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ABSTRACT. We will consider about some inequalities for operator means for more
than three operators, for instance, ALM and BMP geometric means will be consid-
ered. Moreover, $\log$-Euclidean and logarithmic means for several operators will be
treated.

1. INTRODUCTION

Let $\mathcal{H}$ be a complex Hilbert space, and $B(\mathcal{H})$ be the algebra of all bounded linear
operators on $\mathcal{H}$ . An operator $A$ is said to be positive semi-definite (resp. positive
definite) if and only if $\langle Ax,$ $x\rangle\geq 0$ for all $x\in \mathcal{H}$ (resp. $\langle Ax,$ $x\rangle>0$ for all non-zero
$x\in \mathcal{H})$ . Let $\mathbb{P}$ and $\mathbb{S}$ be the sets of all positive definite and self-adjoint operators,
respectively. From this, we can consider the order among $\mathbb{S}$ , i.e., for $A,$ $B\in \mathbb{S},$

$A\leq B$ if and only if $0\leq B-A.$

A real valued function $f$ on an interval $J\subset \mathbb{R}$ is called the operator monotone function
if and only if

$A\leq B$ implies $f(A)\leq f(B)$

holds for all $A,$ $B\in \mathbb{S}$ whose spectral are contained in $J.$

Kubo-Ando [7] have shown the following important result:

Theorem $A$ ([7]). For each operator connection $\sigma$ , there exists a unique operator
monotone function $f:(0, +\infty)arrow(0, +\infty)$ such that

$f(t)I=I\sigma(tl)$ for all $t\in(O, +\infty)$ ,

and for $A>0$ and $B\geq 0$ , the formula
$A\sigma B=A^{\frac{1}{2}}f(A^{\frac{-1}{2}BA^{\frac{-1}{2}}})A^{\frac{1}{2}}$

holds, where the right hand side is defined via the analytic functional calculus. More-
over if $f(1)=1$ , then an operator connection $\sigma$ corresponding to $f$ is an operator
mean. An operator monotone function $f$ is called a representing function of $\sigma.$

Typical examples of operator means are harmonic, geometric and arithmetic means
denoted by!, $\#$ and $\nabla$ , respectively. Their representing functions are $[ \frac{1}{2}+\frac{1}{2}t^{-1}]^{-1},$

$t^{\frac{1}{2}}$

and $\frac{1+t}{2}$ , respectively.
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Extending Kubo-Ando theory to three or more operators was a long standing prob-
lem, in particular, we did not have any nice definition of geometric mean of three
operators. Recently, Ando-Li-Mathias [2] have given a nice definition of geometric
mean for $n$-tuple of positive operators. Then many authors study about operator
means for $n$-tuple of positive operators, and now we have three definitions of geomet-
ric means which are called ALM, BMP and the Karcher means. Moreover, we have
an extension of the Karcher mean which is called the power mean. It is defined by
the unique positive solution of the following operator equation: For $t\in[-1, 1]\backslash \{0\},$

$\sum_{i=1}^{n}w_{i}X\#_{t}A_{i}=X.$

for $A_{1},$ $A_{n}\in \mathbb{P}$ and probability vector $\omega=$ $(w_{1}, w_{n})\in(0,1)^{n}$ i.e., $\sum_{i=1}^{n}w_{i}=1.$

If $t=0$ , we can consider the power mean as the Karcher mean.
M. Uchiyama and one of the authors have obtained equivalence relations between in-

equalities for the power and arithmetic means as applications of a converse of Loewner-
Heinz inequality [16].

In this report, we shall investigate the previous research to other operator means
for $n$-tuples of operators. In fact, we shall treat ALM and BMP means, moreover
we shall discuss about some types of logarithmic means of several operators. This
report is organized as follows: In Section 2, we will introduce some definitions and
notations which will be used in the report. Then we shall consider the weighted
operator means in the view point of their representing functions in Section 3. In
Section 4, we shall consider about generalizations of the results by M. Uchiyama and
one of the authors. Especially, we shall consider about $\log$-Euclidean and logarithmic
means. In the last section, we shall introduce some properties of the $M$-logarithmic
mean which is generated from an arbitrary operator mean via integration.

2. PRIMARILY

Let $OM$ be the set of all operator monotone functions on $(0, \infty)$ , and let $OM_{1}=$

$\{f\in OM:f(1)=1\}$ . For $f\in OM_{1}$ , there exists an operator mean $\sigma_{f}$ such that

$A\sigma_{f}B=A^{\frac{1}{2}}f(A^{\frac{-1}{2}BA^{\frac{-1}{2}}})A^{\frac{1}{2}}$

for positive operators $A$ and $B$ . It is well known that if

$A!B\leq A\sigma_{f}B\leq A\nabla B$

holds for all positive operators $A$ and $B$ , where! and $\nabla$ mean harmonic and arithmetic
means, then

$( \frac{1+t^{-1}}{2})^{-1}\leq f(t)\leq\frac{1+t}{2}.$

holds for all $t>0.$

For $n$-tuples of positive definite operators, the ALM and BMP (geometric) means
are defined as follows:

Theorem $B$ (ALM mean [2]). For $\mathbb{A}=(A_{1}, A_{2})\in \mathbb{P}^{2}$ , the $ALM$ (geometric) mean
$\mathfrak{G}_{ALM}(\mathbb{A})$ of $A_{1}$ and $A_{2}$ is defined by $\mathfrak{G}_{ALM}(\mathbb{A})=A_{1}\# A_{2}$ . Assume that the $ALM$
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(geometric) mean $\mathfrak{G}_{ALM}$ of $(n-1)$ -tuples of positive definite operators is defined.
Let $\mathbb{A}=(A_{1}, \ldots, A_{n})\in \mathbb{P}^{n}$ and $\{A_{i}^{(r)}\}_{r=0}^{\infty}(i=1, n)$ be the sequences of positive
definite operators defined by

$A_{i}^{(0)}=A_{i}$ and $A_{i}^{(r+1)}=\mathfrak{G}_{ALM}((A_{j}^{(r)})_{j\neq i})$ .

Then there exists $\lim_{rarrow\infty}A_{i}^{(r)}$ $(i=1, n)$ and it does not depend on $i$ . The $ALM$

(geometric) mean $\mathfrak{G}_{ALM}(\mathbb{A})$ is defined by $\lim_{rarrow\infty}A_{i}^{(r)}.$

Theorem $C$ $(BMP mean [4, 6, 10 For \mathbb{A}=(A_{1}, A_{2})\in \mathbb{P}^{2}$ and $\omega=(1-w, w)\in$

$(0,1)^{2}$ , the $BMP$ (geometric) mean $\mathfrak{G}_{BMP}(\omega;\mathbb{A})$ of $A_{1}$ and $A_{2}$ is defined by $\mathfrak{G}_{BMP}(\omega;\mathbb{A})=$

$A_{1}\#_{w}A_{2}$ . Assume that the $BMP$ (9eometric) mean $\mathfrak{G}_{BMP}$ ) of $(n-1)$ -tuples of pos-
itive definite operators is defined. Let $\mathbb{A}=(A_{1}, \ldots, A_{n})\in \mathbb{P}^{n}$ and $\omega=(w_{1}, w_{n})$ be

a probability vector. Define $\{A_{i}^{(r)}\}_{r=0}^{\infty}$ $(i=1, n)$ the sequences of positive definite
operators defined by

$A_{i}^{(0)}=A_{i}$ and $A_{i}^{(r+1)}=\mathfrak{G}_{BMP}(\hat{\omega}_{\neq i};(A_{j}^{(r)})_{j\neq i})\#_{w_{i}}A_{i}^{(r)},$

where $\hat{\omega}_{\neq i}=\sum_{j\neq i}w_{j}$ . Then there exists $\lim_{rarrow\infty}A_{i}^{(r)}$ $(i=1, n)$ and it does not

depend on $i$ . The $BMP$ (geometric) mean $\mathfrak{G}_{BMP}(\omega;\mathbb{A})$ is defined by $\lim_{rarrow\infty}A_{i}^{(r)}.$

We remark that it is not known any weighted ALM mean. Let $\mathbb{A}=$ $(A_{1}, A_{n})$ , $\mathbb{B}=$

$(B_{1}, B_{n})\in \mathbb{P}^{n}$ and probability vector $\omega=(w_{1}, w_{n})$ . Here we denote the above
geometric means of $\mathbb{A}=$ $(A_{1}, A_{n})$ for the weight $\omega=(w_{1}, w_{n})$ by $\mathfrak{G}(\omega;\mathbb{A})$ , and
they have at least 10 basic properties as follows (in ALM mean case, we consider just
only $\omega=$ $( \frac{1}{n}, \frac{1}{n})$ case):

(P1) If $A_{1},$ $A_{n}$ commute with each other, then

$\mathfrak{G}(\omega;\mathbb{A})=\prod_{k=1}^{n}A_{k}^{w_{k}}.$

(P2) For positive numbers $a_{1},$ $a_{n},$

$\mathfrak{G}(\omega;a_{1}A_{1}, a_{n}A_{n})=\mathfrak{G}(\omega;a_{1}, \ldots,a_{n})\mathfrak{G}(\omega;\mathbb{A})=(\prod_{k=1}^{n}a_{k}^{w_{k}})\mathfrak{G}(\omega;\mathbb{A})$ .

(P3) For any permutation $\sigma$ on $\{$ 1, 2, $n\},$

$\mathfrak{G}(w_{\sigma(1)}, w_{\sigma(n)};A_{\sigma(1)}, A_{\sigma(n)})=\mathfrak{G}(\omega;\mathbb{A})$ .

(P4) If $A_{i}\leq B_{i}$ for $i=1,$ $n$ , then

$\mathfrak{G}(\omega;\mathbb{A})\leq \mathfrak{G}(\omega;\mathbb{B})$ .

(P5) $\mathfrak{G}(\omega;\cdot)$ is continuous on each operators. Especially,

$d( \mathfrak{G}(\omega;\mathbb{A}), \mathfrak{G}(\omega;\mathbb{B}))\leq\sum_{i=1}^{n}w_{i}d(A_{i}, B_{i})$ ,

where $d$ ) means the Thompson metric.
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(P6) For each $t\in[O$ , 1 $],$

$(1-t)\mathfrak{G}(\omega;\mathbb{A})+t\mathfrak{G}(\omega;\mathbb{B})\leq \mathfrak{G}(\omega;(1-t)\mathbb{A}+t\mathbb{B})$ .

(P7) For any invertible $X\in B(\mathcal{H})$ ,

$\mathfrak{G}(\omega;X^{*}A_{1}X, X^{*}A_{n}X)=X^{*}\mathfrak{G}(\omega;\mathbb{A})X.$

(P8) $\mathfrak{G}(\omega;\mathbb{A}^{-1})^{-1}=\mathfrak{G}(\omega;A)$ , where $\mathbb{A}^{-1}=(A_{1}^{-1}, A_{m}^{-1})$ .
(P9) If every $A_{i}$ is matrix, then $\det \mathfrak{G}(\omega;\mathbb{A})=\prod_{i=1}^{n}\det A_{i}^{w_{i}}.$

(P10)

$[ \sum_{i=1}^{n}w_{i}A_{i}^{-1}]^{-1}\leq \mathfrak{G}(\omega;\mathbb{A})\leq\sum_{i=1}^{n}w_{i}A_{i}.$

3. $0$PERATOR MEANS OF TWO VARIABLES

In this section, we shall consider the weighted operator means in the view point of
their weight.

Theorem 1. Let $\Phi$ and $f$ be non-constant operator monotone functions on $(0, \infty)$

with $\Phi(1)=f(1)=1$ , and let $\sigma$ be an operator mean whose representing function is
$\Phi$ . Let $w\in(O, 1)$ . For self-adjoint operators $A$ and $B$ , they are mutually equivalent:

(1) $(1-w)A\leq wB$ iff $f(\lambda A+I)\sigma f(-\lambda B+I)\leq I$ holds for all suficiently small
$\lambda>0,$

(2) $\Phi’(1)=w.$

Theorem 1 is an extension of the following Theorem $D$ in [16]. It was shown as a
converse of Loewner-Heinz inequality.

Theorem $D$ ([16]). Let $f(t)$ be an operator monotone function on $(0, \infty)$ with $f(1)=$
$1$ , and let $A$ and $B$ be bounded self-adjoint operators. Let $\sigma$ be an operator mean
satisfying! $\leq\sigma\leq\nabla$ . Then $A\leq B$ if and only if $f(\lambda A+I)\sigma f(-\lambda B+I)\leq I$ for all
suficiently small $\lambda\geq 0.$

4. MORE THAN THREE OPERATORS CASE

Let $\mathbb{A}=(A_{1}, \ldots, A_{n})\in \mathbb{P}^{n}$ . Define $\mathcal{A}(A)=\frac{1}{n}\sum_{i=1}^{n}A_{i}$ and $\mathcal{H}(\mathbb{A})=(\frac{1}{n}\sum_{i=1}^{n}A_{i}^{-1})^{-1}$

Let $\triangle_{n}$ be the set of all probability vectors, i.e.,

$\triangle_{n}=\{\omega= (w_{1}, w_{n})\in(0,1)^{n};\sum_{i=1}^{n}w_{i}=1\}.$

An an extension of the Karcher mean, the power mean is given by Lim-P\’aifia [11].
Let $\mathbb{A}=$ $(A_{1}, A_{n})\in \mathbb{P}^{n}$ and $\omega=(w_{1}, w_{n})\in\triangle_{n}$ . For $t\in[-1, 1]\backslash \{0\}$ , the power
mean $P_{t}(\omega;\mathbb{A})$ is defined by the unique positive definite solution of

$X= \sum_{k=1}^{n}w_{k}X\#_{t}A_{k}.$
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We remark that $P_{t}(\omega;\mathbb{A})$ converges to the Karcher mean $\Lambda(\omega;\mathbb{A})$ as $tarrow 0$ , strongly.
So we can consider $P_{0}(\omega;\mathbb{A})$ as $\Lambda(\omega;\mathbb{A})$ . It is easy to see that $P_{1}(\omega;A)=\mathcal{A}(\omega;\mathbb{A})$

and $P_{-1}(\omega;\mathbb{A})=\mathcal{H}(\omega;\mathbb{A})$ . Moreover $P_{t}(\omega;\mathbb{A})$ is increasing on $t\in[-1, 1]$ . Hence
the power mean interpolates arithmetic-geometric-harmonic means. In [16], we have
generalization of Theorem $D$ as follows:

Theorem $E$ ([16]). Let $A_{1},$ $A_{n}$ be Hermitian matrices, and $\omega=(w_{1}, w_{n})\in\triangle_{n}.$

Let $f(t)$ be a non-constant operator monotone function on $(0, \infty)$ with $f(1)=1$ . Then
the following are equivalent:

(1) $\sum_{i=1}^{n}w_{i}A_{i}\leq 0,$

(2) $P_{1}( \omega;f(\lambda A_{1}+I), \ldots, f(\lambda A_{n}+I))=\sum_{i=1}^{n}w_{i}f(\lambda A_{i}+I)\leq I$ for all sufficiently

small $\lambda\geq 0,$

(3) for each $t\in[-1, 1],$ $P_{t}(\omega;f(\lambda A_{1}+I), f(\lambda A_{n}+I))\leq I$ for all sufficiently
small $\lambda\geq 0.$

Here we shall generalize the above result into the following Theorem 2:

Theorem 2. Let $f$ be an strictly operator monotone function on $(0, \infty)$ with $f(1)=1,$

and let $\Phi(\omega;\mathbb{A}, x)$ : $\triangle_{n}\cross \mathbb{S}^{n}\cross \mathcal{H}arrow \mathbb{R}^{+}$ satisfying

(4.1)
$\Vert \mathcal{H}(\omega;\mathbb{A} \leq\sup_{\Vert x\Vert=1}\Phi(\omega;\mathbb{A}, x)\leq\Vert \mathcal{A}(\omega;\mathbb{A}$

for all $\mathbb{A}=$ $(A_{1}, A_{n})\in \mathbb{S}^{n}$ and $\omega\in\triangle_{n}$ . Then they are mutually equivalent:

(1) $\sum_{i=1}^{n}w_{i}A_{i}\leq 0,$

(2) $\Phi(\omega;f(\lambda A_{1}+I), f(\lambda A_{n}+I), x)\leq 1$ for all suficiently small $\lambda>0$ and all
unit vector $x\in \mathcal{H}.$

From here we shall consider another geometric mean for $n$-tuples of operators which
is called $\log$-Euclidean mean $E(\omega;\mathbb{A})$ . It is defined by

$E( \omega;\mathbb{A})=\exp(\sum_{i=1}^{n}w_{i}\log A_{i})$

Unfortunately, $\log$-Euclidean mean does not have the monotonicity property.

Corollary 3. Let $f$ be an strictly operator monotone function on $(0, \infty)$ with $f(1)=1.$
Let $\mathbb{A}=$ $(A_{1}, A_{n})\in \mathbb{S}^{n},$ $\omega=(w_{1}, w_{n})\in\triangle_{n}$ and let $M(\omega;\mathbb{A})$ be $ALM$ or weighted
$BMP$ or $log$-Euclidean mean $(in the ALM mean case, \omega$ should $be \omega=(\frac{1}{n}, \frac{1}{n})$ ). Then
the following assertions are equivalent:

(1) $\sum_{i=1}^{n}w_{i}A_{i}\leq 0,$

(2) $M(\omega;f(\lambda A_{1}+I), f(\lambda A_{n}+I))\leq I$ for all suficiently small $\lambda>0.$
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5. LOGARITHMIC MEANS

We shall consider logarithmic means for more than 3-operators. Since the repre-
senting function of logarithmic mean is $\frac{t-1}{\log t}$ , logarithmic mean $A\lambda B$ of two operators
$A$ and $B$ can be considered as the following formula:

$A \lambda B=\int_{0}^{1}A\#_{t}Bdt.$

So it is quite natural to consider the similar type of integrated means as follows:

Definition 1 ( $M$-logarithmic mean). Let $M:\triangle_{n}\cross \mathbb{P}^{n}arrow \mathbb{P}$ . Then for $\mathbb{A}\in \mathbb{P}^{n}$ , the
$M$-logarithmic mean $L(M)(A)$ of $A\in \mathbb{P}^{n}$ is defined by

$L(M)( A)=\int_{\omega\in\Delta_{n}}M(\omega;A)dp(\omega)$

if there exists, where $dp(\omega)$ means an arbitrary probability measure.

In what follows, we consider the case of $dp(\omega)=(n-1)!d\omega$ . Since the weighted
Karcher mean $\Lambda(\omega;A)$ is continuous on the probability vector according to the Thomp-
son metric [9], so $L(\Lambda)(\mathbb{A})$ exists.

Corollary 4. Logarithmic mean $L(\Lambda)(A)$ satisfies the same assertion to Corollary 3.

Proposition 5. Let $M:\triangle_{n}\cross \mathbb{P}^{n}arrow \mathbb{P}$ satisfy $(P3)$ , $(P7)$ , $(P8)$ and $(P10)$ . Then
$M$ -logarithmic mean satisfies $(P3)$ and $(P7)$ if it exists. Especially, $L(M)$ satisfies
$(P10)$ , i.e.,

$\mathcal{H}(\mathbb{A})\leq L(M)(\mathbb{A})\leq \mathcal{A}(\mathbb{A})$ .

We remark that $L(\mathcal{A})(\mathbb{A})=\mathcal{A}(A)$ , i.e., arithmetic mean is a fixed point for the
map $L$ . As for the preparation, we define some notations. Let $S$ be the cyclic shift
operator on $\mathbb{C}^{n}$ and let $\mathbb{S}$ be also the cyclic shift operator on $B(\mathcal{H})^{n}$ ; namely,

$S(w_{1}, w_{2}, w_{n})=(w_{2}, w_{3}, w_{n}, w_{1})$ .

Remark 6. Let $M:\Delta_{n}\cross \mathbb{P}^{n}arrow \mathbb{P}$ be a map satisfying (P3), (P7), (P8) and (P10).
We put

$M_{0}( \omega;A) :=M((\frac{1}{n}, \ldots, \frac{1}{n});M(\omega;\mathbb{A}), M(S\omega;\mathbb{A}), \ldots, M(S^{n-1}\omega;\mathbb{A}))$ .

Then $M_{0}$ satisfies the assumption of the above theorem. So $L(M_{0})$ satisfies (P10).
Moreover, the following inequalities hold

$\mathcal{H}(\mathbb{A})\leq L(M_{0})(\mathbb{A})\leq L(M)(A)\leq \mathcal{A}(\mathbb{A})$ .

If $M$ is a geometric mean, then it can be seen as an extension of harmonic-geometric-
logarithmic-arithmetic means inequalities.
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