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1. INTRODUCTION

Let $F$ be a number field with adele ring $A_{F}$ . The set of places of $F$ is denoted by
$\Sigma^{F}$ ; it is a union of archimedean places $\Sigma_{\infty}^{F}$ and the non-archimedean ones $\Sigma^{F}fin$ . Let $G$

be a connected reductive algebraic group over $F$ and $H$ a closed $F$-subgroup of $G$ . We
suppose the center of $G$ is $F$-anisotropic for simplicity. We endow the adele groups $G(A_{F})$

and $H(\mathbb{A}_{F})$ the Tamagawa measures. For an automorphic form $\varphi$ on $G(F)\backslash G(\mathbb{A}_{F})$ , the
$H$-period integral of $\varphi$ is defined by

$\mathcal{P}_{H}(\varphi)=\int_{H(F)\backslash H(A_{F})}\varphi(h)dh$

as long as the integral converges absolutely. An automorphic cuspidal representation
$\pi\subset L^{2}(G(F)\backslash G(A_{F}))$ of $G(A_{F})$ is said to be $H$-distinguished if it contains a vector $\varphi\in\pi$

such that $\mathcal{P}_{H}(\varphi)\neq$ O. The notion of $H$-distinction has a local counterpart. Suppose
$v\in\Sigma^{F}fin$ ; an irreducible admissible representation $\pi_{v}$ of the totally disconnected group
$G(F_{v})$ is called to be $H(F_{v})$-distinguished if

$Hom_{H(F_{v})}(\pi_{v}, 1_{H(F_{v})})\neq 0.$

Over an archimedean place $v\in\Sigma_{\infty}^{F}$ , to define the corresponding notion, we should work on
the category of smooth Frechet representations; an irreducible admissible representation
$\pi_{v}$ of the reductive Lie group $G(F_{v})$ is defined to be $H(F_{v})$-distinguished if its Casselmann-
Wallach globalization admits a continuous non-zero $H(F_{v})$-invariant distribution vector.
The set of equivalence classes of irreducible unitary $H(F_{v})$-distinguished representations
of $G(F_{v})$ is denoted by $\mathbb{X}_{v}$ . It is not dificult to see that the global $H$-distinction of a
cuspidal representation implies the $H(F_{v})$-distinction of its local components at all places
$v$ . Precisely, if $\pi\cong\otimes_{v}\pi_{v}$ is an irreducible cuspidal representation, then for every place
$v\in\Sigma^{F}$ , the $v$-component $\pi_{v}$ of $\pi$ is $H(F_{v})$-distinguished. The converse is more subtle
and seems very difficult to establish in general if it is true. Here, we propose a weaker
version of the converse statement in a slightly vague way.

Problem : Let $S$ be a finite subset of $\Sigma^{F}$ and $\{J_{v}\}_{v\in S}$ a collection of (good” subsets
$J_{v}\subset \mathbb{X}_{v}$ . Is there exists an irreducible cuspidal $\pi\cong\otimes_{v}\pi_{v}$ such that (i) $\pi$ is $H$-distinguished
(ii) (the class of) $\pi_{v}$ belongs to $J_{v}$ for all $v\in S.$

In this note, for unitary groups over CM-fields, we consider this problem in a more rig-
orous formulation and report an affirmative answer in a special case. Though our setting
is rather restrictive, it includes an interesting case which yields a geometric consequence
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about certain equidistribution phenomenon for Satake parameters of automorphic repre-
sentations contributing to the space of special cycles on compact unitary Shimura varieties.
No proof is included.

2. UNITARY GROUPS AND THEIR REPRESENTATIONS

2.1. Let $E$ be a CM-field and $F$ the maximal totally real subfield in $E$ . We suppose
$[F : \mathbb{Q}]>1$ . The quadratic idele class character of $F^{\cross}$ corresponding to the extension
$E/F$ by the class field theory is denoted by $\epsilon_{E/F}$ . The maximal order of $E$ and $F$ are
denoted by $\mathfrak{o}_{E}$ and $\mathfrak{o}_{F}$ , respectively. Let $V$ be a finite $m$-dimensional $E$-vector space and
$h$ : $V\cross Varrow E$ a non-degenerate hermitian form on $V$ . For any $v\in\Sigma^{F}$ , set $E_{v}=E\otimes_{F}F_{v}$

and $V_{v}=V\otimes_{F}F_{v}$ . Let $h_{v}$ denote the hermitian form induced on the $E_{v}$-module $V_{v}$ by
extension of scalars. We suppose that there exists an archimedean place $v_{1}$ such that $h_{v_{1}}$ is
of signature $(n^{+}, n^{-})$ with $n^{+}\geq n^{-}\geq 2$ and $h_{v}$ is positive definite at all $v\in\Sigma_{\infty}^{F}-\{v_{1}\}$ . In
particular, $m=n^{+}+n^{-}\geq 4$ . Let $G=U(h)$ be the unitary group of the hermitian space
(V, h), which we view as an $F$-algebraic group. From our assumption, $G(F_{v_{1}})\cong U(n^{+}, n^{-})$

and $G(F_{v})=U(m)$ for $v\in\Sigma_{\infty}^{F}-\{v_{1}\}$ . Since $\#\Sigma_{F}^{\infty}=[F:\mathbb{Q}]\geq 2$ , this implies that $G$ is
$F$-anisotropic.

Let $\ell\in V$ be such that $h_{v}[\ell]$ $:=h_{v}(\ell, \ell)$ is a positive number of $F_{v}\cong \mathbb{R}$ for all $v\in\Sigma_{\infty}^{F_{;}}$

if this is the case, we say that $\ell$ is totally positive. Let $H$ be the stabilizer of the subspace
$E\ell$ ; we have $H\cong H_{0}\cross E^{1}$ , where $H_{0}=U(h|\ell^{\perp})$ is the unitary group of the hermitan
space $\ell\perp$ , the orthogonal complement of $\ell$ in $V$ , and $E^{1}$ is the torus of norm one elements
in $E^{\cross}$ . From the assumptions, we have $H_{0}(F_{v_{1}})\cong U(n^{+}-1, n^{-})$ and $H_{0}(F_{v})\cong U(m-1)$ .

We fix an $\mathfrak{o}_{E}$-lattice $\mathcal{L}$ in $V$ $(i.e., \mathcal{L} is a$ free $\mathfrak{o}_{F}-$submodule $in V$ satisfying $\mathfrak{o}_{E}\mathcal{L}\subset \mathcal{L})$

such that $\ell\in \mathcal{L}$ and it is maximal in the sense of [5].

2.2. $H(F_{v_{1}})$-distinguished representations. For a positive integer $d$ such that $\sigma(d)$ $:=$

$m-1-2(n^{-}-d)>0$ , there corresponds an irreducible unitary representation $\delta_{d}$ of
$G(F_{v1})\cong U(n^{-}, n^{+})$ with the following properties.

(i) $\delta_{d}$ contains a $U(n^{+})\cross U(n^{-})$-type $\tau_{d}$ with highest weight $[d, 0, \cdots, 0, -d;0, . . . , 0].$

(The $U(n^{-})$-factor acts trivially.)
(ii) the Casimir operator of $G(F_{v_{1}})$ acts on $\delta_{d}$ with the scalar $\sigma(d)^{2}-(m-1)^{2}.$

(iii) There exists a bounded $G(F_{v_{1}})$-intertwining operator from $\delta_{d}$ to $L^{2}(H(F_{v_{1}})\backslash G(F_{v_{1}}))$ .

The representations $\delta_{d}$ are $H(F_{v_{1}})$ -distinguished and comprise a family of unitary rep-
resentations of $G(F_{v_{1}})$ called the $H(F_{v1})$-relative discrete series representations of the
symmetric space $H(F_{v_{1}})\backslash G(F_{v_{1}})$ ([1]).

2.3. $H(F_{v})$-distinguished representation over a good place. We say that a finite
place $v\in\Sigma^{F}fin$ is good if the following conditions are satisfied.

(a) $2\in \mathfrak{o}_{F,v}^{\cross}.$

(b) $E_{v}$ is an unramified field extension of $F_{v}$ , or $E_{v}$ is isomorphic to $F_{v}\oplus F_{v}.$

(c) $\mathcal{L}_{v}:=\mathcal{L}\otimes_{0_{F}}\mathfrak{o}_{F,v}$ is self-dual.
(d) $h_{v}[\ell]\in \mathfrak{o}_{F,v}^{\cross}.$

We note that almost all the finite places of $F$ are good in this sense. Let $v$ be a good
place. Then $K_{v}=GL(\mathcal{L}_{v})\cap G(F_{v})$ is a good maximal compact subgroup of $G(F_{v})$ . Let
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$q_{v}$ denote the cardinality of the residue field of $F$ at $v,$ $\varpi_{v}$ a prime element of the integer
ring $\mathfrak{o}_{F,v}$ of $F_{v}$ and $||_{v}$ the normalized valuation of $F_{v}$ . Let $C^{0}(F_{v})$ be the light cone of $V_{v}$ :

$C^{0}(F_{v})=\{x\in V_{v}-\{0\}|h_{v}[x]=0\}.$

For $s\in \mathbb{C}/2\pi(\log q_{v})^{-1}\sqrt{-1}\mathbb{Z}$ , letting the group $G(F_{v})$ act on the $\mathbb{C}$-vector space of smooth
functions $f$ : $C^{0}(F_{v})arrow \mathbb{C}$ such that

$f(tx)=|N_{E_{v}/F_{v}}(t)|_{v}^{s+(m-1)/2}f(x)$ for all $x\in C^{0}(F_{v})$ and $t\in E_{v}^{\cross},,$

we define a smooth $G(F_{v})$-module, denoted by $I_{v}(s)$ . Now we are going to state several
results, which does not seem an immediate consequence of works by Sakellaridis ([3],[4])
because the group $G(F_{v})$ (when $E_{v}$ is a field) is not split but should follow from an
extension of his works to quasi-split groups. Anyway, we can prove what we need directly
by a computational way due to the relatively simple structure of our symmetric space
$H(F_{v})\backslash G(F_{v})$ .

Proposition 1. If $s$ belongs to the set

$\mathbb{X}_{v}^{0+}:=\sqrt{-1}[0, \pi(\log q_{v})^{-1}]\cup(0, \nu_{0}/2)$

where $\nu_{0}\in\{0$ , 1 $\}$ is the parity of $m-1$ , then the $G(F_{v})$ -module $I_{v}(s)$ is iweducible,
unitarizable, $K_{v}$ -spherical and $H(F_{v})$ -distinguished. Conversely, if $\pi_{v}$ is an irreducible
unitarizable $K_{v}$ -spherical and $H(F_{v})$ -distinguished representation of $G(F_{v})$ , then $\pi_{v}$ is
isomorphic to $I_{v}(s)$ with a unique $s\in \mathbb{X}_{v}^{0+}.$

Proposition 2. For $s\in \mathbb{X}_{v}^{0}:=\sqrt{-1}[0, \pi(\log q_{v})^{-1}]$ , there exists a unique $H(F_{v})$ -invariant
linear functional $\Lambda_{v}^{0}$ : $I_{v}(s)arrow \mathbb{C}$ such that $\Lambda_{v}^{0}(f_{v}^{0})=1$ , where $f_{v}^{0}\in I_{v}(s)$ is the $K_{v}-$

invariant vector such that the restriction of $f_{v}^{0}$ to $C^{0}(F_{v})\cap \mathcal{L}_{v}$ is identically 1.

Using the vector $f_{v}^{0}\in I_{v}(s)^{K_{v}}$ and the functional $\Lambda_{v}^{0}\in Hom_{H(F_{v})}(I_{v}(s), \mathbb{C})$ in the
previous proposition, we define the spherical function corresponding to $I_{v}(s)$ by setting

$\Omega_{v}^{(s)}(g)=\langle\Lambda_{v}^{0}, I_{v}(s;g)f_{v}^{0}\rangle, g\in G(F_{v})$ .

Here $I_{v}(s;g)$ denotes the action of $g\in G(F_{v})$ on $I_{v}(s)$ . Obviously, the function $\Omega_{v}^{(s)}$

on $G(F_{v})$ is left $H(F_{v})$-invariant and right $K_{v}$-invariant. $I^{i}Yom$ the structural theory of
self-dual lattices, there exists a system of vectors $e_{v,j},$ $e_{v,j}(1\leq j\leq n_{v})$ with $b_{\tau}[e_{v,j}]=$

$h_{4}[e_{v,j}’]=0$ and $h_{v}(e_{v,j}, e_{v,i}’)=\delta_{ij}$ such that

(2.1) $\mathcal{L}_{v}=\mathfrak{o}_{E,v}e_{1,v}\oplus \mathfrak{o}_{E,v}e_{v,2}\oplus\cdots \mathfrak{o}_{E,v}e_{v,n_{v}}\oplus M_{v}\oplus \mathfrak{o}_{E,v}e_{v,n_{v}}’\oplus\cdots \mathfrak{o}_{E,v}e_{v,2}’\oplus \mathfrak{o}_{E,v}e_{v,1}’$

with $w=\{O\}$ if $m$ is even and $M_{v}=\mathfrak{o}_{E,v}f_{v},$ $h_{v}[f_{v}]\in \mathfrak{o}_{F,v}^{\cross}$ if $m$ is odd. Moreover, we
may take (2.1) so that $\ell=a_{v}e_{1,v}+e_{1,v}’$ with some $a_{v}\in \mathfrak{o}_{F,v}$ . By realizing $G$ as a matrix
group by (2.1), set $[\varpi_{v}^{-l}]=diag(\varpi_{v}^{-l}-, 1_{m-2}, \varpi_{v}^{l})$

) where $\overline{\varpi}_{v}$ is the image of $\varpi_{v}$ by the non
trivial automorphism of $E_{v}/F_{v}$ . Then we have the disjoint decomposition

$G(F_{v})= \bigcup_{l=0}^{\infty}H(F_{v})[\varpi_{v}^{-l}]K_{v}.$

$(cf. [2,$ Proposition $3.9] if E_{v} is a$ field. $)$ Let $\tilde{v}$ be a place of $E$ lying above $v$ and $q_{\overline{v}}$ the
cardinality of the residue field of $E$ at $\tilde{v}$ . Let $\zeta_{E,v}(s)$ and $L_{v}(s, \epsilon_{E/F})$ be the local $v$-factors
of the Dedekind zeta function $\zeta_{E}(s)$ and the Hecke $L$-fUnction $L(s, \epsilon_{E/F})$ both viewed
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as Euler products over $\Sigma^{F}$ , respectively. We define a smooth function $\Psi_{v}^{(s)}$ on $G(F_{v})$ by
requiring that it is left $H(F_{v})$-invariant and right $K_{v}$-invariant and satisfies

$\Psi_{v}^{(s)}([\varpi_{v}^{-l}])=q_{v}^{-s}\zeta_{E,v}(s+(m-1)/2)q_{\tilde{v}}^{-\iota(s+(m-1)/2)}, l\in \mathbb{N}.$

Theorem 3. Let $s\in \mathbb{X}_{v}^{0}.$

$\Omega_{v}^{(s)}(g)=\frac{\zeta_{E,v}(-s+(m-1)/2)^{-1}\zeta_{E,v}(s+(m-1)/2)^{-1}}{Q_{v}(q_{v}^{s}-\epsilon_{E/F}(\varpi_{v})^{m}q_{v}^{-s})}\{-\Psi_{v}^{(s)}(g)+\Psi_{v}^{(-s)}(9)\},$ $g\in G_{v}.$

Here
$Q_{v}=1-\epsilon_{E/F}(\varpi_{v})^{m-1}q_{v}^{-(m-1)}.$

Proposition 4. For any function $f$ : $H(F_{v})\backslash G(F_{v})/K_{v}arrow \mathbb{C}$ with finite support, $we$

define its spherical Fourier transform by setting

$\hat{f}(s)=\int_{H(F_{v})\backslash G(F_{v})}f(g)\Omega_{v}^{(s)}(g)dg.$

Then, we have the inversion formula

$\int_{X_{v}^{0}}\hat{f}(s)d\mu_{v}^{H}(s)=f(1)$ ,

where

$d\mu_{v}^{H}(iy)=\frac{Q_{v}}{\pi}|\frac{L_{v}(2iy,\epsilon_{E/F}^{m})}{\zeta_{E,v}(iy+(m-1)/2)}|^{2}\log q_{v}dy.$

2.4. $H$-distinguished automorphic representations. For any smooth $\mathbb{C}$-valued func-
tion $\varphi$ on $G(F)\backslash G(\mathbb{A}_{F})$ , we define its $H$-period integral by

$\mathcal{P}_{H}(\varphi)=\int_{H(F)\backslash H(A_{F})}\varphi(h)|\omega_{H}|_{A}(h)$ ,

where $|\omega_{H}|_{A}$ is the Tamagawa measure on $H_{A}$ (defined from an $F$-rational invariant gauge
form $\omega_{H}$ ). A subrepresentation of $L^{2}(G(F)\backslash G(\mathbb{A}_{F}))$ is called to be an automorphic repre-
sentation of $G(\mathbb{A}_{F})$ . An automorphic representation $\pi$ , acting on an irreducible subspace
$V_{\pi}\subset L^{2}(G(F)\backslash G(\mathbb{A}_{F}))$ , is said to be $H$-distinguished if $\mathcal{P}_{H}(\varphi)\neq 0$ for some $\varphi\in V_{\pi}$ . Since
our $H$ contains the center of $G$ , an $H$-distinguished $\pi$ has the trivial central character.

For an integral ideal $\mathfrak{n}$ in $E$ and for a positive integer $d$ such that $\sigma(d)>0$ , let $\Pi^{H}(\mathfrak{n}, d)$

be the set of all the automorphic representations $\pi\cong\otimes_{v}\pi_{v}$ such that
(i) $\pi$ is $H$-distinguished.
(ii) For each $v\in\Sigma^{F}fin,$

$\pi_{v}$ contains a non zero vector invariant by $\mathcal{U}_{v}(\mathfrak{n})$ , the kernel of
the reduction homomorphism $K_{v}arrow GL(\mathcal{L}_{v}/\mathfrak{n}\mathcal{L}_{v})$ .

(iii) $\pi_{v}1\cong\delta_{d}.$

(iv) $\pi_{v}\cong 1_{G(F_{v})}$ for all $v\in\Sigma_{\infty}^{F}-\{v_{1}\}.$

Let $\pi\in\Pi^{H}(\mathfrak{n}, d)$ . Let $S$ be a finite set of good places relatively prime to $\mathfrak{n}$ . Then for
each $v\in S$ , the $v$-component $\pi_{v}$ is an $H(F_{v})$-distinguished and $K_{v}$-spherical irreducible
unitary representation of $G(F_{v})$ . Thus, by Proposition 1, there exists a unique $\nu_{v}\in \mathbb{X}_{v}^{0}$

such that $\pi_{v}\cong I_{v}(v_{v})$ . Define the spectral parameter of $\pi$ at $S$ to be the point

$\nu_{S}(\pi)=\{v_{v}\}_{v\in S}$

79



in the product space

$\mathbb{X}_{s}^{0}=\prod_{v\in S}\mathbb{X}_{v}^{0}=\prod_{v\in S}\sqrt{-1}[0,\pi(\log q_{v})^{-1}].$

We endow this space with the product topology of the Euclidean topology on the intervals.
Let $\mu_{S}^{H}=\otimes_{v\in S}\mu_{v}^{H}$ be the product measure of $\mu_{v}^{H\prime}s$ (defined in Proposition 4).

3. MAIN RESULTS

Let $E/F,$ $(V, h)$ , $G,$ $\ell,$ $H$ , and $\mathcal{L}$ be as in 2.1; we keep all the assumptions made
there. Let $\mathfrak{n}$ be an integral ideal of $E$ and $d$ a positive integer such that $\sigma(d)>0$ . For
$\pi\in\Pi^{H}(\mathfrak{n}, d)$ , we set

$\mathbb{P}^{H}(\mathfrak{n}, d;\pi)=\sum_{\varphi\in \mathcal{B}}|\mathcal{P}_{H}(\varphi)|^{2}$

with $\mathcal{B}$ an orthonormal basis in $V_{\pi}[\tau_{d}]^{\mathcal{U}(\mathfrak{n})}$ , the space of $\mathcal{U}(\mathfrak{n})=\prod_{v\in\Sigma^{F}fin}\mathcal{U}_{v}(n)$-fixed vectors

in the $\tau_{d}$-isotypic component of $V_{\pi}$ . (By Harish-Chandra’s finite dimensionality theorem
on automoprphic forms, $\mathcal{B}$ is a finite set. )

Theorem 5. Let $S$ be a finite set of good places. Let $\{\mathfrak{n}_{k}\}$ be a sequence of integral ideals
of $E$ such that $\lim_{karrow\infty}N_{E/\mathbb{Q}}(\mathfrak{n}_{k})=\infty$ and any prime divisor of $\mathfrak{n}_{k}$ is away from $S$ and is
good. Then, for any Borel subset $J\subset \mathbb{X}_{S}^{0}$ with $\mu_{S}^{H}(\partial J)=0$ , we have

$\lim_{karrow\infty}\frac{\sum_{\pi\in\Pi^{H}(\mathfrak{n}_{k}d)\nu s(\pi)\in}\mathbb{P}^{H}(\mathfrak{n}_{k},d;\pi)j}{N_{E/\mathbb{Q}}(\mathfrak{n}_{k})^{m}N_{F/\mathbb{Q}}(tr_{E/F}(\mathfrak{n}_{k}))^{-1}}=C\frac{\Gamma(\sigma(d)+m-1)}{\Gamma(\sigma(d))}\mu_{S}^{H}(\mathbb{J})$

,

where $C$ is an explicit positive constant which depends on $E/F,$ $\mathcal{L}$ and $h$ but is independent

of $d$ and $\mathbb{J}.$

The next corollary partially answers the question raised in the introduction.

Corollary 6. Let $d$ be a positive integer such that $\sigma(d)>0$ . Let $S$ be a finite set of good
places. Then for a given Borel set $J\subset \mathbb{X}_{S}^{0}$ such that $\mu_{S}^{H}(\partial J)=0$ , we have an automorphic
representation $\pi\cong\otimes_{v}\pi_{v}$ with the following properties:

(i) $\pi$ is $H$ -distinguished.
(ii) $\pi_{v_{1}}\cong\delta_{d}$ , and $\pi_{v}\cong 1_{G(F_{v})}$ for all $v\in\Sigma_{\infty}^{F}-\{v_{1}\}.$

(iii) There exists $\{\nu_{v}\}_{v\in S}\in J$ such that $\pi_{v}\cong I_{v}(\nu_{v})$ for all $v\in S.$

3.1. Application to cycle geometry on a unitary Shimura variety. Let $D$ be the
set of all complex $n^{-}$-dimensional subspaces $Z\subset V_{v1}$ such that $h_{v_{1}}$ is negative definite
on $Z$ . When viewed as a subset of the complex Grassmannian manifold of $V_{v1}\cong \mathbb{C}^{m}$

on which $G(F_{v_{1}})$ acts naturally, $D$ is an open $G(F_{v_{1}})$-orbit. For any open compact sub-
group $\mathcal{U}\subset G(\mathbb{A}_{F,fin})$ , the group $G(F)$ acts on the product space $G(\mathbb{A}_{F,fin})/\mathcal{U}\cross D$ by the
diagonal action. If $\mathcal{U}$ is neat, then, by passing to the quotient, we obtain a compact
$n^{-}n^{+}$-dimensional complex manifold

$X^{\mathcal{U}}(G, D)=G(F)\backslash [(G(A_{F,fin})/\mathcal{U})\cross D]$

which is a finite disjoint union of locally symmetric manifolds $\Gamma_{i}\backslash D$ with cocompact
arithmetic subgroups $\Gamma_{i}\subset G(F_{v1})$ . Let $\ell\in \mathcal{L}$ and $H$ be as above. Set

$D_{\ell}=\{Z\in D|h_{v_{1}}(Z, \ell)=\{0\}\}.$
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Then $D_{\ell}$ is an $H(F_{v1})$ -orbit and the inclusion $D_{\ell}\mapsto D$ is a holomorphic embedding. For
a neat open compact subgroup $\mathcal{U}\subset G(\mathbb{A}_{F,fin})$ , consider the quotient space

$X_{\ell}^{\mathcal{U}}=H(F)\backslash [(H(\mathbb{A}_{F,fin})/\mathcal{U}\cap H(\mathbb{A}))\cross D_{\ell}]$

together with the natural map

(3.1) $j$ : $X_{\ell}^{\mathcal{U}}arrow X^{\mathcal{U}}(G, D)$ .

The coset space $X_{\ell}^{\mathcal{U}}$ acquires a natural structure of complex manifold and the map $j$

becomes a holomorphic map of complex manifolds with finite fibers. We have $\dim_{C}X_{\ell}^{\mathcal{U}}=$

$n^{-}(n^{+}-1)$ , and thus (3.1) yields a chomomology class

$\mathfrak{C}_{\ell}^{\mathcal{U}}\in H^{n^{-},n^{-}}(X^{\mathcal{U}}(G, D), \mathbb{C})$

such that

$\mathfrak{C}_{\ell}^{\mathcal{U}}\cup[\alpha]=\int_{X_{\ell}^{\mathcal{U}}}j^{*}\alpha$ for all $[\alpha]\in H^{2n^{-}(n^{+}-1)}(X^{\mathcal{U}}(G, D), \mathbb{C})$ .

We fix a base point $Z_{0}\in D_{\ell}$ and let $K_{Z_{0}}$ denote the stabilizer of $Z_{0}$ in $G(F_{v1})$ . Let
$\mathfrak{g}_{v1}$ be the complexified Lie algebra of $G(F_{v1})$ . Then we have the Matsushima-Murakami
decomposition

(3.2)
$H^{\cdot}(X^{\mathcal{U}}(G, D), \mathbb{C})=\bigoplus_{\pi}H^{\cdot}(\mathfrak{g}_{v_{1}}, K_{Z_{0}};(\pi_{v_{1}})_{K_{Z_{0}}})\otimes\pi^{\mathcal{U}}fin$

where $\pi$ runs through all the automorphic representations of $G(\mathbb{A}_{F})$ and $(\pi_{v1})_{K_{Z_{0}}}$ denotes
the $K_{Z_{0}}$-finite vectors. From now on, by choosing a $G(F_{v})$-invariant Kaehler structure on
$D$ once and for all and putting the induced Kaehler form on $D_{\ell}$ , we make $X^{\mathcal{U}}(G, D)$ and
$X_{\ell}^{\mathcal{U}}$ Kaehler manifolds. Thus we can speak about the primitive cohomology classes and
the primitive decomposition of a general cohomology class of $X^{\mathcal{U}}(G, D)$ ([7]). Let $\mathfrak{n}$ be
an integral ideal of $E$ such that $\mathcal{U}(n)$ is neat. By (3.2) and by invoking a result of [6], the
primitive part of the class $\mathfrak{C}_{\ell}^{\mathcal{U}(\mathfrak{n})}$ has the decomposition

$( \theta_{\ell}^{(\mathfrak{n})})_{prim}=\bigoplus_{\pi\in\Pi^{H}(\mathfrak{n}n^{-})},\mathfrak{C}_{\ell}^{\mathcal{U}}(\pi)$

,

where only the representations in $\Pi^{H}(\mathfrak{n}, n^{-})$ contributes to the sum. The integral $\int_{X^{\mathcal{U}}(G,D)}\alpha\wedge$

$*\overline{\beta}$ for $\mathbb{C}$-valued differential forms induces a hermitian inner product $([\alpha]|[\beta])$ on the deR-
ham cohomology group with trivial coefficients. As usual, the associated norm will be
denoted by $\Vert[\alpha]\Vert.$

Theorem 7. Let $S$ be a finite set of good places. Let $\{\mathfrak{n}_{k}\}$ be a sequence of integral ideals
of $E$ as in the Theorem 5. Let $\mathbb{J}\subset \mathbb{X}_{S}^{0}$ be a Borel subset such that $\mu_{S}^{H}(\partial \mathbb{J})=0$ . Then,

$\lim_{karrow\infty}\frac{\sum_{\pi\in\Pi^{H}(\mathfrak{n}_{k},n^{-})}||\mathfrak{C}_{\ell}^{\mathcal{U}}(\pi)||^{2}\nu s(\pi)\in J}{\sum_{\pi\in\Pi^{H}(\mathfrak{n}_{k},n^{-})}||\mathfrak{C}_{\ell}^{\mathcal{U}}(\pi)||^{2}}=\frac{\mu_{S}^{0}(\mathbb{J})}{\mu_{S}^{0}(\mathbb{X}_{S}^{0})}.$
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