xi)^{-1}\hat{\nu}_{i,t}^{2}\},$

where $\hat{\nu}_{t}=X_{i,t}-e^{-\kappa_{i}\triangle t}X_{i,t-1}-(1-e^{-\kappa_{t}\triangle t})(\theta_{i}\cdot\xi_{t})$ , and $\sigma_{\nu_{i}}^{2}=\frac{\sigma_{i}^{2}}{2\kappa_{i}}(1-e^{-2\kappa_{i}\triangle t})$ .

$\bullet$ Conditional posterior of $\tilde{\xi}_{T}$ given $\Theta$ is

$p(\tilde{\xi}_{T}|\Theta) = p(\xi_{1)\prod_{t=2}^{T}\}}q_{11}^{1_{\{=}}\xi_{t}\epsilon_{t-1^{=}}\}(1-q_{11})\epsilon_{t^{=}}\epsilon_{t-1}=q_{22}^{1_{\{\epsilon_{r=}e_{2},\epsilon_{t-1}e_{2}\}}}$

$(1-q_{22})^{1_{\{\epsilon_{t^{=}}\xi_{t-1}=}}e_{1},e_{2}\}$

where 1 is the indicator function.

Generations of $\tilde{X}_{T},$ $\tilde{\xi}_{T},$
$\lambda,$ $q,$ $\sigma_{\epsilon}$ for both models

1. Conditional on $\tilde{y}_{T},$
$\tilde{\xi}_{T}$ , and $\Theta$ , generate $\tilde{X}_{T}=$ $(X_{1}, X_{T})$ using the forward filtering

and backward sampling (FFBS) approach.

2. Conditional on $\tilde{y}_{T},$
$\overline{X}_{T}$ , and $\Theta$ , generate $\tilde{\xi}_{T}=$ $(\xi_{1}, \xi_{T})$ using the FFBS approach.

3. Conditional on $\tilde{y}_{T},$
$\tilde{X}_{T},$ $\tilde{\xi}_{T}$ , and $\Theta_{\backslash \lambda}$ , generate $\lambda$ using Random Walk Metropolis algorithm.

Draw $\lambda$ from

$\lambda_{*}=\lambda_{m}+\sigma v$

where $v\sim N(O, 1)$ , and $\sigma$ is the scaling factor used to adjust the acceptance rate. The
acceptance probability is

$\alpha=\min\{\frac{p(\lambda_{*}|\Theta_{\backslash \lambda},\tilde{X}_{T},\tilde{\xi}_{T},\tilde{y}_{T})}{p(\lambda_{m}|\Theta_{\backslash \lambda},\tilde{X}_{T},\tilde{\xi}_{T},\tilde{y}_{T})}, 1\}$

The conditional posterior of $\lambda$ is

$p(\lambda|\Theta_{\backslash \lambda},\tilde{X}_{T},\tilde{\xi}_{T},\tilde{y}_{T}) \propto p(\tilde{y}_{T}|\Theta,\tilde{X}_{T},\tilde{\xi}_{T})p(\tilde{X}_{T}|\Theta,\tilde{\xi}_{T})p(\tilde{\xi}_{T}|\Theta)p(\lambda|\Theta_{\backslash \lambda})$

$\propto p(\tilde{y}_{T}|\Theta,\tilde{X}_{T},\tilde{\xi}_{T})p(\lambda)$ .

Assuming flat prior, we obtain the posterior ratio as

$\frac{p(\lambda_{*}|\Theta_{\backslash \lambda},\tilde{X}_{T},\tilde{\xi}_{T},\tilde{y}_{T})}{p(\lambda_{m}|\Theta_{\backslash \lambda)}\tilde{X}_{T},\tilde{\xi}_{T},\tilde{y}_{T})}=\exp\{-\frac{1}{2}\sum_{t=1}^{T}(\sigma_{e}^{2}\cdot\xi_{t})^{-1}[\hat{\epsilon}_{*,t}’\hat{\epsilon}_{*,t}-\hat{\epsilon}_{m,t}’\hat{\epsilon}_{m,t}]\},$

where $\hat{\epsilon}_{*,t}$ , and $\hat{\epsilon}_{m,t}$ are $\hat{\epsilon}_{t}$ evaluated at $\lambda_{*}$ , and $\lambda_{m}$ respectively.
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4. Conditional on $\tilde{y}_{T},$
$\tilde{X}_{T},$ $\tilde{\xi}_{T}$ , and $\Theta_{\backslash q}$ , generate $q_{11_{\rangle}}$ and $q_{22}$ from beta distributions. The

conditional posterior of $q=(q_{11}, q_{22})’$ is

$p(q|\Theta_{\backslash q\rangle}\tilde{X}_{T},\overline{\xi}_{T},\tilde{y}_{T})\propto p(\tilde{y}_{T}|\Theta,\tilde{X}_{T},\tilde{\xi}_{T})p(\tilde{X}_{T}|\Theta,\tilde{\xi}_{T})p(\tilde{\xi}_{T}|\Theta)p(q|\Theta_{\backslash q})$

$\propto p(\tilde{\xi}_{T}|q)p(q)$ .

The conjugate priors of $q_{11},$ $q_{22}$ are beta distributions $q_{11}\sim beta(u_{11}, u_{12})$ , $q_{22}\sim beta(u_{22}, u_{21})$ .
That is,

$p(q)\propto q_{11}^{u_{11}-1}(1-q_{11})^{u_{12}-1}q_{22}^{u_{22}-1}(1-q_{22})^{u_{21}-1}.$

Then,

$p(q|\Theta_{\backslash q},\tilde{X}_{T)}\tilde{\xi}_{T}, \tilde{y}_{T}) \proptoq_{11}^{n+u_{11}-1}11(1-q_{11})^{n_{12}+u_{12}-1}q_{22}^{n_{22}+u_{22}-1}(1-q_{22})^{n_{21}+u_{21}-1}.$

Thus, the posteriors of $q_{11},$ $q_{22}$ are the beta distributions

$q_{11}$ $\sim$ beta$(n_{11}+u_{11}, n_{12}+u_{12})$ ,

$q_{22}$ $\sim$ beta$(n_{22}+u_{22}, n_{21}+u_{21})$ ,

where $n_{jk}$ denotes the number of transitions from state $j$ to $k$ , which can be easily counted
for given $\tilde{\xi}_{T}=$ $(\xi_{1}, \xi_{T})$ .

5. Conditional on $\tilde{y}_{T},$
$\tilde{X}_{T},$ $\tilde{\xi}_{T}$ , and $\Theta_{\backslash \sigma_{\epsilon}^{2}}$ , generate $\sigma_{\epsilon}^{2}=(\sigma_{\epsilon,1}^{2}, \sigma_{\epsilon,2}^{2})’$ from inverted Gamma

distributions. The conditional posterior of $\sigma_{\epsilon}^{2}$ is

$p(\sigma_{\epsilon}^{2}|\Theta_{\backslash \sigma_{e}^{2}},\tilde{X}_{T},\tilde{y}_{T},\tilde{\xi}_{T}) \propto p(\tilde{y}_{T}|\Theta,\tilde{X}_{T},\tilde{\xi}_{T})p(\tilde{X}_{T}|\Theta,\tilde{\xi}_{T})p(\tilde{\xi}_{T}|\Theta)p(\sigma_{\epsilon}^{2}|\Theta_{\backslash \sigma_{\epsilon}^{2}})$

$\propto p(\tilde{y}_{T}|\Theta,\tilde{X}_{T},\tilde{\xi}_{T})p(\sigma_{\epsilon}^{2})$ .

The conjugate prior of $\sigma_{\epsilon,j}^{2},j=1$ , 2 is an inverted Gamma distribution $IG(^{\Delta\lrcorner}v_{2,2^{L}}\delta$ ), i.e.,

$p( \sigma_{\epsilon,j}^{2}) \propto (\sigma_{\epsilon,j}^{2^{v}})^{-\lrcorner 1-1}2\exp\{-\frac{\delta_{0}}{2}(\sigma_{\epsilon,j}^{2})^{-1}\}.$

Thus, the posterior distribution of $\sigma_{\epsilon,j}^{2},$ $j=1$ , 2 are the inverted Gamma distributions

$\sigma_{\epsilon,j}^{2}|\ldots\sim IG(\frac{v_{j}}{2}, \frac{\delta_{j}}{2}) ,v_{j}=v_{0}+Nn_{j)}\delta_{j}=\delta_{0}+\sum_{t\in \mathcal{T}_{j}}\hat{\epsilon}_{t}’\hat{\epsilon}_{t},$

where $n_{j}$ denotes the number of times of being in state $j$ , and $\mathcal{T}_{j}$ denotes a set of times of
being in state $j.$

Generations of $\theta,$
$\kappa,$ $\sigma$ for RSDNS

For RSDNS, $\theta,$
$\kappa,$

$\sigma$ appear only in the transition equations. Let

$a_{i} := e^{-\kappa_{t}\triangle t}$

$\mu_{i} := (1-e^{-\kappa_{i}\Delta t})\theta_{i}$

$\sigma_{\nu_{1}}^{2} := \sigma_{i}^{2}\frac{1-e^{-2\kappa_{1}\triangle t}}{2\kappa_{i}}$

for $i=L,$ $S,$ $C$ . The transition equations can now be written as

$X_{i,t}=\xi_{t}’\mu_{i}+a_{i}X_{i,t-1}+\nu_{i}, \nu_{i}\sim N(0, \sigma_{\nu_{i}}^{2}\cdot\xi_{t})$ .
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1. Conditional on $\tilde{X}_{T},$ $\tilde{\xi}_{T},$
$\sigma_{\nu_{i}}^{2}$ , generate $(\mu_{i}’, a_{i})’,$ $i=L,$ $S,$ $C$ from multivariate normal dis-

tributions. For a conjugate multivariate normal prior of $(\mu_{i}’, a_{i})’\sim N(m_{i,0}, \Sigma_{i,0})$ , the
posterior is

$\{\begin{array}{l}\mu_{i}a_{i}\end{array}\}\sim N(m_{i,1}, \Sigma_{i,1})$ , $\Sigma_{i,1}=(\Sigma_{i_{)}0}^{-1}+Z_{i’}Z_{i})^{-1},$ $m_{i,1}=\Sigma_{i,1}(\Sigma_{i_{\rangle}0}^{-1}m_{i,0}+Z_{i’}Y_{i})$

where

$Z_{i} = \{\begin{array}{l}z_{i,2}z_{i,T}\end{array}\}, z_{i,t}=[\frac{\xi_{t}’}{\sqrt{\sigma_{\nu_{\iota}}^{2}\xi_{t}’}}\frac{X_{i,t-1}}{\sqrt{\sigma_{\nu_{i}}^{2}\xi_{t}}}]$

$Y_{i} = [ \frac{X_{i,2}}{\sqrt{\sigma_{\nu_{1}}^{2}\xi_{2}}}, \frac{X_{i,T}}{\sqrt{\sigma_{\nu_{t}}^{2}\xi_{T}}}]’$

2. Conditional on $\tilde{X}_{T},$ $\overline{\xi}_{T},$

$\mu,$ $a$ , generate $\sigma^{2}$ $i=L,$ $S,$ $C,$ $j=1$ , 2 from inverted Gamma
$\nu_{i},\gamma$

distributions. For a conjugate inverted Gamma prior $\sigma_{\nu_{i_{\rangle}}j}^{2}\sim IG(^{\lrcorner^{v_{2^{l}}}}, \frac{\delta_{0}}{2})$ , the posterior is

$\sigma_{\nu_{i_{\rangle}}j}^{2}|\ldots\sim IG(\frac{v_{\iota,j}}{2}, \frac{\delta_{i,j}}{2}) , v_{i,j}=v_{0}+n_{j}, \delta_{i,j}=\delta_{0}+\sum_{t\in \mathcal{T}_{j}}\hat{v}_{i_{)}t}^{2}$

where $\hat{\nu}_{x,t}’=X_{i,t}-\xi_{t}’\mu_{i}-a_{i}X_{i,t-1}.$

Generations of $\theta,$
$\kappa,$

$\sigma$ for RSAFNS

1. Conditional on $\tilde{X}_{T},$ $\tilde{\xi}_{T},$ $\Theta$ , generate $\theta_{i}$ from normal distributions. The conditional poste-

rior of $\theta_{i}$ is

$p(\theta_{i}|\Theta_{\backslash \theta_{i}},\tilde{X}_{T},\overline{\xi}_{T},\tilde{y}_{T}) \propto p(\tilde{y}_{T}|\Theta,\tilde{X}_{T},\tilde{\xi}_{T})p(\tilde{X}_{T}|\Theta,\tilde{\xi}_{T})p(\tilde{\xi}_{T}|\Theta)p(\theta_{i}|\Theta_{\backslash \theta_{i}})$

$\propto p(\tilde{X}_{i,T}|\Theta,\tilde{\xi}_{T})p(\theta_{i})$ .

For a conjugate normal prior $\theta_{i}\sim N(m_{x,0}, \Sigma_{i,0})$ , the posterior is

$\theta_{i} \sim N(m_{i,1}, \Sigma_{i,1}) , \Sigma_{i,1}=(\Sigma_{i,0}^{-1}+Z_{i’}Z_{i})^{-1}, m_{i,1}=\Sigma_{i,1}(\Sigma_{i,0}^{-1}m_{i},0+Z_{i’}Y_{i})$

where

$Z_{i} = \{\begin{array}{l}z_{i,2}z_{i_{\rangle}T}\end{array}\}, z_{i,t}=\frac{1-e^{-\kappa_{i}\triangle t}}{\sqrt{(\sigma_{i}^{2}\xi_{t})\frac{1-e^{-2\kappa_{l}\Delta t}}{2\kappa_{l}}}}\xi_{t}’,$

$Y_{i} = [ \frac{X_{x,2}-e^{-\kappa_{i}\triangle t}X_{i,1}}{\sqrt{(\sigma_{2}^{2}\xi_{2})\frac{1-e^{-2\kappa_{l}\Delta t}}{2\kappa_{l}}}})\ldots, \frac{X_{i_{)}T}-e^{-\kappa_{t}\Delta t}X_{i,T-1}}{\sqrt{(\sigma_{T}^{2}\xi_{T})\frac{1-e^{-2\kappa_{t}\triangle t}}{2\kappa_{l}}}}]’$

2. Conditional on $\tilde{y}_{T},$
$\tilde{X}_{T_{\rangle}}\tilde{\xi}_{T}$ , and $\Theta_{\backslash \kappa_{i}}$ , generate $\kappa_{i},$ $i=L,$ $S,$ $C$ using RandomWalk Metropo-

lis algorithm. Draw $\kappa_{i}$ from

$\kappa_{i}^{(*)}=\kappa_{i}^{(m)}+\sigma v,$
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where $v\sim N(O, 1)$ , and $\sigma$ is the scaling factor used to adjust the acceptance rate. The
acceptance probability is

$\alpha=\min\{\frac{p(\kappa_{i}^{(*)}|\Theta_{\backslash \kappa_{i}},\tilde{X}_{T},\tilde{\xi}_{T},\tilde{y}_{T})}{p(\kappa_{i}^{(m)}|\Theta_{\backslash \kappa_{\mathfrak{i}}},\tilde{X}_{T},\tilde{\xi}_{T},\tilde{y}_{T})}, 1\}.$

Since the conditional posterior of $\kappa_{i}$ is

$p(\kappa_{i}|\Theta_{\backslash \kappa_{i}},\tilde{X}_{T},\tilde{\xi}_{T},\tilde{y}_{T}) \propto p(\tilde{y}_{T}|\Theta,\tilde{X}_{T},\tilde{\xi}_{T})p(\tilde{X}_{T}|\Theta,\tilde{\xi}_{T})p(\tilde{\xi}_{T}|\Theta)p(\kappa_{i}|\Theta_{\backslash \kappa_{i}})$

$\propto p(\tilde{X}_{i,T}|\Theta,\tilde{\xi}_{T})p(\kappa_{i})$ ,

assuming flat prior, we obtain the posterior ratio as

$\frac{p(\kappa_{i}^{(*)}|\Theta_{\backslash \kappa_{t}},\tilde{X}_{T},\tilde{\xi}_{T},\tilde{y}_{T})}{p(\kappa_{i}^{(m)}|\Theta_{\backslash \kappa_{i}},\tilde{X}_{T},\tilde{\xi}_{T)}\tilde{y}_{T})}=\exp\{-\frac{1}{2}\sum_{t=2}^{T}[log(\frac{(1-e^{2\kappa_{i}^{(*)}\triangle t})\kappa_{i}^{(m)}}{(1-e^{2\kappa_{t}^{(m)}\Delta t})\kappa_{i}^{(*)}})$

$+( \sigma_{i}^{2}\cdot\xi_{t})^{-1}[\frac{2\kappa_{i}^{(*)}}{1-e^{-2\kappa_{i}^{(*)}\Delta t}}(\hat{\nu}_{i,t}^{(*)})^{2}-\frac{2\kappa_{i}^{(m)}}{1-e^{-2\kappa_{i}^{(n)}\triangle t}}(\hat{\nu}_{i,t}^{(m)})^{2}]]\},$

where $\hat{\nu}_{i,t}^{(*)}$ , and $\hat{\nu}_{i,t}^{(m)}$ are $\hat{\nu}_{i,t}$ evaluated at $\kappa_{i}^{(*)}$ , and $\kappa_{i}^{(m)}$ respectively.

3. Conditional on $\tilde{y}_{T},$
$\tilde{X}_{T},$ $\tilde{\xi}_{T}$ , and $\Theta_{\backslash \sigma_{i}}$ , generate $\sigma_{i},$ $i=L,$ $S,$ $C$ using Random Walk Metropo-

lis algorithm. Draw $\sigma_{i}$ from

$\sigma_{i}^{(*)}=\sigma_{i}^{(m)}+\Omega v,$

where $v\sim N(0, I_{2})$ , and $\Omega$ is the scaling factor used to adjust the acceptance rate. The
acceptance probability is

$\alpha=\min\{\frac{p(\sigma_{i}^{(*)}|\Theta_{\backslash \sigma}.\cdot,\tilde{X}_{T},\tilde{\xi}_{T},\tilde{y}_{T})}{p(\sigma_{i}^{(m)}|\Theta\backslash \sigma_{i\rangle}\tilde{X}_{T}\rangle\overline{\xi}_{T},\tilde{y}_{T})}, 1\},$

where the conditional posterior of $\sigma_{i}$ is

$p(\sigma_{i}|\Theta_{\backslash \sigma_{i}^{2}},\tilde{X}_{T},\tilde{\xi}_{T},\tilde{y}_{T})$ $\propto$ $p(\tilde{y}_{T}|\Theta,\tilde{X}_{T},\tilde{\xi}_{T})p(\tilde{X}_{T}|\Theta,\tilde{\xi}_{T})p(\tilde{\xi}_{T}|\Theta)p(\sigma_{i}|\Theta_{\backslash \sigma_{i}})$

$\propto p(\tilde{y}_{T}|\Theta,\tilde{X}\tau_{\rangle}\tilde{\xi}_{T})p(\tilde{X}_{i,T}|\Theta,\tilde{\xi}_{T})p(\sigma_{i})$

$\propto \exp\{-\frac{1}{2}\sum_{t=2}^{T}[log(\sigma_{i}^{2}\cdot\xi_{t})+(\sigma_{i}^{2}\cdot\xi_{t})^{-1}\frac{2\kappa_{i}}{1-e^{-2\kappa_{i}\triangle t}}\hat{\nu}_{i,t}^{2}]$

$- \frac{1}{2}\sum_{t=1}^{T}(\sigma_{\epsilon}^{2}\cdot\xi_{t})^{-1}\hat{\epsilon}_{t}’\hat{\epsilon}_{t}\}p(\sigma_{i})$ .

Noting the errors of the transition equations do not depend on $\sigma_{i}$ and assuming flat prior,
we obtain the posterior ratio as

$\frac{p(\sigma_{i}^{(*)}|..\cdot.\cdot.)}{p(\sigma_{i}^{(m)}|)}=\exp\{-\frac{1}{2}\sum_{t=2}^{T}[log(\frac{(\sigma_{i}^{(*)})^{2}\cdot.\xi_{t}}{(\sigma_{i}^{(m)})^{2}\xi_{t}})+[(\sigma_{i}^{(*)}\cdot\xi_{t})^{-2}-(\sigma_{i}^{(m)}\cdot\xi_{t})^{-2}]\frac{2\kappa_{i}}{1-e^{-2\kappa_{i}\Delta t}}\hat{\nu}_{i,t}^{2}]$

$- \frac{1}{2}\sum_{t=1}^{T}(\sigma_{\epsilon}^{2}\cdot\xi_{t})^{-1}[(\hat{\epsilon}_{t}^{(*)})’\hat{\epsilon}_{t}^{(*)}-(\hat{\epsilon}_{t}^{(m)})’\hat{\epsilon}_{t}^{(m)}]\},$

where $\hat{\epsilon}_{t}^{(*)}$ , and $\hat{\epsilon}_{t}^{(*)}$ are resp. measurement errors evaluated at $\sigma_{i}^{(*)}$ and $\sigma_{i}^{(m)}.$
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B Forecasts and forecast errors’ covariance matrix

For a $h$ forecasting horizon, the forecast of yields at time $t$ is $y_{t+h|t}=\mathbb{E}[y_{t+h}|X_{t}, \xi_{t}]$ , and the
forecast errors’ covariance matrix is $\Sigma_{t+h|t}=\mathbb{E}[(y_{t+h}-y_{t+h|t})(y_{t+h}-y_{t+h|t})’|X_{t}, \xi_{t}]$ . We can

write‘

$y_{t+h} = A\xi_{t+h}+BX_{t+h}+\epsilon_{t+h},$

$X_{t+h} = \mu\xi_{t+h}+FX_{t+h-1}+v_{t+h},$

as

$X_{t+h} = \sum_{j=0}^{h-1}F^{j}\mu\xi_{t+h-j}+F^{h}X_{t}+\sum_{j=0}^{h-1}F^{j}\nu_{t+h-j)}$

$y_{t+h} = A \xi_{t+h}+B(\sum_{j=0}^{h-1}F^{j}\mu\xi_{t+h-j}+F^{h}X_{t})+\sum_{j=0}^{h-1}BF^{j}\nu_{t+h-j}+\epsilon_{t+h}.$

Since

$\xi_{t+h|t} = \mathbb{E}[\xi_{t+h}|\xi_{t}]=P^{h}\xi_{t)}$

we have

$y_{t+h|t} = A \mathbb{E}_{t}[\xi_{b+h}]+\sum_{j=0}^{h-1}BF^{j}\mu \mathbb{E}_{t}[\xi_{t+h-j}]+BF^{h}X_{t}$

$= AP^{h} \xi_{t}+B(\sum_{j=0}^{h-1}F^{j}\mu P^{h-j}\xi_{t}+F^{h}X_{t})$ , (12)

$\Sigma_{t+h|t} = \sum_{j=0}^{h-1}BF^{j}\mathbb{E}_{t}[\nu_{t+h-j}\nu_{t+h-j}’](BF^{j})’+\mathbb{E}_{t}[\epsilon_{t+h}\epsilon_{t+h}’]$

$= \sum_{j=0}^{h-1}BF^{j}\mathbb{E}[G(\xi_{t+h-j})|\xi_{t}](BF^{j})’+I\mathbb{E}[\sigma_{\epsilon}^{2}(\xi_{t+h})|\xi_{t}]$

$= \sum_{j=0}^{h-1}BF^{j}G(P^{h-j}\xi_{t})(BF^{j})’+(\sigma_{\epsilon}^{2}\cdot(P^{h}\xi_{t}))I$ , (13)

where to obtain (13) the forecast errors of the regime variable is assumed zero (i.e., $\xi_{t+k}-$

$\mathbb{E}_{t}[\xi_{t+k}]=0)$ .

$C$ $h$-period rebalanced portfolio of zero-coupon bonds

For notational convenient, denote the zero-coupon yield of a time-to-maturity $\tau$ by $y_{t}^{\tau}$ instead
of $y_{t}(\tau)$ .

The price at time $t$ of a zero-coupon bond with time-to-maturity $\tau$ (in year) is

$P_{t}(\tau)=e^{-y_{t}^{\tau_{\mathcal{T}}}}.$

5Note that for RSDNS, $A$ is a matrix of zeros.
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Consider investing in one unit of $\tau_{n^{-}}$ (zero-coupon) bond. The return after holding for $h$ periods
$(h\Delta t=T_{h}$ years$)$ is

$log( \frac{P_{t+h}(\tau_{n}-T_{h})}{P_{t}(\tau_{n})})=-y_{t+h}^{\tau_{n}-T_{h}}(\tau_{n}-T_{h})+y_{t}^{\tau_{n}}\tau_{n}$

Note that for $h$ periods of holding (frequency of portfolio rebalancing), the return on $T_{h}$-bond
is a risk free rate $y_{t}^{T_{h}}=rf$ (annual rate). The excess return of the $\tau_{n}$-bond $rx_{t+h}^{\tau_{n}}$ is then

$rx_{t+h}^{\tau_{n}}=-y_{t+h}^{\tau_{n}-T_{h}}(\tau_{n}-T_{h})+y_{t}\tau_{n}-y_{t}^{{}_{\mathcal{T}n}T_{h}}T_{h}=-y_{t+h}^{\tau_{n}-T_{h}}(\tau_{n}-T_{h})+y_{t}^{\tau_{n}}\tau_{n}-r_{f}T_{h}.$

The excess returns of a set of zero-coupon bonds are

$rx_{t+h}=-y_{t+h}^{\tau-\tau_{h}1}\fbox{Error::0x0000}( \tau-T_{h}1)+y_{t}^{ \tau}\fbox{Error::0x0000}\tau_{n}-r_{f}T_{h}1,$

where $\tau=(\tau_{1_{\rangle}}\ldots, \tau_{N})’,$ $y_{t}^{\tau}=(y_{t}^{\tau_{1}},$ $y_{t}^{\tau_{N}}$ and $\fbox{Error::0x0000}$ denotes the element-by-element product. The
conditional expectation and variance-covariance matrix are

$\mu_{t+h|t}^{rx} = \mathbb{E}_{t}[rx_{t+h}]=-y_{t+h|t}^{\tau-\tau_{h}1}\fbox{Error::0x0000}( \tau-T_{h}1)+y_{t}^{ \tau}\fbox{Error::0x0000}\tau_{n}-rfT_{h}1$

$= -\overline{y}_{t+h|t}+y_{t}^{\tau}\fbox{Error::0x0000}\tau_{n}-r_{f}T_{h}1$ (14)

$\Sigma_{t+h|t}^{rx} = \mathbb{E}_{t}[(rx_{t+h}-rx_{t+h|t})(rx_{t+h}-rx_{t+h|t})’]=\tilde{\Sigma}_{t+h|t}$ (15)

From (12),

$\tilde{y}_{t+h|t}=\tilde{A}P^{h}\xi_{t}+\overline{B}(\sum_{j=0}^{h-1}F^{j}\mu P^{h-j}\xi_{t}+F^{h}X_{t})$ .

From (13),

$\tilde{\Sigma}_{t+h|t} = \sum_{j=0}^{h-1}B^{-}F^{j}G(P^{h-j}\xi_{t})(\tilde{B}F^{j})’+(\sigma_{\epsilon}^{2}\cdot(P^{h}\xi_{t}))diag(\tau-T_{h}1)$ ,

where

$\overline{A}=\{\begin{array}{l}\hat{A}(\tau_{1}-T_{h})’(\tau_{1}-T_{h})\hat{A}(\tau N-T_{h})’(\tau_{N}-T_{h})\end{array}\}, \tilde{B}=\{\begin{array}{l}\hat{B}(\tau_{1}-T_{h})’(\tau_{1}-T_{h})\hat{B}(\tau_{N}-T_{h})’(\tau_{N}-T_{h})\end{array}\}$

Consider a mean-variance investor who optimally invests in $N$ risky zero-coupon bonds, and
one risk-free zero-coupon bond. She constructs monthly dynamically rebalanced portfolio by
minimizing portfolio variance subject to a given target portfolio expected return $r_{p}^{*}$ . Her problem
is

$\min_{w_{t}}\{w_{t}’\Sigma_{t+h|t}^{rx}w_{t}\}$

s.t. $w_{t}’\mu_{t+h|t}^{rx}=r_{p}^{*}$

where $w_{t}$ is $a(N, 1)$-vector of portfolio weights on risky zero-coupon bonds. Solving this opti-
mization problem give us

$w_{t}= \frac{r_{p}^{*}}{C_{t}}(\Sigma_{t+h|t}^{rx})^{-1}\mu_{t+h|t}^{rx}$ , (16)

where $C_{t}=(\mu_{t+h|t}^{rx})’(\Sigma_{t+h|t}^{rx})^{-1}\mu_{t+h|t}^{rx}$ . Denote by $w_{t}^{\mathcal{M}}$ the optimal weights at time $t$ given by a
model $\mathcal{M}$ . The portfolio gross return given by $\mathcal{M}$ is

$R_{r}^{\mathcal{M}}=1+r_{f}T_{h}+(w_{t}^{\mathcal{M}})’rx_{t+h}.$
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