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Abstract

This note is a write-up of our results on an explicit construction of Maass cusp forms
on $GL_{2}(\mathbb{H})$ by lifting from Maass cusp forms for the congruence subgroup $\Gamma_{0}(2)$ , presented
by the second named author in the RIMS conference on automorphic forms (2014, Jan. 20-
24). We also report our recent results on an explicit description of cuspidal automorphic
representations generated by our lifts, which has been obtained after the conference. We
have known that our cuspidal representations provide examples of CAP representations, and
in fact, counterexamples of the Generalized Ramanujan conjecture. This note also serves as
a summary of our recent paper [13].

1 Results

1.1 Lifting to cusp forms on $GL_{2}(\mathbb{H})$

Let $B$ be the definite quaternion algebra over $\mathbb{Q}$ with discriminant two, which are realized as
$B=\mathbb{Q}+\mathbb{Q}i+\mathbb{Q}j+\mathbb{Q}ij$ with $i,$ $j\in B$ characterized by

$i^{2}=j^{2}=-1, ij=-ji.$

By tr and $\nu$ we denote the reduced trace and the reduced norm of $B$ respectively. Let $\mathcal{G}$ denote
the $\mathbb{Q}$-algebraic group defined by its group of $\mathbb{Q}$-rational points

$\mathcal{G}(\mathbb{Q})=GL_{2}(B)$ .

Let $\mathbb{H}$ be the Hamilton quaternion algebra, which coincides with $B\otimes_{\mathbb{Q}}\mathbb{R}$ . In what follows we
consider the real Lie group $G=GL_{2}(\mathbb{H})$ , which is nothing but $\mathcal{G}(\mathbb{R})$ . The Lie group $G$ admits
an Iwasawa decomposition

$G=Z^{+}NAK,$

where

$Z^{+}:=\{\{\begin{array}{ll}c 00 c\end{array}\} |c\in \mathbb{R}_{+}^{\cross}\}, N:=\{n(x)=\{\begin{array}{ll}1 x0 1\end{array}\} |x\in \mathbb{H}\}$ , (1.1)

’Partly supported by Grant-in-Aid for Scientific Research (C) 24540025, Japan Society for the Promotion of
Science.

$\dagger$

Partly supported by National Science Foundation grant DMS-1100541.

数理解析研究所講究録

第 1934巻 2015年 1-13 1



1 RESULTS

$A:=\{a_{y}:=[_{0}^{\sqrt{y}} \sqrt{y}^{-1]}0|y\in \mathbb{R}_{+}^{\cross}\}, K:=\{k\in G|t\overline{k}k=1_{2}\}.$

The subgroup $Z^{+}$ is contained in the center of $G$ and $K$ is a maximal compact subgroup of
$G$ , which is isomorphic to the definite symplectic group $Sp^{*}(2)$ . Let us consider the quotient
$G/Z^{+}K$ , which is realized as

$\{\{\begin{array}{ll}y x0 1\end{array}\}|y\in \mathbb{R}_{+}^{x}, x\in \mathbb{H}\}.$

We remark that this gives a realization of the 5-dimensional real hyperbolic space. In fact,

automorphic forms we are going to construct are regarded as Maass cusp forms on the real
hyperbolic space.

We now introduce several spaces of auromorphic forms. For $r\in \mathbb{C}$ and the congruence
subgroup $\Gamma_{0}(2)\subset SL_{2}(\mathbb{R})$ we denote by $S( \Gamma_{0}(2), -(\frac{1}{4}+\frac{r^{2}}{4}))$ the space of Maass cusp forms of
weight $0$ on the com

$p^{}$
upper half plane $\mathfrak{h}$ whose eigenvalue with respect to the hyperbolic

Laplacian is $-( \frac{1}{4}+\frac{r}{4})$ . For this space we should remark that $r$ can be assumed to be a real
number in view of the Selberg conjecture for $\Gamma_{0}(2)$ (cf. [9, Corollary 11.5]).

Let $\mathcal{O}$ be the Hurwitz order of $B$ , which is a maximal order of $B$ . For the discrete subgroup
$\Gamma$ $:=GL_{2}(\mathcal{O})\subset GL_{2}(\mathbb{H})$ and $r\in \mathbb{C}$ we denote by $\mathcal{M}(\Gamma, r)$ the space of smooth functions $F$ on
$GL_{2}(\mathbb{H})$ satisfying the following conditions:

1. $\Omega\cdot F=-(\frac{r^{2}}{4}+1)F$ , where $\Omega$ is the Casimir operator (cf. [13, (2.3)]),

2. for any $(z, \gamma, g, k)\in Z^{+}\cross\Gamma\cross G\cross K$ , we have $F(z\gamma gk)=F(g)$ ,

3. $F$ is of moderate growth.

We now explain the explicit construction of our lifting. Let $f \in S(\Gamma_{0}(2), -(\frac{1}{4}+\frac{r^{2}}{4}))$ be a Maass
cusp form for $\Gamma_{0}(2)$ and let us assume that $f$ is an eigenfunction of the Atkin-Lehner involution.
By $\epsilon$ we denote the signature for the involution. Let $S$ be the dual lattice of $\mathcal{O}$ in $B$ with respect

to $\frac{1}{2}$ tr. We have $S=\varpi_{2}\mathcal{O}$ with the uniformizer $\varpi_{2}$ $:=1+i$ at 2. We introduce

$S^{prim}:=\{\beta\in S\backslash \{O\}|\varpi_{2}|\beta,$ $\varpi_{2}^{2}(\beta,$ $d(\beta$ for all odd integer $d$},

where $d(\beta$ for $d\in \mathbb{Z}$ means that $\beta$ is not a multiple of an element in $S$ by $d$ . We then know

that any $\beta\in S\backslash \{O\}$ can be expressed as

$\beta=\varpi_{2^{u}}d\beta_{0},$

where $u$ is a non-negative integer, $d$ an odd integer and $\beta_{0}\in S^{prim}.$

Let $\{c(n)\}_{n\in \mathbb{Z}\backslash \{0\}}$ be Fourier coefficients of $f$ . From $c(n)$ ’s we define numbers $A(\beta)$ ’s by

$A( \beta):=|\beta|\sum_{t=0}^{u}\sum_{n|d}(-\epsilon)^{t}c(-\frac{|\beta|^{2}}{2^{t+1}n^{2}})$
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2 PROOF OF THE RESULTS

for $\beta\in S\backslash \{O\}$ , where we put $|\beta|$ $:=\sqrt{v(\beta)}$ for $\beta\in B$ . We define a Maass cusp form $F_{f}$ on
$GL_{2}(\mathbb{H})$ by the Fourier expansion

$F_{f}(n(x)a_{y}):= \sum_{\beta\in S\backslash \{0\}}A(\beta)y^{2}K_{\sqrt{-1}r}(2\pi|\beta|y)e^{2\pi\sqrt{-1}{\rm Re}(\beta x)},$

where $K_{\sqrt{-1}r}$ denotes the $K$-Bessel function parametrized by $\sqrt{-1}r$ . We are now able to state
our first result:

Theorem 1.1 Let $f$ be a non-zero Mass cusp form which is an eigenfunction of the Atkin-
Lehner involution. Then $F_{f}$ is a non-zero cusp form on $GL_{2}(\mathbb{H})$ .

1.2 Cuspidal representations generated by $F_{f}$ ’s

Our study also deals with the cuspidal representations generated by $F_{f}’ s$ . They turn out to
be CAP representations of $GL_{2}(B)$ and provide counterexamples of the Generalized Ramanujan
conjecture. To be more precise, assume that $f$ is a Hecke eigenform. We can regard $F_{f}$ as a cusp
form on the adele group $\mathcal{G}(\mathbb{A})$ with $\mathcal{G}=GL_{2}(B)$ . We can show that $F_{f}$ is a Hecke eigenform,
namely our lifting is Hecke equivariant. Then the strong multiplicity one theorem proved by
Badulescu and Renard [1], [2] implies that $F_{f}$ generates an irreducible cuspidal representation
$\pi$ $:=\otimes_{p\leq\infty}’\pi_{p}$ of $\mathcal{G}(\mathbb{A})$ . By our detailed study on Hecke eigenvalues of $F_{f}$ we can determine
local representations $\pi_{p}$ for every $p<\infty$ . We can also determine $\pi_{p}$ explicitly at $p=\infty$ by the
calculation of the infinitesimal action of the Casimir operator. For this we note that every $\pi_{p}$

is unramified $(at p<\infty)$ or spherical $(at p=\infty)$ . We can show that $\pi_{p}$ (respectively $\pi_{\infty}$ ) is
non-tempered at every odd prime $p$ (respectively tempered at $p=\infty$ ). If we further assume
that $f$ is a new form, we can also show the non-temperedness of $\pi_{p}$ at $p=2$ . These lead to our
another result as follows:

Theorem 1.2 (1) Let $f$ be a non-zero Hecke eigen cusp form and $F_{f}$ be the lift. Let $\sigma$ and
$\pi_{F}$ be irreducible cuspidal representations generated by $f$ and $F=F_{f}$ respectively. Then $\pi_{F}$ is

nearly equivalent to an irreducible component of $Ind_{P_{2}(A)}^{GL_{4}(A)}(|\det|^{-1/2}\sigma\cross|\det|^{1/2}\sigma)$ . Here $P_{2}$ is
the standard parabolic subgroup of $GL_{4}$ with Levi subgroup $GL_{2}\cross GL_{2}$ . Namely $\pi_{F}$ is a CAP
representation.
(2) The cuspidal representations $\pi_{F}$ ’s are counterexamples of the Ramanujan conjecture.

2 Proof of the results

In this section we overview the proofs of Theorem 1.1 and 1.2.

2.1 Proof of Theorem 1.1

(1) Automorphy of $F_{f}$ with respect to $\Gamma$

We follow the approach by [14] for the proof. The fundamental tool to show the automorphy of
$F_{f}$ is the converse theorem by Maass [12]. Let $\Gamma_{T}$ be the discrete subgroup of $\Gamma$ generated by

$(\begin{array}{ll}0 1-1 0\end{array}), (\begin{array}{ll}1 \beta 0 1\end{array}) (\beta\in \mathcal{O})$ .
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2 PROOF OF THE RESULTS

By $M(\Gamma_{T}, r)$ we denote the space of $\Gamma_{T}$-invariant automorphic forms on $GL_{2}(\mathbb{H})$ defined by
replacing $\Gamma$ with $\Gamma_{T}.$

Theorem 2.1 (Maass) Let $\{A(\beta)\}_{\beta\in S\backslash \{0\}}$ be a sequence of complex numbers such that

$A(\beta)=O(|\beta|^{\kappa}) (\exists\kappa>0)$

and put

$F(n(x)a_{y}):= \sum_{\beta\in S\backslash \{0\}}A(\beta)y^{2}K_{\sqrt{-1}r}(2\pi|\beta|y)e^{2\pi\sqrt{-1}{\rm Re}(\beta x)}.$

For a harmonic polynomial $P$ on $\mathbb{H}$ of degree $l$ we introduce

$\xi(s, P):=\pi^{-2s}\Gamma(s+\frac{\sqrt{-1}r}{2})\Gamma(s-\frac{\sqrt{-1}r}{2})\sum_{\beta\in S\backslash \{0\}}A(\beta)\frac{P(\beta)}{|\beta|^{2s}},$

which converges for ${\rm Re}(s)> \frac{l+4+\kappa}{2}$ . Let $\{P_{l,\nu}\}_{v}$ be a basis of harmonic polynomials on $\mathbb{H}$ of
degree $l.$

Then $F\in \mathcal{M}(\Gamma_{T};r)$ is equivalent to the condition that, for any $l,$ $\nu$ , the $\xi(s, P_{l,\nu})$ satisfies
the following three conditions.

1. it has analytic continuation to the whole complex plane.

2. it is bounded on any vertical strip of the complex plane.

3. the functional equation
$\xi(2+l-s, P_{l,\nu})=(-1)^{l}\xi(s,\hat{P}_{l,\nu})$

holds, where $\hat{P}(x)$ $:=P(\overline{x})$ for $x\in \mathbb{H}.$

We apply this theorem to $F=F_{f}$ . The Fourier expansion of $F_{f}$ immediately implies the

automorphy of $F_{f}$ with respect to $(\begin{array}{ll}u 00 1\end{array})$ and $(\begin{array}{ll}1 \beta 0 1\end{array})$ for $u\in \mathcal{O}^{\cross}$ and $\beta\in \mathcal{O}$ . Since $\Gamma$ has

$(\begin{array}{ll}u 00 1\end{array}), (\begin{array}{ll}0 1-1 0\end{array}), (\begin{array}{ll}1 \beta 0 1\end{array}) (u\in \mathcal{O}^{\cross}, \beta\in \mathcal{O})$

as a set of generators, we complete the proof of the $\Gamma$-automorphy if we see that $F_{f}$ satisfies
the three conditions in the theorem. We remark that the set of $\Gamma$-cusps consists of only one
element (cf. [13, Lemma 2.3]). The Fourier expansion therefore implies that $F_{f}$ is a cusp form
if its $\Gamma$-automorphy is verified.

We have thus known that it suffice to show the validity of the three conditions for $F_{f}$ . We
need to study analytic properties of the Dirichlet series $\xi(s, P_{l,\nu})$ attached to $F_{f}$ and harmonic
polynomials $P_{l,\nu}$ . For that purpose we introduce the Raknin-Selberg $L$-series

$I(s):= \int_{\Gamma_{0}(2)\backslash \mathfrak{h}}f(z)\Theta_{l,\nu}(z)\tilde{E}_{\infty}(z, s)y^{\frac{l+2}{2}}\frac{dxdy}{y^{2}},$
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2 PROOF OF THE RESULTS

in which the following theta series and the Eisenstein series are involved:

$\Theta_{l,\nu}(z):=\sum_{\beta\in S}P_{l,\nu}(\beta)e^{2\pi\sqrt{-1}\frac{|\beta|^{2}}{2}z},$

$\tilde{E}_{\infty}(z, s):=(4\pi)^{\frac{l}{2}}\frac{\Gamma(s+\frac{1}{2}+l)}{\Gamma(s)}(\pi^{-s}\Gamma(s)\zeta(2s))\frac{1}{2}\sum_{\gamma\in\Gamma_{\infty}\backslash \Gamma_{0}(2)}(\frac{cz+d}{|cz+d|})^{l+2}(\frac{{\rm Im}(z)}{|cz+d|^{2}})^{s}.$

We can now assume that the harmonic polynomials $\{P_{l,\nu}\}_{\nu}$ are eigenfunctions in the following
sense:

$P_{l,v}( \frac{1+i}{\sqrt{2}}x)=\epsilon_{l},{}_{\nu}P_{l,\nu}(x)$ .

Here $\epsilon_{l,\nu}$ is an eighth root of unity. The following proposition enables us to complete the proof
of the automorphy.

Proposition 2.2 Recall that $\epsilon$ denotes the signature of $f$ with respect to the Atkin-Lehner in-
volution. We have

$\xi(s+\frac{l}{2}+\frac{1}{2}, P_{l,\nu})=\{\begin{array}{ll}2^{1-\frac{l}{2}}\pi^{-(l+1)}(2^{s}-\epsilon\epsilon_{l,\nu})I(s) if \epsilon_{l,\nu}\in\{\pm 1\},0 if\epsilon_{l,\nu}\not\in\{\pm 1\})\end{array}$

The problem is then reduced to the analytic properties of $I(s)$ . This is studied by virtue of
good analytic properties of automorphic forms involved in $I(s)$ , which leads to the proof of the
automorphy of $F_{f}$ with respect to $\Gamma.$

(2) Non-vanishing of $F_{f}$

To verify the non-vanishing assertion on $F_{f}$ as in Theorem 1.1 we need the lemma as follows:

Lemma 2.3 Let $f \in S(\Gamma_{0}(2);-(\frac{1}{4}+\frac{r^{2}}{4}))$ with Fourier coefficients $c(n)$ and with eigenvalue $\epsilon$

of the Atkin Lehner involution. Then, there exist $N>0,$ $N\in \mathbb{Z}$ , such that $c(-N)\neq 0.$

Assume that $c(n)=0$ for all $n<0$ . Set $f_{1}(z)=(f(z)+f(-\overline{z}))/2$ and $f_{2}(z)=(f(z)-f(-\overline{z}))/2,$

which are even or odd Maass cusp form respectively. Then, $f_{1}$ and $f_{2}$ have the same eigenvalue $\epsilon$

of the Atkin Lehner involution as $f$ . We see that the $L$-functions for $f_{1}$ and $f_{2}$ satisfy $L(s, f_{1})=$

$L(s, f_{2})$ since $f_{1}$ and $f_{2}$ have the same Fourier coefficients for positive integers. On the other
hand, $L(s, f_{1})$ and $L(s, f_{2})$ however satisfy functional equations with the gamma factors shifted
by 1. We then know that, if $L(s, f_{1})\neq 0$ , we obtain an identity of gamma factors, which can be
checked to be impossible. This implies the lemma.

We can then prove the non-vanishing property of $F_{f}$ as in the theorem. Let $N_{0}$ be the smallest
positive integer such that $c(-N_{0})\neq 0$ . Let $\beta_{0}\in \mathcal{O}$ be such that $|\beta_{0}|^{2}=N_{0}$ . Choose, $\beta=\varpi_{2}\beta_{0}.$

Then, by the choice of $N_{0}$ and definition of $A(\beta)$ , we see that $A(\beta)=\sqrt{2N_{0}}c(-N_{0})\neq 0$ , as
required.
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2 PROOF OF THE RESULTS

2.2 Proof of Theorem 1.2

For each place $p\leq\infty$ let $G_{p}:=GL_{2}(B_{p})$ with $B_{p}=B\otimes_{\mathbb{Q}}\mathbb{Q}_{p}$ . For a finite prime $p\neq 2$ , we
have $GL_{2}(B_{p})\simeq GL_{4}(\mathbb{Q}_{p})$ . Let $\mathcal{O}_{p}$ be the $p$-adic completion of $\mathcal{O}$ for $p<\infty$ . For a finite prime
$p\neq 2,$ $\mathcal{O}_{p}\simeq M_{2}(\mathbb{Z}_{p})$ and $GL_{2}(\mathcal{O}_{p})\simeq GL_{4}(\mathbb{Z}_{p})$ . Set $K_{p}=GL_{2}(\mathcal{O}_{p})$ for $p<\infty.$

We first remark that we can regard a cusp form $F=F_{f}$ as a cusp form $\Phi_{F}$ on the adele
group $\mathcal{G}(\mathbb{A})$ since the class number $\mathcal{G}$ is one, i.e. $\mathcal{G}(\mathbb{A})=\mathcal{G}(\mathbb{Q})GL_{2}(\mathbb{H})U$ with $U:= \prod_{p<\infty}K_{p}.$

We study the cuspidal representation $\pi_{F}$ of $\mathcal{G}(\mathbb{A})$ generated by $\Phi_{F}$ in detail.

(1) Hecke equivariance

We denote by $\mathcal{H}_{p}$ the Hecke algebra for $GL_{2}(B_{p})$ with respect to $GL_{2}(\mathcal{O}_{p})$ for $p<\infty$ . According

to [15, Section 8, Theorem 6], $\mathcal{H}_{p}$ has the following generators:

$\{\begin{array}{ll}\{\varphi_{1}^{\pm 1}, \varphi_{2}\} if p=2,\{\phi_{1}^{\pm 1}, \phi_{2}, \phi_{3}, \phi_{4}\} if p\neq 2.\end{array}$

Here $\varphi_{1},$ $\varphi_{2}$ denote the characteristic functions for

$K_{2}\{\begin{array}{ll}\varpi_{2} 00 \varpi_{2}\end{array}\}K_{2}, K_{2}\{\begin{array}{ll}\varpi_{2} 00 1\end{array}\}K_{2}$

respectively, and $\phi_{1},$ $\phi_{2},$ $\phi_{3},$ $\phi_{4}$ denote the characteristic functions for

$K_{p}\{p p p p\}K_{p},$ $K_{p}\{p p p 1\}K_{p},$ $K_{p}\{p p 1 1\}K_{p},$ $K_{p}\{p 1 1 1\}K_{p}$

respectively when $p\neq 2$ . Recall that $\varpi_{2}$ denotes a prime element of $B_{2}.$

We first state our result on the Hecke equivariance of $F=F_{f}$ at $p=2.$

Proposition 2.4 Let $f \in S(\Gamma_{0}(2);-(\frac{1}{4}+\frac{r^{2}}{4}))$ be a new form with Hecke eigenvalue $\lambda_{p}$ for $p=2$

and an eigenfunction of the Atkin Lehner involution with eigenvalue $\epsilon$ . Then

$(K_{2}\{\varpi_{2} 1\}K_{2})F=-3\sqrt{2}\epsilon F.$

We next state the Hecke equivariance of $F=F_{f}$ at odd primes.

Proposition 2.5 Let $f \in S(\Gamma_{0}(2);-(\frac{1}{4}+\frac{r^{2}}{4}))$ be a Hecke eigenform with Hecke eigenvalue $\lambda_{p}$

for every odd prime $p$ . For an odd prime $p$ we then have

$(K_{p}\{p p p 1\}K_{p})F=(K_{p}\{p 1 1 1\}K_{p})F=p(p+1)\lambda_{p}F$
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2 PROOF OF THE RESULTS

$(K_{p}\{p p 1 1\}K_{p})F=(p^{2}\lambda_{p}^{2}+p^{3}+p)F.$

To obtain these propositions we first calculate the actions of Hecke operators on the adelization
$\Phi_{F}$ of $F=F_{f}$ . We can interpret such actions in the non-adelic manner and see the influence
of the actions on the Fourier expansion of $F_{f}$ . We can relate such influence to the recurrence
relation satisfied by Fourier coefficients of $f$ . We then verify that $F_{f}$ is a Hecke eigenform if so
is $f$ , and obtain the formula for Hecke eigenvalues in the above propositions.

(2) Cuspidal representation generated by $F_{f}$ (Determination of local compo-
nents)

The Hecke equivariance from the previous section enables us to determine the local components
of the automorphic representation corresponding to the lifting. This will lead us to the conclusion
that we have obtained a CAP representation and have found a couterexample of the Ramanujan

conJecture.
Let $\pi_{F}$ be the irreducible cuspidal automorphic representation of $\mathcal{G}(\mathbb{A})$ generated by the

right translates of $\Phi_{F}$ . Note that the irreducibility follows from the strong multiplicity one
result for $\mathcal{G}(\mathbb{A})$ (see [1], [2]). The representation $\pi_{F}$ is cuspidal since $F$ is a cusp form. Let
$\pi_{F}=\otimes_{p}’\pi_{p}$ , where $\pi_{p}$ is an irreducible admissible.representation of $\mathcal{G}(\mathbb{Q}_{p})$ for $p<\infty$ and $\pi_{\infty}$ is
an irreducible admissible representation of $\mathcal{G}(\mathbb{R})$ . Recall $U= \prod_{p<\infty}K_{p}$ where $K_{p}$ is the maximal
compact subgroup of $\mathcal{G}_{p}$ . Hence, for $p<\infty$ , the representation $\pi_{p}$ is a spherical representation
and can be realized as a subrepresentation of an unramified principal series representation, i.e. $a$

representation induced from an unramified character of the Borel subgroup. The representation
$\pi_{p}$ is completely determined by the action of the Hecke algebra $H(\mathcal{G}_{p}, K_{p})$ on the spherical vector
in $\pi_{p}$ , which in turn, is completely determined by the Hecke eigenvalues of $F$ obtained in the
previous section. See [3] for details. For $p=2$ we need to assume that $f$ is a new form for the
determination of Hecke eigenvalue of $F_{f}.$

We first determine $\pi_{p}$ for $p$ odd. If $p$ is an odd prime, then we have $\mathcal{G}_{p}=GL_{4}(\mathbb{Q}_{p})$ and
$K_{p}=GL_{4}(\mathbb{Z}_{p})$ . Given 4 unramified characters $\chi_{1},$ $\chi_{2},$ $\chi_{3},$ $\chi_{4}$ of $\mathbb{Q}_{p}^{\cross}$ , we obtain a character $\chi$ of
the Borel subgroup $P$ of upper triangular matrices in $\mathcal{G}$ , by

$\chi([^{a_{1}} a_{2}* a_{3}** a_{4}***]4\cdot$

The modulus character $\delta_{P}$ is given by

$\delta_{P}([^{a_{1}} a_{2}* a_{3}** a_{4}***])=|a_{1}^{3}a_{2}a_{3}^{-1}a_{4}^{-3}|,$

where $|*|$ denotes the $p-$-adic absolute value. The unramified principal representation corre-
sponding to $\chi$ is given by $I(\chi)$ which consists of locally constant functions $f$ : $GL_{4}(\mathbb{Q}_{p})arrow \mathbb{C},$
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2 PROOF OF THE RESULTS

satisfying
$f(bg)=\delta_{P}(b)^{1/2}\chi(b)f(g)$ , for all $b\in P,$ $g\in GL_{4}(\mathbb{Z}_{p})$ .

We can now give the statement of the determination of $\pi_{p}$ for an odd $p.$

Proposition 2.6 Let $f \in S(\Gamma_{0}(2);-(\frac{1}{4}+\frac{r^{2}}{4}))$ be a Hecke eigenform with Hecke eigenvalue $\lambda_{p}$

for every odd prime $p$ . Let $\pi_{F}=\otimes_{p}’\pi_{p}$ be the corresponding irreducible cuspidal automorphic

representation of $\mathcal{G}(A)$ . For an odd prime $p$, the representation $\pi_{p}$ is the unique spherical

constituent of the unramified principal series representation $I(\chi)$ where, up to the action of the
Weyl group of $GL_{4}$ , the character $\chi$ is given by

$1/2^{\lambda_{p}+\sqrt{\lambda_{p}^{2}-4}} 1/2^{\lambda_{p}-\sqrt{\lambda_{p}^{2}-4}}$

$\chi_{1}(p)=p , \chi_{2}(p)=p$
2 2

$-1/2^{\lambda_{p}+\sqrt{\lambda_{p}^{2}-4}} -1/2^{\lambda_{p}-\sqrt{\lambda_{p}^{2}-4}}$

$\chi_{3}(p)=p , \chi_{4}(p)=p$
2 2

We next determine $\pi_{2}$ . Recall that $B_{2}=B\otimes_{\mathbb{Q}}\mathbb{Q}_{2}$ , where $B$ is a definite quaternion algebra

over $\mathbb{Q}$ with discriminant 2 and $\mathcal{O}_{2}$ is the completion of the Hurwitz order $\mathcal{O}$ at 2. In this case
$\mathcal{G}_{2}=GL_{2}(B_{2})$ and $K_{2}=GL_{2}(\mathcal{O}_{2})$ . Given two unramified characters $\chi_{1},$ $\chi_{2}$ of $B_{2}^{\cross}$ , we obtain a
character $\chi$ of the Borel subgroup of upper triangular matrices on $\mathcal{G}$ by

$\chi(\{\begin{array}{l}\alpha*0\beta\end{array}\})=\chi_{1}(\alpha)\chi_{2}(\beta)$ .

The modulus character is given by

$\delta(\{\begin{array}{l}\alpha*0\beta\end{array}\})=|\alpha/\beta|^{2}.$

Here, $||$ is the 2-adic absolute value of the reduced norm of $B_{2}$ . The unramified principal series
representation corresponding to $\chi$ is given by $I(\chi)$ which consists of locally constant functions
$f:\mathcal{G}_{2}arrow \mathbb{C}$ , satisfying

$f(bg)=\delta(b)^{1/2}\chi(b)f(g)$ , for all $b\in$ Borel subgroup, $g\in \mathcal{G}_{2}.$

The local component $\pi_{2}$ is determined as follows:

Proposition 2.7 Let $f \in S(\Gamma_{0}(2);-(\frac{1}{4}+\frac{r^{2}}{4}))$ be a new form with Hecke eigenvalue $\lambda_{p}$ for $p=2$

and Atkin Lehner eigenvalue $\epsilon$ , for which $\lambda_{2}=-\epsilon$ holds. Let $\pi_{F}=\otimes_{p}’\pi_{p}$ be the corresponding

irreducible cuspidal automorphic representation of $\mathcal{G}(\mathbb{A})$ . The representation $\pi_{2}$ is the unique
$spher\iota cal$ constituent of the unramified principal series representation $I(\chi)$ where, up to the
action of the Weyl group, the character $\chi$ is given by

$\chi_{1}(\varpi_{2})=-\sqrt{2}\epsilon, \chi_{2}(\varpi_{2})=-1/\sqrt{2}\epsilon.$
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We finally determine $\pi_{\infty}$ . Let us note that $F=F_{f}\in \mathcal{M}(GL_{2}(\mathcal{O});r)$ implies that the
archimedean component $\pi_{\infty}$ of $\pi_{F}$ is spherical. Namely, $\pi_{\infty}$ has a $K_{\infty}$-invariant vector, where
we put $K_{\infty}$ $:=K$ with $K$ as in (1.1).

We now introduce $M_{\infty}$ $:=\{(\begin{array}{ll}u_{1} 00 u_{2}\end{array})|u_{1},$ $u_{2}\in \mathbb{H}^{1}\}$ , where $\mathbb{H}^{1}$

$:=\{x\in \mathbb{H}|\nu(x)=1\}.$

Let $P_{\infty}$ be the standard proper parabolic subgroup $\mathcal{G}_{\infty}=GL_{2}(\mathbb{H})$ given by

$\{(\begin{array}{ll}a *0 d\end{array})\in \mathcal{G}_{\infty}\}.$

We have $P_{\infty}$ $:=Z^{+}NAM_{\infty}$ , where $Z^{+},$ $N$ and $A$ are as in (1.1). The group $Z^{+}AM_{\infty}$ is nothing
but the Levi subgroup of $P_{\infty}$ . We now note that the Langlands classification of real reductive
groups (cf. [11]) implies that $\pi_{\infty}$ has to be embedded into some principal series representation
$I_{P_{\infty}}$ of $\mathcal{G}_{\infty}$ induced from a quasi-character of $P_{\infty}$ . Since $\pi_{\infty}$ is spherical $I_{P_{\infty}}$ is also spherical. As
$\pi_{\infty}$ has the trivial central character, so does $I_{P_{\infty}}$ . Combining these with the Frobenius reciprocity
for compact Lie groups (cf. [10, Theorem 9.9]), one can verify that the quasi-character of $P_{\infty}$

inducing $I_{P_{\infty}}$ has to be trivial on $Z^{+}M_{\infty}$ , and that $I_{P_{\infty}}$ and $\pi_{\infty}$ have a unique $K_{\infty}$-invariant
vector, up to constant multiples. For $s\in \mathbb{C}$ we introduce the quasi-character $\chi_{s}$ of $P_{\infty}$ defined
by

$\chi_{S}((\begin{array}{ll}a *0 d\end{array}))=v(ad^{-1})^{s}.$

We note that the quasi-characters of $P_{\infty}$ trivial on $Z^{+}M_{\infty}$ should be of this form. We further-
more introduce the modulus character $\delta_{\infty}$ of $P_{\infty}$ . The principal series representation $I_{P_{\infty}}$ is then
expressed as

$I_{P_{\infty}}=Ind_{P_{\infty}}^{\mathcal{G}_{\infty}}(\delta_{\infty}\chi_{s})$ .

Proposition 2.8 We have an isomorphism

$\pi_{\infty}\simeq Ind_{P_{\infty}}^{g_{\infty}}(\delta_{\infty}\chi_{\pm\sqrt{-1}r})$

as $(\mathfrak{g}, K_{\infty})$ -modules, where recall that $\mathfrak{g}$ denotes the Lie algebra of $\mathcal{G}_{\infty}.$

The proof of this proposition starts with showing $s=\pm\sqrt{-1}r$ (for the real number $r$ , see
Section 1.1). This is settled by considering the infinitesimal action of the Casimir operator on
a spherical vector. By Harish-Chandra [8, Section 41, Theorem 1] the spherical principal series
representation $Ind_{P_{\infty}}^{\mathcal{G}_{\infty}}(\delta_{\infty}\chi_{\pm\sqrt{-1}r})$ is an irreducible unitary representation. We therefore have
$\pi_{\infty}\simeq Ind_{P_{\infty}}^{\mathcal{G}_{\infty}}(\delta_{\infty}\chi_{\pm\sqrt{-1}r})$ .

(3) Cuspidal representation generated by $F_{f}$ (CAP property)

Let us first give the definition of CAP representations.

Definition 2.9 Let $G_{1}$ and $G_{2}$ be two reductive algebraic groups over a number field such that
$G_{1,v}\simeq G_{2,v}$ for almost all places $v$ . Let $P_{2}$ be a parabolic subgroup of $G_{2}$ with Levi decomposition
$P_{2}=M_{2}N_{2}$ . An irreducible cuspidal automorphic representation $\pi=\otimes_{v}’\pi_{v}$ of $G_{1}(\mathbb{A})\dot{u}$ called
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cuspidal associated to parabolic (CAP) $P_{2}$ , if there exists an irreducible cuspidal automorphic

representation $\sigma$ of $M_{2}$ such that $\pi_{v}\simeq\pi_{v}’$ for almost all places $v$ , where $\pi’=\otimes_{v}’\pi_{v}’$ is an

irreducible component of $Ind_{P_{2}(A)}^{G_{2}(A)}(\sigma)$ .

See [6] and [14] for details on CAP representations defined for two groups instead of just
one. Take $G_{1}=\mathcal{G}=GL_{2}(B)$ and $G_{2}=GL_{4}$ . Here $B$ is a definite quaternion algebra with
discriminant 2. Since these groups are inner forms of each other, we have $G_{1,p}\simeq G_{2,p}$ for all
odd primes $p$ . Let $P_{2}$ be the standard parabolic of $GL_{4}$ with Levi subgroup $M_{2}=GL_{2}\cross GL_{2}.$

Let $f \in S(\Gamma_{0}(2);-(\frac{1}{4}+\frac{r^{2}}{4}))$ be a Hecke eigenform with Hecke eigenvalue $\lambda_{p}$ for every odd
prime $p$ and Atkin Lehner eigenvalue $\epsilon$ . Let $\sigma=\otimes_{p}’\sigma_{p}$ be the irreducible cuspidal automorphic

representation of $GL_{2}$ corresponding to $f$ . For an odd prime $p$ , the representation $\sigma_{p}$ is the
unramified principal series representation $I(\eta)$ , where $\eta$ is given by

$\eta(\{\begin{array}{ll}a b d\end{array}\})=\eta_{0}(a)\eta_{0}^{-1}(d)$ .

Here, $\eta 0$ is an unramified character of $\mathbb{Q}_{p}^{\cross}$ such that $\eta_{0}(p)+\eta_{0}^{-1}(p)=\lambda_{p}$ . For $p=2$ assume that $f$

is a new form. Then the representation $\sigma_{2}$ is the twist of the Steinberg representation of $GL_{2}(\mathbb{Q}_{2})$

by an unramified character $\eta’$ , with $\eta’(2)=-\epsilon$ . The representation $\sigma$ gives a representation
$|\det|^{-1/2}\sigma\cross|\det|^{1/2}\sigma$ of $M_{2}$ . Form Proposition 2.6 we deduce the following.

Proposition 2.10 Let $f \in S(\Gamma_{0}(2);-(\frac{1}{4}+\frac{r^{2}}{4}))$ be a Hecke eigenform with Hecke eigenvalue $\lambda_{p}$

for every odd prime $p$ and Atkin Lehner eigenvalue $\epsilon$ . Let $\sigma=\otimes_{p}’\sigma_{p}$ be the irreducible cuspidal
automorphic representation of $GL_{2}$ corresponding to $f$ . Let $\pi_{F}=\otimes_{p}’\pi_{p}$ be the corresponding
irreducible cuspidal automorphic representation of $\mathcal{G}(A)$ . Then $\pi F$ is CAP to an irreducible

component of $Ind_{P_{2}(A)}^{G_{2}(A)}(|\det|^{-1/2}\sigma\cross|\det|^{1/2}\sigma)$ .

We can furthermore show that our cuspidal representations $\pi_{F}$ ’s provide counterexamples of the
Ramanujan conjecture.

Proposition 2.11 Let $\pi_{F}=\otimes_{p}’\pi_{p}$ be as in Proposition 2.10. For every odd prime $p$ (respec-

tively $p=\infty$), $\pi_{p}$ is non-tempered (respectively tempered). If we further assume that $f$ is a new
form, $\pi_{p}$ is non-tempered for every finite prime $p$ and tempered for $p=\infty.$

The temperedness of $\pi_{\infty}$ is due to Proposition 2.8 and [5, Remark 2.1.13]. For an odd prime
$p$ , the unramified chacters $\chi_{i}$ with $1\leq i\leq 4$ are not unitary. This means that $\pi_{p}$ is non-
tempered (cf. [16]).

Let $p=2$ and suppose that $f$ is a new form. To see the non-temperedness of $\pi_{2}$ we verify
that the matrix coefficient of $\pi_{2}$ defined by a spherical vector is not in $L^{2+\epsilon}(\mathcal{G}_{p}/Z_{p})$ for any $\epsilon>0,$

where $Z_{p}$ denotes the center of $\mathcal{G}_{p}.$

As a result of the argument so far, we have proved Theorem 1.2.

3 Concluding remarks

(1) Existence of non-zero lifts

Weyl’s law for congruence subgroups of $SL_{2}(\mathbb{Z})$ by Selberg (cf. [9, Section 11.1]) implies that
there exist Maass cusp forms for $\Gamma_{0}(2)$ . This and Theorem 1.1 imply the existence of non-zero

10



3 CONCLUDING REMARKS

lifts $F_{f}.$

From Wayl’s law (cf. [9, (11.5)]) we can deduce that there exist non-zero newforms in
$S( \Gamma_{0}(2);-(\frac{r^{2}}{4}+\frac{1}{4}))$ for some $r\in \mathbb{R}$ . Let $N_{\Gamma}(T)$ be the counting function of an orthogonal
basis of the discrete spectrum for a congruence subgroup $\Gamma$ as in [9, Section 11]. Put $N_{\Gamma_{0}(2)}^{*}(T)$

to be such counting function for newforms of $\Gamma_{0}(2)$ . With the help of Casselman’s local theory
of oldforms and newforms (cf. [4]) we deduce

$N_{\Gamma_{0}(2)}^{*}(T)= \frac{Vol(\mathfrak{h}/\Gamma_{0}(2))-2Vol(\mathfrak{h}/SL_{2}(\mathbb{Z}))}{4\pi}T^{2}+O(T\log T)$

$= \frac{Vol(\mathfrak{h}/SL_{2}(\mathbb{Z}))}{4\pi}T^{2}+O(T\log T)$

from Weyl’s law just mentioned. In view of Theorem 1.1 and Proposition 2.11, this lead to the
existence of a non-zero cuspidal representation $\pi_{F}$ whose local component $\pi_{p}$ is non-tempered
at every $p<\infty.$

(2) A remark on the non-temperedness of $\pi_{2}$

According to Tadi\v{c} [17] the parabolic induction $I(\chi)$ for $p=2$ has two composition factor, one
of which is a unique essentially square integrable subquotient. Our non-tempered representation
$\pi_{2}$ is the remaining non-square integrable composition factor. Besides our approach there seem
several ways to prove that the non-square integrable composition factor is non-tempered. In
fact, Marko Tadi\’{c} pointed out that the non-temperedness is proved by using the classification
of the non-unitary dual of $GL(n)$ over a division algebra (cf. [17]) or by Casselman’s criterion
on the temperedness of an admissible representation.

(3) Further remarks on representation theoretic aspect of our lifting

Let $\pi’$ be the unique irreducible quotient of $Ind_{P_{2}(A)}^{GL_{4}(A)}(|\det|^{-1/2}\sigma\cross|\det|^{1/2}\sigma)$ . This is denoted by
$MW(\sigma, 2)$ in Section 18 of [2], which is a non-cuspidal, discrete series representation of $GL_{4}(\mathbb{A})$ .
Since $\sigma$ is not the image of a cuspidal representation of $B_{A}^{\cross}$ under the Jacquet-Langlands corre-
spondence, $\pi’$ is $B$-compatible according to Proposition 18.2, part (a) of [2]. Hence there exists
a discrete series representation $\pi$ of $GL_{2}(B_{A})$ which maps to $\pi’$ under the Jacquet-Langlands
correspondence. Also, from Proposition 18.2, part (b) of [2], the representation $\pi$ has to be
cuspidal. By the strong multiplicity one theorem for $GL_{2}(B)$ , the representation $\pi$ has to be
exactly the same as $\pi_{F}$ obtained from the classical construction.

We remark that Grobner [7] has also obtained examples of CAP representations for $GL_{2}(B)$

using the results of [2]. The example by Grobner [7] has a non-tempered local component at the
archimedean place, while our cuspidal representation $\pi$ has a tempered local component at the
place as Theorem 2.11 says.

There seem many works on CAP representations. There are however quite a few works on
an explicit construction of cusp forms with CAP properties. We should note that a construction
of automorphic forms often needs difficulties different from those for studies of automorphic
representations. We can thus stress the novelty of our work in that we obtain explicit formula
for the lift in terms of Fourier expansions which are valid for non-Hecke eigenforms as well. In
addition, the classical method immediately shows that the lifting is a linear non-zero map.
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