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EQUIDISTRIBUTION OF HECKE OPERATORS ON SPECIAL
CYCLES ON COMPACT SHIMURA VARIETIES

MASAO TSUZUKI (#RIEF ; EERZEHE TEE)

1. INTRODUCTION

Let F be a number field with adele ring Ar. The set of places of F' is denoted by
¥F; it is a union of archimedean places £ and the non-archimedean ones ©f . Let G
be a connected reductive algebraic group over F' and H a closed F-subgroup of G. We
suppose the center of G is F-anisotropic for simplicity. We endow the adele groups G(Ar)
and H(Ap) the Tamagawa measures. For an automorphic form ¢ on G(F)\G(AF), the
H-period integral of ¢ is defined by

Pulp) = / o(h) dh
H(F)\H(AF)

as long as the integral converges absolutely. An automorphic cuspidal representation
7 C L3(G(F)\G(AF)) of G(AF) is said to be H-distinguished if it contains a vector ¢ € 7
such that Py(p) # 0. The notion of H-distinction has a local counterpart. Suppose
v € TF ; an irreducible admissible representation m, of the totally disconnected group
G(F,) is called to be H(F,)-distinguished if

Hompy g, (7, 1a(z,)) # 0.

Over an archimedean place v € £, to define the corresponding notion, we should work on
the category of smooth Frechet representations; an irreducible admissible representation
7y of the reductive Lie group G(F,) is defined to be H(F,)-distinguished if its Casselmann-
Wallach globalization admits a continuous non-zero H(F,)-invariant distribution vector.
The set of equivalence classes of irreducible unitary H(F,)-distinguished representations
of G(F,) is denoted by X,. It is not difficult to see that the global H-distinction of a
cuspidal representation implies the H(F,)-distinction of its local components at all places
v. Precisely, if 7 & ®,m, is an irreducible cuspidal representation, then for every place
v € TF, the v-component 7, of 7 is H(F,)-distinguished. The converse is more subtle
and seems very difficult to establish in general if it is true. Here, we propose a weaker
version of the converse statement in a slightly vague way.

Problem : Let S be a finite subset of ©F and {J,},es a collection of “good” subsets
Jy C X,. Is there exists an irreducible cuspidal 7 = ®,7, such that (i) 7 is H-distinguished
(ii) (the class of) =, belongs to J, for all v € S.

In this note, for unitary groups over CM-fields, we consider this problem in a more rig-
orous formulation and report an affirmative answer in a special case. Though our setting
is rather restrictive, it includes an interesting case which yields a geometric consequence



about certain equidistribution phenomenon for Satake parameters of automorphic repre-
sentations contributing to the space of special cycles on compact unitary Shimura varieties.
No proof is included.

2. UNITARY GROUPS AND THEIR REPRESENTATIONS

2.1. Let E be a CM-field and F the maximal totally real subfield in E. We suppose
[F': Q] > 1. The quadratic idele class character of F'* corresponding to the extension
E/F by the class field theory is denoted by € /r. The maximal order of E' and F' are
denoted by og and op, respectively. Let V be a finite m-dimensional E-vector space and
h:V xV — E anon-degenerate hermitian form on V. For any v € ¥, set E, = EQrF,
and V, = V ®F F,. Let h, denote the hermitian form induced on the E,-module V, by
extension of scalars. We suppose that there exists an archimedean place v; such that h,, is
of signature (n*,n~) with n* > n~ > 2 and h, is positive definite at all v € 5, —{v;}. In
particular, m =n* +n~ > 4. Let G = U(h) be the unitary group of the hermitian space
(V, h), which we view as an F-algebraic group. From our assumption, G(F,,) = U(n*,n")
and G(F,) = U(m) for v € ZF — {v;}. Since #X% = [F : Q] > 2, this implies that G is
F-anisotropic.

Let £ € V be such that h,[¢] := h,(¢,£) is a positive number of F, = R for all v € £ ;
if this is the case, we say that £ is totally positive. Let H be the stabilizer of the subspace
E¢; we have H = Hy x E', where Hy = U(h|¢1) is the unitary group of the hermitan
space £+, the orthogonal complement of £ in V', and E" is the torus of norm one elements
in E*. From the assumptions, we have Ho(F,,) 2 U(n* —1,n") and Ho(F,) = U(m—1).

We fix an og-lattice £ in V (i.e., L is a free op-submodule in V satisfying og L C L)
such that £ € £ and it is maximal in the sense of [5].

2.2. H(F,,)-distinguished representations. For a positive integer d such that o(d) :=
m —1—2(n~ —d) > 0, there corresponds an irreducible unitary representation &4 of
G(F,,) 2 U(n",n") with the following properties.
(i) 04 contains a U(n™) x U(n™)-type 74 with highest weight [d,0,--- ,0,—d;0,...,0].
(The U(n~)-factor acts trivially.)
(ii) the Casimir operator of G(F,,) acts on §; with the scalar o(d)? — (m — 1)%.

(iii) There exists a bounded G(F,, )-intertwining operator from &4 to L2(H(F,,)\G(F,,))-

The representations d4 are H(F,,)-distinguished and comprise a family of unitary rep-
resentations of G(F,,) called the H(F,,)relative discrete series representations of the
symmetric space H(F,, )\G(F,) ([1]).

2.3. H(F,)-distinguished representation over a good place. We say that a finite
place v € BF is good if the following conditions are satisfied.

(a) 2 € 0f,.

(b) E, is an unramified field extension of F,, or E, is isomorphic to F, & F,,.

(¢) Ly =L R, 0F, is self-dual.

(d) h,[f] € oF,.
We note that almost all the finite places of F' are good in this sense. Let v be a good
place. Then K, = GL(L,) N G(F,) is a good maximal compact subgroup of G(F,). Let
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¢, denote the cardinality of the residue field of F' at v, w, a prime element of the integer
ring of, of F, and | |, the normalized valuation of F,. Let C°(F,) be the light cone of V,;:

CO(F,) = {z € Vi — {0}/ hy[z] =0}.

For s € C/2m(log g,)~'v/—1Z, letting the group G(F,) act on the C-vector space of smooth
functions f : C°(F,) — C such that

f(tz) = |Ng,/p, ()27 V72 f(z) for all z € C°(F,) and t € E,,
we define a smooth G(F,)-module, denoted by I,(s). Now we are going to state several
results, which does not seem an immediate consequence of works by Sakellaridis ([3],(4])
because the group G(F,) (when E, is a field) is not split but should follow from an
extension of his works to quasi-split groups. Anyway, we can prove what we need directly

by a computational way due to the relatively simple structure of our symmetric space
H(F)\G(F).

Proposition 1. If s belongs to the set
X% = v/=1[0,7(log g,)"*] U (0, 10/2)

where vy € {0,1} is the parity of m — 1, then the G(F,)-module I,(s) is irreducible,
unitarizable, K,-spherical and H(F,)-distinguished. Conversely, if m, is an irreducible
unitarizable K, -spherical and H(F,)-distinguished representation of G(F,), then m, is
isomorphic to I,(s) with a unique s € X°+.

Proposition 2. For s € X0 := /=10, n(log ¢,) '], there exists a unique H(F,)-invariant

linear functional AY : I,(s) — C such that AY(f0) = 1, where f0 € I,(s) is the K,-
invariant vector such that the restriction of f° to C°(F,) N L, is identically 1.

Using the vector f° € I,(s)¥* and the functional A € Homp(r,)(1,(s),C) in the
previous proposition, we define the spherical function corresponding to I,(s) by setting

QP (g) = (A I(s;9)f0), g€ G(F).

Here I,(s;g) denotes the action of g € G(F,) on I,(s). Obviously, the function Q)
on G(F,) is left H(F,)-invariant and right K,-invariant. From the structural theory of
self-dual lattices, there exists a system of vectors e, ;, €, (1 < j < n,) with hyle, ;] =
h,[e; ;] = 0 and hy(e,;, €,;) = d;; such that

(21) Lv = 0E,vel,v S OE,'vev,Q D--- OE,vev,n., @ Mv @ oE,ve;,nv D--- OE',ve:;)z ® OE,-ue',u,l
with M, = {0} if m is even and M, = og,f,, ho[fu] € 0f, if m is odd. Moreover, we
may take (2.1) so that £ = a,e;, + €}, with some a, € op,. By realizing G as a matrix

group by (2.1), set [w;!] = diag(&@;?, 1,n—2, @) ), where &, is the image of w, by the non
trivial automorphism of E,/F,. Then we have the disjoint decomposition

G(F,) = U H(F,) [w,"|K,.
1=0
(¢f. [2, Proposition 3.9] if E, is a field.) Let ¥ be a place of E lying above v and g; the
cardinality of the residue field of E at 9. Let (g, (s) and L,(s,eg/r) be the local v-factors
of the Dedekind zeta function (g(s) and the Hecke L-function L(s,eg/r) both viewed



as Euler products over £, respectively. We define a smooth function 8 on G(F,) by
requiring that it is left H(F,)-invariant and right K,-invariant and satisfies

VO ([ = ¢, *Cpols + (m—1)/2) ;T VD JeN.

v v

Theorem 3. Let s € X0.
QW) (g) = CBo(=5+ (m —1)/2)"pu(s+ (m—1)/2)""

— U (g) + T (g)}, g € G
Here

Qv =1—éeg/p(w,)™ 1 g; ™Y,

Proposition 4. For any function f : H(F,)\G(F,)/K, — C with finite support, we
define its spherical Fourier transform by setting

#(s) = / £(9) 2 (g) dg.
H(F,)\G(Fy)

Then, we have the inversion formula
” Fls)dl(s) = F(D),

where )

Ly(2iy,e%)p)
(Ep(ty + (m —1)/2)

2.4. H-distinguished automorphic representations. For any smooth C-valued func-
tion ¢ on G(F)\G(AF), we define its H-period integral by

Prr(p) = /H IR CING!

where |wg |, is the Tamagawa measure on Hy (defined from an F-rational invariant gauge
form wgy). A subrepresentation of L2(G(F)\G(AF)) is called to be an automorphic repre-
sentation of G(Ar). An automorphic representation 7, acting on an irreducible subspace
Vz C LY(G(F)\G(AF)), is said to be H-distinguished if Pz (¢) # 0 for some ¢ € V. Since
our H contains the center of G, an H-distinguished 7 has the trivial central character.
For an integral ideal n in E and for a positive integer d such that o(d) > 0, let [1#(n,d)
be the set of all the automorphic representations 7 = ®,m, such that

(i) = is H-distinguished.

(ii) For each v € £ | 7, contains a non zero vector invariant by U, (n), the kernel of

the reduction homomorphism K, — GL(L,/nL,).

(i) 1y, 6.

(iv) Ty = 1gm,) for all v € L — {v1}.

Let m € I (n,d). Let S be a finite set of good places relatively prime to n. Then for
each v € S, the v-component 7, is an H(F,)-distinguished and K,-spherical irreducible
unitary representation of G(F,). Thus, by Proposition 1, there exists a unique v, € X2
such that 7, = I,(v,). Define the spectral parameter of 7 at S to be the point

Qu

™

duy! (iy) = log g, dy.

Vs (W) = {Vv}UES
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in the product space

Xg = [ X =[] v-1[0,7(log 3.)~"].

veS vES
We endow this space with the product topology of the Euclidean topology on the intervals.
Let 47 = ®yespl! be the product measure of u’s (defined in Proposition 4).

3. MAIN RESULTS

Let E/F, (V,h), G, ¢, H, and L be as in 2.1; we keep all the assumptions made
there. Let n be an integral ideal of E and d a positive integer such that o(d) > 0. For
7 € I (n,d), we set

P (n,d;m) =) |Pu(p)?
pEB
with B an orthonormal basis in V;[74/#(™, the space of U(n) = Hvezgn U, (n)-fixed vectors
in the 74-isotypic component of V;. (By Harish-Chandra’s finite dimensionality theorem
on automoprphic forms, B is a finite set. )

Theorem 5. Let S be a finite set of good places. Let {ny} be a sequence of integral ideals
of E such that limy_,. Ng/g(n:) = 0o and any prime divisor of ny, is away from S and is
good. Then, for any Borel subset J C X% with u (8]) = 0, we have
rellH PH(n,d;m

. oo ® 0T N +m-1) W)
k—o0 Np/q(m)"Nr/q(tre/r(me)) ™! I'(o(d)) s
where C' is an explicit positive constant which depends on E/F, L andh but is independent
of d and J.

The next corollary partially answers the question raised in the introduction.

Corollary 6. Let d be a positive integer such that o(d) > 0. Let S be a finite set of good
places. Then for a given Borel set J C X% such that uZ(8J) = 0, we have an automorphic
representation m = ®,m, with the following properties:
(i) m is H-distinguished.
(ii) 7y, = 8q, and m, = 1g(g,) for allv € ZE — {v1}.
(iii) There exists {vy}ves € J such that m, = I,(v,) for allv € S.

3.1. Application to cycle geometry on a unitary Shimura variety. Let D be the
set of all complex n~-dimensional subspaces Z C V,, such that h,, is negative definite
on Z. When viewed as a subset of the complex Grassmannian manifold of V,, = C™
on which G(F,,) acts naturally, D is an open G(F,,)-orbit. For any open compact sub-
group U C G(Argn), the group G(F) acts on the product space G(Aggn)/U x D by the
diagonal action. If U is neat, then, by passing to the quotient, we obtain a compact
n~n*-dimensional complex manifold

X"(G, D) = G(F)\[(G(AFgn)/U) x D]

which is a finite disjoint union of locally symmetric manifolds I';\D with cocompact
arithmetic subgroups I'; C G(F,,). Let £ € L and H be as above. Set

Dy ={Z € D|h,,(Z,£) = {0} }.
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Then Dy is an H(F,,)-orbit and the inclusion Dy < D is a holomorphic embedding. For
a neat open compact subgroup & C G(Afrgy), consider the quotient space

X¢ = HF)\[(H(Argn)/UN H(A)) x D]
together with the natural map
(3.1) j: X¥ — XY¥(G, D).

The coset space XY acquires a natural structure of complex manifold and the map j
becomes a holomorphic map of complex manifolds with finite fibers. We have dim¢ X¥ =
n~(nt — 1), and thus (3.1) yields a chomomology class

¢ € H™ " (X4(G, D),C)
such that
U o] = / i*a forall [o] € H™ =D (X¥(G, D), C).
Xy

We fix a base point Zy € D, and let Kz, denote the stabilizer of Z, in G(F,,). Let
gy, be the complexified Lie algebra of G(F,,). Then we have the Matsushima-Murakami
decomposition

(3.2) H*(X"(G, D), @H (@or+ K203 (T )cz,) ® T,

where 7 runs through all the automorphic representations of G(Ar) and (m,, ), denotes
the Kz -finite vectors. From now on, by choosing a G(F, )-invariant Kaehler structure on
D once and for all and putting the 1nduced Kaehler form on D,, we make X¥(G, D) and
XY Kaehler manifolds. Thus we can speak about the primitive cohomology classes and
the primitive decomposition of a general cohomology class of X¥(G, D) ([7]). Let n be

an integral ideal of E such that U(n) is neat. By (3.2) and by invoking a result of [6 ), the

primitive part of the class Qu ™ has the decomposition

@i = D &),

7€llH (n,n-)

where only the representations in IT” (n, ™) contributes to the sum. The integral [ xu(a,p) ON

%3 for C-valued differential forms induces a hermitian inner product ([o]|[8]) on the deR-
ham cohomology group with trivial coefficients. As usual, the associated norm will be
denoted by ||[a]]].

Theorem 7. Let S be a finite set of good places. Let {n;} be a sequence of integral ideals
of E as in the Theorem 5. Let J C X% be a Borel subset such that u(8J) = 0. Then,

Zwel’[”(nk,'n”) ||€Zé{(7r) ”2

im vs(m)el 13 (J)

k=00 3 et mem—y N1SZ M~ 13X’
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