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1. INTRODUCTION

This is a report on the paper titled “On the Dimension of the Cohomology of Bianchi
Groups”’ by Mehmet H. Seng\"un and Seyfi T\"urkelli [10].

Bianchi groups are groups of the form $SL_{2}(\mathcal{O})$ where $\mathcal{O}$ is the ring of integers of an
imaginary quadratic field. Just as the cohomology of the classical modular group $SL_{2}(\mathbb{Z})$ is
central to the theory of classical modular forms, the cohomology of Bianchi groups is central
to the study of Bianchi modular forms, that is, modular forms over imaginary quadratic
fields.

Understanding the behavior of the dimension of the cohomology of Bianchi groups and
their congruence subgroups is a long open problem. Up to date, there is no explicit di-
mension formula of any sort. Utilizing the compactification theory of Borel-Serre (which

basically amounts to closing the cusps of the 3-folds associated to Bianchi groups with
2-tori), we can decompose the cohomology into two parts: the cuspidal part and the Eisen-
stein part. While it is easy to compute the dimension of the Eisenstein part, understanding
the dimension of the cuspidal part is very hard.

In 1984 Rohlfs, developing an idea that goes back to Harder (see the end of [4]), provided
in [7] an explicit lower bound for (the cuspidal part of) the first cohomology with trivial
complex coefficients of Bianchi groups. Around the same time, Kr\"amer, mainly using tech-

niques developed by Rohlfs, made these lower bounds sharper. In their recent paper [3],
Finis, Grunewald and Tirao provided explicit lower bounds for the cuspidal part of the first
cohomology with certain non-trivial coefficient systems of Bianchi groups.

There has been significant recent developments in understanding the behavior of the di-
mension asymptotically. In [2] Calegari and Emerton, using techniques from non-commutative
Iwasawa theory, provided asymptotic upper-bounds for the first cohomology, with a fixed
coefficient system, as one goes down in a tower of principal congruence subgroups of prime
power level of a fixed Bianchi group. In a complementary direction, Marshall proved in
[5], using the approach of Calegari and Emerton, an asymptotic upper-bound for the first
cohomology of a congruence subgroup of a Bianchi group as the coefficient system varies.

The authors’ goal in this paper is two-fold: first, they give an exposition of the techniques
developed by Rohlfs and later generalized by Kr\"amer and Blume-Nienhaus in their Bonn
$PhD$ theses, second they provide asymptotic lower-bounds for the cohomology of congruence
subgroups of Bianchi groups using these techniques.

1.1. Summary of Results. Fix a square-free negative integer $d\neq-1,$ $-3$ , let $K$ be the

imaginary quadratic field $\mathbb{Q}(\sqrt{d})$ with class number $h$ and ring of integers $\mathcal{O}$ . Let $G$ be the
associated Bianchi group $SL_{2}(\mathcal{O})$ and $\Gamma$ be a finite index subgroup of $G$ . Given a nonnegative
integer $k$ , let $E_{k}$ be the space of homogeneous polynomials over $\mathbb{C}$ in two variables of degree
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$k$ with the following $\Gamma$-action: given a polynomial $p(x, y)\in E_{k},$

$p(x, y)\cdot(\begin{array}{ll}a bc d\end{array})=p(ax+by, cx+dy)$ .

Let $E_{k,k}:=E_{k}\otimes_{\mathbb{C}}\overline{E_{k}}$ is a $\Gamma$-module where the action of $\Gamma$ on the second component is
twisted by the conjugation.

The group $G$ acts discontinuously as isometries on the hyperbolic 3-space $\mathbb{H}\simeq \mathbb{C}\cross \mathbb{R}^{+}$

and the quotient $Y_{\Gamma}$ $:=\Gamma\backslash \mathbb{H}$ has the structure of an hyperbolic 3-fold. Let $\mathcal{E}$ be the local
system on $Y_{\Gamma}$ induced by some complex finite-dimensional $\Gamma$-representation $E$ . It is well
known that $Y_{\Gamma}$ is an Eilenberg-MacLane space for $\Gamma$ and so

$H^{n}(\Gamma, E)\cong H^{n}(Y_{\Gamma}, \mathcal{E})$ .

Let $\sigma\in G(K/\mathbb{Q})$ be the only nontrivial element; that is, the complex conjugation. Sup-
pose that $\sigma$ acts on $E$ and $\Gamma$ in a compatible way so that it induces an action on the
cohomology $H^{i}(\Gamma, E)$ . Since $\sigma$ is an involution, the eigenvalues of this action is $\pm 1$ and so
the trace $tr(\sigma|H^{i}(\Gamma, E))$ is an integer.

One defines the Lefschetz number of $\sigma$ as the following integer

$L( \sigma, \Gamma, E)=\sum_{i}(-1)^{i}tr(\sigma|H^{i}(\Gamma, E$

These Lefschetz numbers were first considered by Harder in [4] where he computed them
to give lower bounds for the cohomology of certain types of principal congruence subgroups
$\Gamma$ with $E=\mathbb{C}$ . In his 1976 Bonn Habilitation Rohlfs developed tools to compute these
Lefschetz numbers for general arithmetic groups. In 1984, Rohlfs used these tools to provide
lower bounds for the Lefschetz number for the case $\Gamma=SL_{2}(\mathcal{O})$ and $E=\mathbb{C}$ . Later that
year, in his Bonn Ph.D. thesis, Kr\"amer gave a closed formula for the Lefschetz number for
the same case. The following is a generalization of their results to higher level and weight.

Proposition 1.1. [10, Proposition 1.3] Let $N>2$ be a positive integer

$L(\sigma, \Gamma(N), E_{k,k})=\{\begin{array}{ll}(A+2B)\frac{-N^{3}}{12}\prod_{p|N}(1-p^{-2})\cdot(k+1) if N is even(A+3B)\frac{-N^{3}}{12}\prod_{p|N}(1-p^{-2})\cdot(k+1) if N is odd.\end{array}$

where $A,$ $B$ are explicit constants depending on the ramification data of $K/\mathbb{Q}.$

The constants $A$ and $B$ are in fact certain powers of 2 and they were computed by Rohlfs
in [6]. These constants vary depending on the ramification data of the imaginary quadratic
field $K$ and the integer $N.$

Corollary 1.2. [10, Corollary 3.5] Let $p$ be an odd rational prime that is unramified in
$K=\mathbb{Q}(\sqrt{-d})$ and $t$ be the number of distinct prime divisors of the discriminant of $K/\mathbb{Q}.$

Then, for $n>0$

$L(\sigma, \Gamma(p^{n}), E_{k,k})=\{\begin{array}{l}-2^{t}\cdot\frac{p^{3n}-p^{3n-2}}{12}\cdot(k+1) if d\equiv 1 mod4-5\cdot 2^{t-1}\cdot\frac{p^{3n}-p^{3n-2}}{12}\cdot(k+1) else.\end{array}$
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The assumption in Proposition 1,1 that $N>2$ is important. Because, in this case $\Gamma(N)$

has no torsion and so they can use a Lefschetz fixed theorem, due to Rohlfs, to calculate
the Lefschetz number in question.

When the arithmetic group $\Gamma$ has torsion, for example $\Gamma=SL_{2}(\mathcal{O})$ , there is a generalized
Lefschetz fixed point theorem, due to Blume-Nienhaus, which is more involved because of
the “contributions” of the torsion elements. Nevertheless, the tools they need to calculate
the Lefschetz number for $\Gamma=SL_{2}(\mathcal{O})$ are laid out by Rohlfs and also by Blume-Nienhaus.
One of the main results of the paper is this following:

Theorem 1.3. [10, Theorem 3.2] Let $D$ be the discriminant of $K/\mathbb{Q}$ with $D_{2}$ its 2-part.
Let $\rho$ represent either $\tau$ or $\sigma$ . Also, put $q=1$ or $q=-1$ depending on whether $\rho=\tau$ or
$\rho=\sigma$ , respectively.

$(-1)^{k}L( \rho, \Gamma, E_{k,k}) = --\Delta 12p\neq 2p=2\prod_{p|D}(p+(\begin{array}{l}qp\end{array}))\prod_{p|D}(D_{2}+(q|2))\cdot(k+1)$

$+ A12p\neq 2p=2\prod_{p|D}(1+(\begin{array}{l}\Delta^{-}p\end{array}))\prod_{p|D}(4+(-q|2))\cdot(-1)^{k}(k+1)$

$+ \frac{1}{2} \prod_{p|D,p\neq 2}(1+(^{-2}\overline{p}B))\cdot(\frac{k+1}{4})$

$+ \frac{1}{3}(\prod_{p|D,p\neq 3}(1+(-3q|p))+(-1)^{k}\prod_{p|D}(1+(-q|p)))\cdot(\frac{k+1}{3})$
.

Here products over empty sets are understood to be equal to 1.

Following Harder, the authors use the trace of the involution a on $H^{i}(\Gamma, E)$ to bound the
dimension of this cohomology space from below. In order to carry this idea out, one needs
to calculate the trace of a on the Eisenstein part of the cohomology as well. The following
theorem generalizes a part of the results announced by Harder at the very end of [4].

Theorem 1.4. [10, Theorem 1.2] Let $t$ be the number of distinct prime divisors of the
discriminant of $K/\mathbb{Q}$ . Let $N=p_{1^{1}}^{n}\ldots p_{r}^{n_{r}}$ be a positive integer whose prime divisors $p_{i}$ are
unramified in $K$ and let $\Gamma=\Gamma(N)$ be the associated principal $\omega$ngruence subgroup of the
Bianchi group $SL_{2}(\mathcal{O})$ .

We have

$tr(\sigma|H_{Eis}^{2}(\Gamma, E_{k,k}))=-2^{t-1}\cdot\prod_{i=1}^{r}(p_{i}^{2n_{i}}-p_{i}^{2(n_{i}-1)})+\delta(0, k)$ ,

where $\delta$ is the Kronecker $\delta$-function, in other words, $\delta(0, k)=0$ unless $k=0$ in which case
$\delta(0, k)=1$ . In particular,

$tr(\sigma|H_{Eis}^{2}(SL_{2}(\mathcal{O}), E_{k,k}))=-2^{t-1}+\delta(0, k)$ .

Computing the trace on the Eisenstein part of the first cohomology is more challenging
as reported by Harder in [4]. He does not provide a proof but informs us that he uses the
adelic setting and representation theoretic approach for his computations and his final re-
sult depends on certain factors in the functional equation of associated Hecke $L$-series. We
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provide a partial generalization of Harder’s result, using an elementary approach which em-
ploys the cocycles of Sczech, see [9] which are defined by means of certain elliptic analogues
of classical Dedekind sums.

Theorem 1.5. [10, Theorem 1.1] Assume that $K$ is of class number one and let $p$ be a
rational prime that is inert in K. Then,

$tr(\sigma|H_{Eis}^{1}(\Gamma(p^{n}), \mathbb{C}))=\{\begin{array}{ll}-(p^{2}+1) , ifn=1-(p^{2n}-p^{2n-2}) , ifn>1.\end{array}$

The authors hope to generalize this result to higher class numbers in the near future. Our
results so far allow us to get explicit lower bounds for the cuspidal cohomology of certain
principal congruence subgroups that are stablized by complex conjugation. These explicit
lower bounds yield the following asymptotic bounds. For a related result, see the article [8]
of Rohlfs and Speh.

Corollary 1.6. [10, Corollary 1.4] Let $p$ be a rational prime that is unramified in $K$ and
let $\Gamma(p^{n})$ denote the principal congruence subgroup of level $(p^{n})$ of a Bianchi group $SL_{2}(\mathcal{O})$ .
Then, as $k$ increases and $n$ is fixed

$\dim H_{cusp}^{1}(\Gamma(p^{n}), E_{k,k})\gg k$

where the implicit constant depends on the level $\Gamma(p^{n})$ and the field K. Assume further that
$K$ is of class number one and that $p$ is inert in K. Then, as $n$ increases

$\dim H_{cusp}^{1}(\Gamma(p^{n}), \mathbb{C})\gg p^{3n}$

where the implicit constant depends on the field $K.$

They also investigate the Lefschetz numbers and the Eisenstein traces for the involution
given by the $GL_{2}/SL_{2}$-twist of complex conjugation. The results, when combined with those
about complex conjugation, give a closed formula for the trace of $\sigma$ on the first cohomology
of $GL_{2}(\mathcal{O})$ . This implies the following asymptotics for the cohomology of $GL_{2}(\mathcal{O})$ .

Corollary 1.7. [10, Corollary 1.5] Let $D$ be the discriminant of $K/\mathbb{Q}$ and $\mathcal{O}_{K}$ be its ring

of integers. As $K/\mathbb{Q}$ is fixed and $karrow\infty$ , we have

$\dim H^{1}(GL_{2}(\mathcal{O}_{K}), E_{k,k})\gg k$

where the implicit constant depends on the discriminant D. As $k$ is fixed $and|D|arrow\infty$ , we
have

$\dim H^{1}(GL_{2}(\mathcal{O}_{K}), E_{k,k})\gg\varphi(D)$

where $\varphi$ is the Euler $\varphi$ junction and the implicit constant depends on the weight $k.$

As $H^{1}(GL_{2}(\mathcal{O}), E_{k,k})$ embeds into $H_{cusp}^{1}(SL_{2}(\mathcal{O}), E_{k,k})$ , the asymptotic lower bound as
$|D|arrow\infty$ of the above corollary also applies to $H_{cusp}^{1}(SL_{2}(\mathcal{O}), E_{k,k})$ . Rohlfs showed in [7]

that $H_{cusp}^{1}(SL_{2}(\mathcal{O}), \mathbb{C})\gg\varphi(D)$ as $|D|arrow\infty$ , yielding the same asymptotic as ours. The
results for $E_{k,k}=\mathbb{C}$ of the above Corollary can also be derived from the main results of
thesis of Kr\"amer. Note that Kr\"amer also produces the upper bound

$\dim H_{cusp}^{1}(SL_{2}(\mathcal{O}), \mathbb{C})\ll|D|^{3/2}.$

Finally, let $H_{bc}^{1}(GL_{2}(\mathcal{O}), E_{k,k})$ denote the subspace of $H^{1}(GL_{2}(\mathcal{O}), E_{k,k})$ which corre-
sponds to those cuspidal Bianchi modular forms which arise from classical cuspidal modular
forms via base-change or arise from a quadratic extension of $K$ via automorphic induction
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(see [3] for these notions). Using the results above, they give a “computational criteria”
determining when the space $H^{1}(GL_{2}(\mathcal{O}), E_{k,k})$ is exhausted by base-change classes, and, as
an application, they get the following result, which is not included in [10].

Theorem 1.8. Let $K$ be an imaginary quadratic field with ring of integers $\mathcal{O}$ and discrim-
inant $\geq-260$ . Then

$H^{1}(GL_{2}(\mathcal{O}), \mathbb{C})=H_{bc}^{1}(GL_{2}(\mathcal{O}), \mathbb{C})$ .
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