On the Allan and Extended spectra in locally convex algebras

Hugo Arizmendi-Peimbert and Angel Carrillo-Hoyo

January 14, 2015

Abstract

Here we study and compare the spectrum $\sigma_A(x)$ given in [1] by Allan and the extended spectrum $\Sigma(x)$, given in [7] by Zelazko for x in a unital locally convex algebra, using the new concept of pseudo-Q algebra that we introduce in [2]. This one is a generalization of the notion of pseudo-complete algebra given in [1]. Also we show that there exists an algebra A that it is pseudo-Q but it is not pseudo-complete.

1 Introduction

G.R. Allan introduces in [1] the concept of spectrum for elements in a locally convex algebra. His idea derives from the spectral theory of a closed operator T on a Banach space E. In this theory the spectrum is the set of all the complex numbers for which $\lambda I - T$ has no bounded inverse. Allan establishes a suitable definition of bounded element in a locally convex algebra that, according to his own words, "is justified by the theory which stems form it".

Similar ideas are discussed in [5] by L. Waelbroeck for unital commutative quasi-complete locally convex algebras.

A complex algebra A with a topology τ is a locally convex algebra if it is a Hausdorff locally convex space with a separately continuous multiplication, i.e. for any $x_0 \in A$, the mappings $x \to x_0 x$ and $x \to xx_0$ are continuous. We say that the multiplication is *jointly continuous* if the map $A \times A \to A$, $(x, y) \to xy$, is continuous.

Throughout this paper $A = (A, \tau)$ will be a locally convex complex algebra with a unit e. A' will denote its topological dual and $\{\|\cdot\|_{\alpha}, \alpha \in \Lambda\}$ a family of seminorms defining the topology τ .

An element $x \in A$ is called *bounded* if the set $\{(\lambda x)^n : n = 0, 1, ...\}$ is bounded for some non-zero complex number λ . The set of all bounded elements is denoted by A_0 . For each $x \in A_0$ it is defined the radius of boundedness $\beta(x)$ of x by

$$\beta(x) = \inf \left\{ \lambda > 0 : \left\{ \left(\lambda^{-1} x \right)^n \right\}_{n \ge 1} \text{ is bounded} \right\}$$

with the usual convention that $\inf \emptyset = \infty$.

We say that A is Q-algebra if the set G(A) of all invertible elements of A is open. In [4] it is proved that a

normed algebra $(A, \|\cdot\|)$ is a Q-algebra if and only if $(e-x)^{-1} = \sum_{n=0}^{\infty} x^n$ for every $x \in A$ such that $\|x\| < 1$. A net (a_{λ}) in A is called *advertible with respect to a* $\in A$ if $a_{\lambda}a \to e$ and $aa_{\lambda} \to e$. Observe that if (a_{λ}) is convergent, then $a_{\lambda} \rightarrow a^{-1}$.

The algebra A is called *advertibly complete* if every Cauchy advertible net in A converges in A.

Proposition 1 Let A be a Q-algebra, then it is advertibly complete.

Proof. Let (a_{λ}) be an advertible Cauchy net with respect to $a \in A$. Since G(A) is an open neighborhood of e, there exists λ_0 such that $a_{\lambda_0}a$ and aa_{λ_0} are invertible, hence a is invertible and $a_{\lambda} = a_{\lambda}aa^{-1} \rightarrow a^{-1}$.

For the functional calculus that Allan constructs in [1] some kind of completeness condition is essential. Thus, he introduces the *pseudo-completeness* concept, which is defined by a weaker condition than completeness.

Here we show that it is possible to use the even weaker notions of pseudo-Qnees or advertible completeness in order to construct a similar functional calculus, using some basic properties of the Q-normed algebras.

By \mathfrak{B}_1 it is denoted in [1] the collection of all subsets B of A such that

(i) B is absolutely convex and $B^2 \subset B$ and

(ii) B is bounded and closed.

We shall assume, without loss of generality, that each $B \in \mathfrak{B}_1$ contains the unit e.

For each $B \in \mathfrak{B}_1$, let A(B) the subalgebra generated by B. Then from (i) and (ii)

$$A(B) = \{\lambda x : \lambda \in \mathbb{C}, x \in B\}$$

and the equation

$$||x||_{B} = \inf \{\lambda > 0 : x \in \lambda B\}$$

defines an algebra norm in B. We shall assume that A(B) carries the topology induced by this norm. Since B is bounded in (A, τ) the norm topology in B is stronger than its topology as a subspace of (A, τ) .

The algebra A is called *pseudo-complete* if each normed algebra A(B), for $B \in \mathfrak{B}_1$, is a Banach algebra. If A is sequentially complete then A is pseudo-complete.

We shall say that A is a pseudo-Q algebra if each of the normed algebras A(B), for $B \in \mathfrak{B}_1$, is a Q-algebra.

Proposition 2 Let A be a Q-algebra or a completely advertibly algebra. Then every A(B) is a Q-normed algebra for every $B \in \mathfrak{B}$, i.e. A is a pseudo-Q algebra.

Proof. Since any *Q*-algebra is advertibly complete, it is sufficient to treat the case that *A* is advertibly complete. Let $B \in \mathfrak{B}_1$ and take $x \in A(B)$ such that $||x||_B < 1$. Then $\left(\sum_{n=0}^m x^n\right)_{m=1}^\infty$ is a Cauchy sequence in A(B) and $(e-x)\sum_{n=0}^m x^n \to e$ and $\left(\sum_{n=0}^m x^n\right)(e-x) \to e$ in A(B), hence also in *A*. Since *A* is completely advertible, then (e-x) is invertible and

$$(e-x)^{-1} = \sum_{n=0}^{\infty} x^n.$$

Then, A(B) is a Q-normed algebra

In [1], it is introduced by Allan the spectrum $\sigma_A(x)$ of $x \in A$ as that subset of the Riemann sphere $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$ defined as follows

(a) For $\lambda \neq \infty$, $\lambda \in \sigma_A(x)$ if and only if $\lambda e - x$ has no inverse belonging to A_0

(b) $\infty \in \sigma_A(x)$ if and only if $x \notin A_0$

In that paper it is shown that $\sigma_A(x)$ is a non void set for every $x \in A$.

We shall call $\sigma_A(x)$ the Allan spectrum. The Allan radius $r_A(x)$ is defined by

$$r_{A}(x) = \sup \{ |\lambda| : \lambda \in \sigma_{A}(x) \},\$$

where $|\infty| = \infty$.

The resolvent set of x, $\rho(x)$, is the complement of $\sigma_A(x)$ in \mathbb{C}_{∞} .

On the other hand, W. Żelazko defines in [7] the concept of extended spectrum $\Sigma(x)$ for $x \in A$ in the following way.

As usual

$$\sigma\left(x\right) = \left\{\lambda \in \mathbb{C} : \left(\lambda e - x\right) \notin G\left(A\right)\right\}.$$

The resolvent function

$$R(\lambda, x) = (\lambda e - x)^{-1}$$

defined in $\mathbb{C} \setminus \sigma(x)$ is not always a continuous map in \mathbb{C} . Put

 $\sigma_{d}(x) = \{\lambda_{0} \in \mathbb{C} : R(\lambda, x) \text{ is discontinuous at } \lambda = \lambda_{0}\}$

and

$$\sigma_{\infty} \left(x \right) = \begin{cases} \emptyset & \text{if } \lambda \to R\left(1, \lambda x \right) \text{ is continuous at } \lambda = 0 \\ \infty & \text{otherwise} \end{cases}$$

Then the extended spectrum $\Sigma(x)$ of x is the union

$$\sigma(x)\cup\sigma_d(x)\cup\sigma_\infty(x)$$
.

In [7, Theorem 15.2] it is proved that if A is complete, then $\Sigma(x)$ is a non void set for each $x \in A$. However, we now prove that this is true for any unital locally convex algebra.

Theorem 3 (Zelazko) Let A be a complex unital locally convex algebra with and $x \in A$, then $\Sigma(x)$ is a non-void subset of \mathbb{C}_{∞} .

Proof. Let us assume that there exists $x \in A$ such that $\Sigma(x) = \emptyset$, then $x - \lambda e$ is invertible for every $\lambda \in \mathbb{C}$. In particular, there exists $f \in A'$ such that $f(x^{-1}) \neq 0$.

We define a complex function F as follows

$$F(\lambda) = f\left((x - \lambda e)^{-1}\right).$$

We have that F is a complex entire function, since

$$\lim_{\lambda \to \lambda_0} \frac{F(\lambda) - F(\lambda_0)}{\lambda - \lambda_0} = f\left(\left(\left(x - \lambda_0 e\right)^{-1}\right)^2\right),$$

because $\sigma_d(x) = \emptyset$.

Since $\sigma_{\infty}(x) = \emptyset$, we also have that

$$\lim_{|\lambda|\to\infty} |F(\lambda)| = \lim_{|\lambda|\to\infty} \left| f\left((x-\lambda e)^{-1} \right) \right| = \lim_{|\lambda|\to\infty} \left| \frac{1}{\lambda} f\left(\left(\frac{x}{\lambda} - e \right)^{-1} \right) \right| = 0.$$

It follows from Liouville's theorem that $F(\lambda) \equiv 0$, which is a contradiction.

We give now an alternative proof of this theorem using one that appears in [6]. This paper is concerning the topologization of the field C(t) of all rational functions on the indeterminate t over \mathbb{C} in such way that the addition and multiplication are continuous operations. Note that every division algebra over \mathbb{C} , other than \mathbb{C} itself, contains a subfield isomorphic to C(t).

Let us recall the theorem just mentioned.

Theorem 4 [6, Theorem 1](Williamson) Let A be a division algebra over \mathbb{C} , with a topology such that (i') there is one nonzero continuous linear functional;

(ii) addition and scalar multiplication are continuous;

(iii') multiplication (left or right) by an element of A is a continuous operation;

(iv) for each complex number λ_0 there is a non-negative integer $n(\lambda_0)$ such that $(\lambda - \lambda_0)^n \left\{ (t - \lambda e)^{-1} - (t - \lambda_0 e)^{-1} \right\}$ is bounded for all λ near λ_0 ; and there is a non-negative integer n' such that $\lambda^{-n'} (t - \lambda e)^{-1}$ is bounded for all sufficiently large $|\lambda|$. Then $A = \mathbb{C}$.

Proof. (of Theorem 3) Suppose $\Sigma(x) = \emptyset$, for some $x \in A$. Since $\sigma(x) = \emptyset$, then x is not a scalar multiple of e and we have that all rational functions $\frac{p(x)}{q(x)}$ are in A. Denote the algebra of these functions by C(x). It is a division algebra that satisfies all the conditions of Williamson theorem because it is a locally convex, with continuous multiplication, and $\sigma_d(x) = \sigma_{\infty}(x) = \emptyset$. Therefore $C(x) = \mathbb{C}$, which is a contradiction. (Observe that we can take $n(\lambda_0) = n' = 0$).

The extended spectral radius R(x) is defined by

$$R(x) = \sup \left\{ \left| \lambda \right| : \lambda \in \Sigma(x)
ight\}.$$

where $|\infty| = \infty$.

2 Comparison between $\Sigma(x)$ and $\sigma_A(x)$

Then next two results are proved in [2].

Theorem 5 If A is a pseudo-Q algebra, then $\Sigma(x) \subset \sigma_A(x)$ for any $x \in A$. Therefore, $R(x) \leq r_A(x)$.

Corollary 6 If A is a pseudo-Q algebra, then $\sigma_A(x)$ is a closed set in \mathbb{C}_{∞} and it is compact if $\infty \notin \sigma_A(x)$.

Lemma 7 [3, Lemma 2.2] Let $x \in A$ be such that the extended spectral radius R(x) is finite. Then for each $f \in A'$ the function $F(\lambda) = f(R(1,\lambda x))$ is holomorphic in the complex open disc $D(0,\delta)$ centered in 0 with radius $\delta = \frac{1}{R(x)}$ if R(x) > 0 and $D(0,\delta) = \mathbb{C}$, otherwise. Furthermore,

$$F^{(n)}(\lambda) = n! f(R(1,\lambda x))^{n+1} x^n$$

for every $\lambda \in D(0, \delta)$ and n = 0, 1, 2, ...In particular,

$$F^{(n)}(0) = n! f(x^n)$$

for all n = 0, 1, ...

Theorem 8 If A is pseudo-Q algebra and $x \in A$, then $\Sigma(x) = \sigma_A(x)$ if $\Sigma(x)$ is closed in \mathbb{C}_{∞} .

Proof. Assume that $\Sigma(x)$ is closed in \mathbb{C}_{∞} . By Theorem 5 we only have to prove that $\lambda_0 \notin \Sigma(x)$ implies $\lambda_0 \notin \sigma_A(x)$.

Let $\lambda_0 \notin \Sigma(x)$, with $\lambda_0 \neq \infty$, then $\lambda_0 e - x \in G(A)$. We shall show that $(\lambda_0 e - x)^{-1}$ is a bounded element. Since $\Sigma(x)$ is closed, there exists an open disc $D(\lambda_0)$ around λ_0 such that $\lambda e - x \in G(A)$ if $\lambda \in D(\lambda_0)$. We also know that $R(\lambda, x)$ is continuous at $\lambda = \lambda_0$. Using the identity

$$(\lambda e - x)^{-1} - (\lambda_0 e - x)^{-1} = (\lambda_0 - \lambda) (\lambda e - x)^{-1} (\lambda_0 e - x)^{-1},$$

we obtain

$$\lim_{\lambda \to \lambda_0} \frac{R(\lambda, x) - R(\lambda, x)}{\lambda - \lambda_0} = -R(\lambda_0, x)^2.$$

Then for any $f \in A'$ we get

$$\lim_{\lambda \to \lambda_0} \frac{f\left(R\left(\lambda, x\right)\right) - f\left(R\left(\lambda_0, x\right)\right)}{\lambda - \lambda_0} = -f\left(R\left(\lambda_0, x\right)^2\right),$$

which implies that $R(\lambda, x)$ is weakly holomorphic in $\lambda = \lambda_0$. By [1, (3.8) Theorem] we conclude that $(\lambda_0 e - x)^{-1}$ is bounded in A. Therefore $\lambda_0 \notin \sigma_A(x)$.

If $\infty \notin \Sigma(x)$, then some neighborhood of ∞ does not intersect $\Sigma(x)$ and we have that $R(x) < \infty$. Let $f \in A'$. By Lemma 7, the Taylor expansion of $F(\lambda) = f((R(1, \lambda x)))$ around 0 is

$$F(\lambda) = f(e) + \lambda f(x) + \frac{2\lambda^2}{2!}f(x^2) + \dots$$

for $|\lambda| < \frac{1}{R(x)}$. In particular, $\lim f(\lambda_0^n x^n) = 0$ for some $\lambda_0 > 0$ and then $\{f(\lambda_0^n x^n) : n \ge 1\}$ is bounded; therefore $\{(\lambda_0 x)^n : n \ge 1\}$ is bounded. Thus $x \in A_0$ and $\infty \notin \sigma_A(x)$.

Example 9 In [7, 10.9 Example] it is given a complex complete metrizable locally convex algebra W (Williamson's algebra) with a jointly continuous multiplication that contains a subalgebra isomorphic with the field A = C(t) of all rational functions of the indeterminate t over the complex field \mathbb{C} . Obviously A is a Q-algebra, therefore it is a pseudo-Q algebra. We claim that it is not pseudo-complete. Assume the contrary. It can be proved that $r_A(t) = 0$. Therefore, $\{t^n : n = 0, 1, ...\}$ is a bounded and idempotent set. Then, there exists an absolutely convex closed idempotent subset B of A that contains $\{t^n : n = 0, 1, ...\}$ and then, $||t^n||_B \leq 1$. According our assumption A(B) is a Banach algebra, hence $\sum_{n=0}^{\infty} a_n t^n \in A(B) \subset C(t)$ for every complex sequence (a_n) such that the series $\sum_{n=0}^{\infty} a_n z^n$ has radius of convergence greater than 1, but this is impossible because there exists such

that the series $\sum_{n=0}^{\infty} a_n z^n$ has radius of convergence greater than 1, but this is impossible because there exists such series for which the holomorphic function $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is not a rational function and then the series $\sum_{n=0}^{\infty} a_n t^n$ can not belongs to A. This proves our claim.

Example 10 Let X be a completely regular Hausdorff space and let $B_0(X)$ be the family of all bounded functions on X vanishing at infinity. We denote by $(C_b(X), \beta)$ the locally convex algebra of all complex bounded continuous functions on X with the usual operations and endowed with the strict topology β , which is given by the family of seminorms

$$\left\|f\right\|_{\varphi} = \sup_{x \in X} \left|f\left(x\right)\varphi\left(x\right)\right|$$

for each $f \in C_b(X)$ and $\varphi \in B_0(X)$. Every linear multiplicative continuous functional on $C_b(X)$ is a point evaluation T_x , i.e., $T_x(f) = f(x)$ for all $x \in X$, and every linear multiplicative functional on $C_b(X)$ is a point evaluation $T_{\overline{x}}$ with $\widetilde{x} \in \beta(X)$, where $\beta(X)$ is the Stone-Čech compactification of X. That is $\mathfrak{M}(C_b(X)) = X$ and $\mathfrak{M}^{\#}(C_b(X)) = \beta(X)$.

The algebra $(C_b(X), \beta)$ is complete if X is a k-space, i.e. $F \subset X$ is closed if and only if $F \cap K$ is closed for every compact $K \subset X$.

We have that $(C_b(X))_0 = C_b(X)$ and $\beta(f) = ||f||_{\infty} = \sup_{x \in X} |f(x)|$ for each $f \in C_b(X)$, because $|\lambda| > ||f||_{\infty}$

implies $\left\|\left(\frac{f}{\lambda}\right)^{n}\right\|_{\varphi} \to 0$ for every $\varphi \in B_{0}(X)$. On the other hand, we have that $\sigma_{A}(f) = \Sigma(f) = cl(f(X))$ for all $f \in C_{b}(X)$, where cl denotes the closure operator in \mathbb{C}_{∞} , since $(\lambda 1 - f)(x) = 0$ for $\lambda \in f(X)$ and $(\lambda 1 - f)^{-1}$ is not bounded for every $\lambda \in cl(f(X)) \setminus f(X)$.

Theorem 11 Let A be a pseudo-Q algebra. Then

$$R\left(x\right) = \beta\left(x\right) = r_A\left(x\right)$$

for every $x \in A$.

Proof. First we prove that $\beta(x) \ge r_A(x)$. If $\beta(x) = \infty$ we are done. Let $\beta(x) < r < \infty$ and $\lambda \in \mathbb{C}$ with $|\lambda| > r$. Since $\beta(x) = \inf \{ \|x\|_B : B \in \mathfrak{B}_1 \}$ we have that there exists $B \in \mathfrak{B}_1$ such that $\|x\|_B < |\lambda|$. Being A(B) a Q-algebra, we have that $(e - \frac{x}{\lambda})^{-1} \in A(B)$ and there exists M > 0 such that $\left\|\frac{(\lambda e - x)^{-1}}{M}\right\|_B < 1$, hence $\frac{(\lambda e - x)^{-1}}{M} \in B$ and consequently $\left\{ \left(\frac{(\lambda e - x)^{-1}}{M}\right)^n : n \ge 1 \right\}$ is a bounded set since B is bounded and idempotent: Therefore $\lambda \in r_A(x)$ and we have that $r \ge r_A(x)$. This implies that $\beta(x) \ge r_A(x)$.

We also have that $R(x) \leq r_A(x)$, since $\Sigma(x) \subset \sigma_A(x)$ and from [7, 15.6 Theorem] and [1, (2.18) Proposition] we get

$$R(x) = \beta'(x) = \beta''(x) = \beta(x)$$

where

$$\beta'(x) = \sup_{f \in A'} \left(\limsup |f(x^n)|^{1/n} \right)$$

and

$$\beta''(x) = \sup_{\|\cdot\|_{\alpha}} \left(\limsup \|x^n\|_{\alpha}^{1/n}\right)$$

Therefore, we obtain the result.

3 Algebras with continuous inversion

Let A be a locally convex algebra in which the map $x \to x^{-1}$ is continuous relative to the set of invertible elements. In this case we have that $\sigma_d(x) = \sigma_\infty(x) = \emptyset$ for every $x \in A$.

The first part of the next result is proved in [1, (4.1) Theorem] and the last one in [2].

Theorem 12 Let A be a locally convex unital algebra with continuous inversion, and let $x \in A$. Then

$$\sigma\left(x
ight)\subset\sigma_{A}\left(x
ight)\subset cl\left(\sigma\left(x
ight)
ight)$$

and if A is pseudo-Q algebra, then

$$\sigma_{A}\left(x\right)=\sigma\left(x\right).$$

Example 13 Let A = H(D(0,1)) be the algebra of all holomorphic functions in the complex unit open disc centered at 0, endowed with the open-compact topology τ_k , which can be given by the sequence of seminorms $\{\|\cdot\|_n = 1, 2, ...\}$, where $\|f\|_n = \max_{|z| \le r_n} |f(z)|$ and $0 < r_1 < r_2 < ... < 1$ is an increasing of positive numbers

tending to 1. Here we have that the spectrum $\sigma_A(z)$ of z is the closed disc $\overline{D(0,1)}$ since each element $(\lambda - z)^{-1}$ with $|\lambda| = 1$ is not bounded in A. Nevertheless, $\Sigma(z) = \sigma(z) = D(0,1)$, since in A the inversion $x \to x^{-1}$ is continuous on G(A).

References

- [1] G.R. Allan, A spectral theory for locally convex algebras, Proc. London Math. Soc. (3) (1965), 399-421.
- [2] H. Arizmendi-Peimbert and A. Carrillo-Hoyo, Pseudo-Q locally convex algebras. Preprint
- [3] H. Arizmendi-Peimbert, A. Carrillo-Hoyo, J. Roa-Fajardo, On the Extended and Allan Spectra and Topological Radii. Opuscula Math., 32, No. 2 (2012), 227-234.
- [4] V. Masconi, Some characterizations of normed complex Q-algebras, Elem. Math 42 (1987), 10-14.
- [5] L. Waelbroeck, Algèbres commutatives: éléments réguliers, Bull. Soc. Math. Belg. 9 (1957), 42-49.
- [6] J. Williamson, On topologising the field C(t), Proc. Amer. Math. Soc. 5, (1954), 729-734.
- [7] W. Żelazko, Selected topics in topological algebras, Aarhus University Lecture Notes Series 31 (1971).