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1. INTRODUCTION

We recall that a $n$-monotone function on $[0, \infty$ ) is a function which preserves
the order on the set of all $n\cross n$ positive semi-definite matrices. Moreover, if $f$ is
$n$-monotone for all $n\in \mathbb{N}$ , then $f$ is called operator monotone.

In the theory of operator connections by Kubo and Ando it is well-known that
there is an affine order isomorphism from the class of operator connections $\sigma$ onto
the class of nonnegative operator monotone functions $f$ on $(0, \infty)$ by $f(t)=I\sigma t.$

A connection $\sigma$ is called mean if it satisfies the normalization condition $I\sigma I=I,$

which is equivalent to that the representing function $f$ of $\sigma$ satisfies $f(1)=1.$
This theory has found a number of applications in operator theory and quantum

information theory. Restricting the definition of operator connections on the set of
positive semi-definite matrices of order $n$ , we can consider matrix connections of
positive matrices of order $n$ (or matrix connections of order $n$ ).

Definition 1.1. A binary operation $\sigma$ on $M_{n}^{+},$ $(A, B)\mapsto A\sigma B$ is called a matrix
connection of order $n$ (or $n$-connection) if it satisfies the following properties:

(I) $A\leq C$ and $B\leq D$ imply $A\sigma B\leq C\sigma D.$

(II) $C(A\sigma B)C\leq(CAC)\sigma(CBC)$ .
(III) $A_{n}\downarrow A$ and $B_{n}\downarrow B$ imply $A_{n}\sigma B_{n}\downarrow A\sigma B$

where $A_{n}\downarrow A$ means that $A_{1}\geq A_{2}\geq\ldots$ and $A_{n}$ converges strongly to A.
A mean is a normalized connection, i.e. $1\sigma 1=1$ . An operator connection means

a connection of every order. A n-semi-connection is a binary operation on $M_{n}^{+}$

satisfying the conditions (II) and (III).

Recall that a $n$-monotone function $f$ is symmetric if $f(t)=tf( \frac{1}{t})$ and $f$ is

self-adjoint if
$f(t)= \frac{1}{f(\frac{1}{t})}.$

A function $f:\mathbb{R}+arrow \mathbb{R}_{+}$ is called an interpolation function of order $n$ ([1]) if for
any $T,$ $A\in M_{n}$ with $A>0$ and $T^{*}T\leq 1$

$T^{*}AT\leq A \Rightarrow T^{*}f(A)T\leq f(A)$ .

We denote by $C_{n}$ the class of all interpolation functions of order $n$ on $\mathbb{R}+\cdot$
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Remark 1.2. Let $P(\mathbb{R}_{+})$ be a set of all Pick functions on $\mathbb{R}+,$ $P’$ the set of all
positive Pick functions on $\mathbb{R}+$ , i.e., functions of the form

$h(s)= \int_{[0,\infty]}\frac{(1+t)s}{1+ts}d\rho(t) , s>0,$

where $\rho$ is some positive Radon measure on $[0, \infty]$ . For $n\in \mathbb{N}$ denote by $P_{n}’$ the
set of all strictly positive $n$-monotone functions. The following properties can be
found in [1], [2],[3], [12], [17] or [4], :

(i) $P’=n_{n=1}^{\infty}P_{n}’,$ $P’= \bigcap_{n=1}^{\infty c_{n}}$ ;
(ii) $C_{n+1}\subseteq C_{n}$ ;
(iii) $P_{n+1}’\subseteq C_{2n+1}\subseteq C_{2n}\subseteq P_{n}’,$ $P_{n}’\subsetneq C_{n}$

(iv) $C_{2n}\subsetneq P_{n}’[20]$ ;

(v) A function $f:\mathbb{R}+arrow \mathbb{R}+$ belongs to $C_{n}$ if and only if $\frac{t}{f(t)}$ belongs to $C_{n}[4,$

Proposition 3.5].

The following useful characterization of a function in $C_{n}$ is due to Donoghue (see
[10], [9]), and to Ameur (see [1]).

Theorem 1.3. [4, Corollary 2.4] A function $f:\mathbb{R}+arrow \mathbb{R}+$ belongs to $C_{n}$ if and
only if for every $n$-set $\{\lambda_{i}\}_{i=1}^{n}\subset \mathbb{R}_{+}$ there exists a positive Pick function $h$ on $\mathbb{R},$

such that
$f(\lambda_{i})=h(\lambda_{i})$ for $i=1$ , . .. , $n.$

As a consequence, Ameur gave a ‘local’ integral representation of every function
in $C_{n}$ as follows.

Theorem 1.4. [2, Theorem 7.1] Let $A$ be a positive definite matrix in $M_{n}$ and
$f\in C_{n}$ . Then there exists a positive Radon measure $\rho_{\sigma(A)}$ on $[0, \infty]$ such that

(1) $f(A)= \int_{[0,\infty]}A(1+s)(A+s)^{-1}d\rho_{\sigma(A)}(s)$ ,

where $\sigma(A)$ is the set of eigenvalues of $A.$

Applying this representation, we give a ‘local’ integral formula for a connection of
order $n$ corresponding to a $n$-monotone function on $(0, \infty)$ Furthermore, this ‘local’
formula also establishes, for each interpolation function $f$ of order $2n$ , a connection
$\sigma$ of order $n$ corresponding to the given interpolation function $f$ . Therefore, it
shows that the map from the $n$-connections to the interpolation functions of order
$n$ is injective with the range containing the interpolation functions of order $2n.$

In this note we present two topics as follows:

(1) For each $n\in N$ there is an affine isomorphism from the set of matrix
symmetric connections of order $n$ onto the class of matrix symmetric n-
monotone functions, which is based on [D. T. Hoa, T. M. $Ho_{\}}$ H. Osaka,
Interpolation classes and matrix means, Banach Journal of Mathematical
Analysis, 9(2015), no. 3, 140-152].

(2) We characterize a class of non-selfadjoint operator means and a class of non-
symmetric operator means between the harmonic mean! and the arithmetic
mean $\nabla$ which is based on the joint work with Shuhei Wada.
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2. FROM $n$-CONNECTIONS TO $P_{n}’$

For any $n$-connection $\sigma$ , the matrix $I_{n}\sigma(tI_{n})$ is a scalar by [13, Theorem 3.2],
and so we can define a function $f$ on $(0, \infty)$ by

$f(t)I_{n}=I_{n}\sigma(tI_{n})$ ,

where $I_{n}$ is the identity in $M_{\mathfrak{n}}$ . Then $f\in P_{n}’\subsetneq C_{n}$ . Moreover, this correspondence

is injective.
Let $f$ be a function belonging to $C_{n}$ . We can define a binary operation $\sigma$ on

positive definite matrices in $M_{n}$ by:

(2) $A\sigma B=A^{z}f[A^{\overline{\tau}}BA^{-\tau}]A^{z}11-11, \forall A, B>0.$

This operation satisfies the property (III) of the definition of connection.

Lemma 2.1. Let $f$ be a positive function on $(0, \infty)$ belonging to $C_{n}$ . Then there
is a semi-connection of order $n,$ $\sigma$ , such that $f(t)I_{n}=I_{n}\sigma(tI_{n})$ for $t>0.$ $(i.e.,a$

binary operation $\sigma$ satisfying the axiom (II) and (III) in Definition 1.1).

Proof. We can define a binary $\sigma$ by the formula (2). Because of the continuity of
$f$ (see Remark 2.2 below), we imply that $\sigma$ has the property (III) in the definition.
By Theorem 1.4, there exists a Radon measure $\rho$ such that

$A \sigma B=\int_{[0,\infty]}\frac{1+s}{s}\{(sA):B\}d\rho(s)$

For any positive definite matrix $C$ of order $n,$

$C(A \sigma B)C=\int_{[0,\infty]}\frac{1+s}{s}C\{(sA):B\}Cd\rho(s)$

$= \int_{[0,\infty]}\frac{1+s}{s}\{(sCAC):CBC\}d\rho(s)$

$=(CAC)\sigma(CBC)$ .

1

In the proof above, we need the continuity of $f\in C_{n}$ . Actually, we follow the
definition of interpolation function in [4] and the continuity is the prior assumption
for any function. However, even if we did not assume the continuity of the functions
under consideration, we have

Remark 2.2. If $f\in C_{n}(I)$ for $n>2$ then $f$ is continuous on $I.$

Now we can state the main theorem of this section.

Theorem 2.3. For any natural number $n$ there is an injective map $\Sigma$ from the set
of matrix connections of order $n$ to $P_{n}’\supset C_{2n}$ associating each connection $\sigma$ to the
function $f_{\sigma}$ such that $f_{\sigma}(t)I_{n}=I_{n}\sigma(tI_{n})$ for $t>0$ . Furthermore, the range of this
map contains $C_{2n}.$

Proof. We have only to prove that the range of the map $\Sigma$ contains $C_{2n}$ . For any
$f\in C_{2n}$ , since $C_{2n}\subset C_{n}$ , by Lemma 2.1 there is a semi-connection $\sigma f$ defined by
the formula (2) and $f(t)I_{n}=I_{n}\sigma_{f}(tI_{n})$ on $(0, \infty)$ . Since $f\in C_{2n}$ , by Theorem 1.4
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we have that for any $0<A\leq C$ and $0<B\leq D$ there exists a Radon measure $\rho$

on $\sigma(A^{-\underline{1}-1}-\tau BA^{-}\tau)\cup\sigma(C\overline{\tau}^{\underline{1}}DC^{-\overline{\tau}^{1}})$ such that

$A \sigma_{f}B=\int_{[0,\infty]}\frac{1+s}{s}\{(\mathcal{S}A):B\}d\rho(s)$ ,

$C \sigma_{f}D=\int_{[0,\infty]}\frac{1+s}{\mathcal{S}}\{(\mathcal{S}C):D\}d\rho(s)$ .

Since $\{(sA) : B\}\leq\{(sC) : D\}$ , the condition (I) satisfies. Hence $\sigma_{f}$ is a connection
of order $n$ . Since $\Sigma(\sigma_{f})(t)I_{n}=I_{n}\sigma_{f}(tI_{n})=f(t)I_{n}$ for any $t\in \mathbb{R}^{+}$ , we are done.

1

3. SYMMETRIC CONNECTIONS

As the same in [13], we can recall some notations and properties of connections
as follows. Let $\sigma$ be a $n$-connection. The transpose $\sigma’$ , the adjoint $\sigma^{*}$ and the dual
$\sigma^{\perp}$ of $\sigma$ are defined by

$A\sigma’B=B\sigma A, A\sigma^{*}B=(A^{-1}\sigma B^{-1})^{-1}, \sigma^{\perp}=\sigma^{J*}.$

A connection is called symmetric if it equals to its transpose. Denoted by $\Sigma_{n}^{sym}$

the set of $n$-monotone representing functions of symmetric $n$-connections, i.e., $\Sigma_{n}^{sym}$

is the image of the set of all symmetric $n$-connections via the canonical map in
Theorem 2.3. Then, using the same argument as in [13], we can state the following
properties for any $n$-connection:

(1) $\sigma+\sigma’$ and $\sigma(:)\sigma’$ are symmetric.
(2) $\omega_{l}(\sigma)\omega_{r}=\sigma;\omega_{r}(\sigma)\omega_{l}=\sigma’$ , where $A\omega_{l}B=A$ and $A\omega_{r}B=B.$

(3) The $n$-monotone representing function of the $n$-connection $\sigma(\tau)\rho$ is $f(x)g[h(x)/f(x)],$
where $f,$ $g,$

$h$ are the representing functions of $\sigma,$ $\tau,$ $\rho$ in Theorem 2.3, respec-
tively.

(4) $\sigma$ is symmetric if and only if its $n$-monotone representing function $f$ is
symmetric, that is, $f(x)=xf(x^{-1})$ .

Each $n$-connection corresponds to a positive $n$-monotone function belonging to
$\Sigma_{n}$ by Theorem 2.3. Therefore, combining with the observation above, we get the
following.

Proposition 3.1. Let $f(x)$ , $g(x)$ , $h(x)$ belong to $\Sigma_{n}$ . Then the following statements
hold true:

(i) $k(x)=xf(x^{-1})$ , $f^{*}(x)=f(x^{-1})^{-1},$ $\frac{x}{f(x)},$ $f(x)g[h(x)/f(x)],$ $af(x)+bg(x)$

all belong to $\Sigma_{n}$ ;
(ii) $f(x)+k(x)$ , $\frac{f(x)k(x)}{f(x)+k(x)}$ all belong to $\Sigma_{n}^{sym}.$

Corollary 3.2.
$C_{2n}\subseteq\Sigma_{n}\subsetneq P_{n}’.$

But if we restrict our attention to the class of the symmetric, we get the following
equality.

Theorem 3.3.
$\Sigma_{n}^{sym}=P_{n}^{\prime sym},$

where $P_{n}^{\prime sym}$ is the set of all symmetric functions in $P_{n}’.$
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Proof. The inclusion $\Sigma_{n}^{sym}\subset P_{n}^{\prime\epsilon ym}$ is trivial by Theorem 2.3.
Let $f$ be a symmetric function in $P_{n}’$ . We can define a binary operation on

positive definite matrices of order $n$ by

$A\sigma B=A^{1}\Sigma f[A^{\frac{-1}{2}BA^{\frac{-1}{2}}}]A\#.$

For any $B\leq D$ , then $A^{\overline{-}\tau^{1}}BA^{\frac{-1}{2}}\leq A^{\overline{-}}\tau^{1}DA\tau$ . Since $f$ is $n$-monotone and the
conjugate action preserves the order on self-adjoint matrices, we obtain

$A^{1}\Sigma f[A^{ \overline{\tau}^{\underline{1}}}BA^{\frac{-1}{2}}]A^{1}\Sigma\leq A:_{f[}A^{\overline{\tau}^{\underline{1}}}DA^{\frac{-1}{2}}]A^{\frac{1}{2}}.$

This means $A\sigma B\leq A\sigma D$ . Since $f$ is symmetric, we also have

$A\sigma D=D^{1}zf[D^{\overline{-}\tau^{1}}AD^{=_{T^{1}}}]D^{1}\mathfrak{T}.$

Using this identity, we can also show that $A\sigma D\leq C\sigma D$ whenever $A\leq C$ . Thus,
$A\sigma B\leq A\sigma D\leq C\sigma D$ for any positive matrices $A,$ $B,$ $C,$ $D$ with $A\leq C$ and $B\leq D.$

1

Remark 3.4. We would like to mention that even $P_{n+1}’\subsetneq P_{n}’$ , but we still do not
know whether $P_{n+1}^{\prime sym}\subsetneq P_{n}^{\prime sym}$ holds or not. As the first thought, we can obtain a
symmetric function from the polynomial in $P_{n+1}’$ but not in $P_{n}’$ and such a function
is a candidate to show $P_{n+1}^{\prime sym}\subsetneq P_{n}^{\prime sym}$ . Unfortunately, this is not true as the
following example.

4. NON-SYMMETRIC OPERATOR MEANS

In [13] any symmetric operator mean $\sigma$ satisfies! $\leq\sigma\leq\nabla$ . In this section we
show that there are many non-symmetric operator means $\sigma$ such that! $\leq\sigma\leq\nabla.$

4.1. Barbour transform. In [14] for any strictly positive continuous functions on
$(0, \infty)$ the Barbour path function $\phi_{\alpha,\beta,\gamma}$ : $[0, 1]arrow OM_{+}^{1}$ introduced by

$\phi_{\alpha,\beta,\gamma}(x)=\frac{\alpha x+\beta(1-x)}{x+\gamma(1-x)}$

and the basic proparties are studied in [14], [18]. In [7] Barbour studied a function
$F_{x}(1, t)=\phi_{t,\sqrt{t},\sqrt{t}}(x)$ which is an approximation of the exponential function $t^{x}.$

We will denote a Barbour path $\phi_{\alpha,\beta,\gamma}(=\phi)$ such that $\phi(0)=f,$ $\phi(\frac{1}{2})=g,$ $\phi(1)=h$

by the triple $[f, 9, h].$

Proposition 4.1. ([14]) For $f\in OM_{+}$ the Barbour path $[1, \frac{t+f}{1+f}, t]$ exists on $OM_{+}^{1}.$

The transform : $OM+arrow OM_{+}^{1}$ by $f \mapsto\frac{t+f}{1+f}$ plays an important role in the
analysis of $OM+and$ we call this transform the Barbour transform.

Proposition 4.2. ([14])

(1) The Barbour transform is injective and $\overline{OM+}=OM_{+}^{1}\backslash \{1, t\}.$

(2) $\{f\in OM_{+}^{1}|!\leq f\leq\nabla\}=\overline{OM_{+}^{1}}$ , where! $\leq f$ means that! $\leq\sigma_{f}$ , that is,
for any positive operators $A$ and $BA!B\leq A\sigma fB.$
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For $g\in OM_{+}^{1}$ we can define the inverse map‘ of the Barbour transform by

$\check{g}(t)=\frac{t-g}{g-1},$

then $\check{g}\in OM+\cdot$

Using the Barbour transform we can characterize the self-adjointness and the
symmetricity in $OM+\cdot$

Theorem 4.3. Let $f$ be a positive cntinuous function on $(0, \infty)$ . The folowings
are equivalent.

(1) $f\in OM_{+}^{1}\backslash \{1, t\}$ and $f=f^{*}.$

(2) There exists an operator monotone function $g\in OM_{+}$ such that $f=\sqrt{99^{*}}.$

(3) There exixts an operator monotone function $g\in OM+$ such that

$f= \frac{t+g+g’}{1+g+9’}.$

Remark 4.4. In [13] they asked existence of self-adjoint operator means except
trivial means $\omega_{l},$ $\omega_{r}$ , the geometric mean $\#$ , and $\sigma_{t^{p}}(p\in[0,1$ where $A\omega_{l}B=A,$

$A\omega_{r}B=B,$ $A\# B=A^{1}z(A^{-}zBA^{-\Sigma}11)^{\frac{1}{2}}A^{1}z$ for any positive operators $A$ and $B$ . Using
Theorem 4.3 we can construct many examples. For example, if $g(t)=\log(t+1)$ ,
then corresponding operator means of functions $\sqrt{\log(t+1)}/\log(l^{-1}+1)$ and

$\frac{t+\log(t+1)+t\log(t^{-1}+1)}{1+\log(t+1)+t\log(t^{-1}+1)}$ are self-adjoint. 1

Theorem 4.5. Let $f$ be a positive cntinuous function on $(0, \infty)$ . The folowings
are equivalent.

(1) $f\in OM_{+}^{1}\backslash \{1, t\}$ and $f=f’.$
(2) There exists an operator function $g\in OM+$ such that

$f=g+g’.$

(3) There exists an operator monotone functions $g\in OM_{+}$ such that

$f= \frac{t-\sqrt{gg^{*}}}{\sqrt{gg^{*}}-1}.$

Proposition 4.6. Let $f$ be a positive continuous function on $(0, \infty)$ . The followings
are equivalent.

(1) $f\in OM$ $\{$ 1, $t\}$ and $f=f’.$
(2) There exists an operator monotone function $g\in OM+$ such that

$f= \frac{t+\sqrt{gg^{*}}}{1+\sqrt{gg^{*}}}$

Proof This follows from the same argument in Theorem 4.3 using the formula
$(\hat{h})’=\hat{h}^{*}$ for $h\in OM+\cdot 1$
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5. NON SELF-ADJOINT OPERATOR MEANS

In [13] any symmetric operator mean $\sigma$ satisfies! $\leq\sigma\leq\nabla$ . In this section
we consider the converse problem and show that there are many non self-adjoint
operator means $\sigma$ such that! $\leq\sigma\leq\nabla.$

Lemma 5.1. Let $f:(0, \infty)arrow(0, \infty)$ be a continuous function. The followings are
equivalent.

(1) $f\in OM_{+}$ and $f\geq f_{\nabla}$ , that is $f(t) \geq\frac{1+t}{2}$ for $t\in(O, \infty)$ .
(2) There exists an operator monotone $g\in OM_{+}$ and nonnegative real number

$a,$ $b \geq\frac{1}{2}$ such that $\lim_{tarrow 0}g(t)=0,$ $\lim_{narrow\infty_{t}}^{\Phi^{t}}=0$ , and

$f(t)=a+bt+g(t)(t\in(0, \infty$

Lemma 5.2. Let $f:(0,\infty)arrow(0,\infty)$ be a continuous function. The followings are
equivalent.

(1) $f\in OM+andf\leq f_{!}$ , that is, $f(t) \leq\frac{2t}{1+t}(t\in(O,$ $\infty$

(2) There exists an operator monotone $g\in OM_{+}$ and nonnegative real number
$a,$ $b \geq\frac{1}{2}$ such that $\lim_{tarrow 0}g(t)=0,$ $\lim_{narrow\infty}\frac{9(t)}{t}=0$ , and

$f(t)= \frac{t}{a+bt+g(t)}(t\in(0, \infty$

Corollary 5.3. If $f\in OM_{+}^{1}$ and $f\leq f_{!}$ , then $f=f_{!}.$

Corollary 5.4. If $f\in OM_{+}^{1}$ and $f\geq f_{\nabla}$ , then $f=f_{\nabla}.$

Proposition 5.5. Suppose that $f\in OM_{+}$ and $f<f_{!}$ . Then $f_{!}\leq\hat{f}\leq f_{\nabla}$ and $\hat{f}$ is
not self-adjoint.

Corollary 5.6. Let $a,$
$b$ be nonnegative real number greater than $\frac{1}{2}$ and $g\in OM+$

satisfying the condition (2) in Lemma 5.2. Define a function $f:(0, \infty)arrow(0, \infty)$

by $f(t)= \frac{t}{a+bt+g(t)}$ ($t\in(0,$ $\infty$ Then $f\in OM_{+},$ $f_{!}\leq\hat{f}\leq f_{\nabla}$ , and $\hat{f}$ is not
self-adjoint.

Lemma 5.7. If a symmetric operator mean is self-adjoint, then $\sigma=\#.$

Proof Let $f$ be a corresponding operator monotone function to $\sigma$ . Then

$f(t)=tf( \frac{1}{t})=\frac{1}{f(\frac{1}{t})}.$

Hence, $f(t)=\sqrt{t}$ , and $\sigma=\#.$ $1$

Remark 5.8. From Lemma 5.7 we know that all operator means of Arithmetric
mean, logarithmic mean, Harmonic mean, Heinz mean, Petz-Hasegawa mean, Lehmer
mean, and Power difference mean, are non-self-adjoint.
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5.1. Non-symmetric operator means. In this section we present an algorizum
for making non-symmetric means $\sigma$ such that! $\leq\sigma\leq\nabla.$

Lemma 5.9. Let $f$ be a positive operator monotone function on $(0, \infty)$ with $f(1)=$
$1$ . The followings are equivalent:

(1) $\sigma_{\hat{f}}$ is non-symmetric and! $\leq\sigma_{j}\leq\nabla,$

(2) $f$ is non-self-adjoint.

Proof. (2) $arrow(1)$ : Since $(\hat{f})’=\hat{f^{*}}$ , if $f$ is non-self-adjoint operator monotone, $\hat{f}$

is non-symmetric, that is, $\sigma_{\hat{f}}$ is non-symmetric. We have, then,! $\leq\sigma_{\hat{j}}\leq\nabla$ by

Proposition 4.2 (2).

(1) $arrow(2)$ : If $f$ is self-adjoint, then $\hat{f}$ is symmetric, and a contradiction. 1

Hence we have the following result.

Proposition 5.10.

{$f|f$ : non-symmetric, $f_{!}\leq f\leq f_{\nabla}$ }

$=\{\hat{f}|f$ : non-self-adjoint}
$=\{\hat{f}\wedge|f:non-symmetric\}$

$\supset\{\hat{f}|f:symmetric\}\backslash \{\#\}$

Remark 5.11. From Proposition 5.10 a non-self-adjoint positive monotone func-
tions $f$ with $f(1)=1$ give non-symmetric operator mean such that! $\leq\sigma_{\hat{f}}\leq\nabla$ . For
examples, let $-1\leq p\leq 2$ and $ALG_{p}$ be the corresponding function to the power
diffrence mean defined by

$ALG_{p}(t)=\{\begin{array}{ll}\frac{p-1}{p}\frac{1-t^{p}}{1-t^{p-1}} t\neq 11 t=1\end{array}$

and the Petz-Hasegawa function $f_{p}$ which is defined by

$f_{p}(t)=p(p-1) \frac{(t-1)^{2}}{(t^{p}-1)(t^{1-p}-1)}$

are non-self-adjoint. Hence,
$\sigma_{\hat{ALG}_{p}}$ and

$\sigma_{\hat{f_{p}}}$
are non-symmetric operator means

between! and $\nabla.$

Using Lemmas 5.1 and 5.2 we can give non-symmetic operator means between!
and $\nabla.$

The following should be well-known.

Corollary 5.12. Let $f\in OM+$ such that $\sigma_{f}\geq\nabla$ and let $g\in OM+$ such that
$f(t)=a+bt+g(t)$ in Lemma 5.1 $(a, b \geq\frac{1}{2})$ . Suppose that 9 is symmetric and

$a\neq b$ . Then $\hat{f}\wedge$ is not symmetric and! $\leq\sigma_{\hat{f}^{-}}\leq\nabla.$
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Proof. Since $g$ is symmetric,

$tf( \frac{1}{t})=t(a+b\frac{1}{t}+g(\frac{1}{t}))$

$=ta+b+tg( \frac{1}{t})$

$=ta+b+g(t)$ .

Hence we know that $f$ is not symmetric because that $a\neq b.$

Therefore, by Proposition 5.10 $\hat{f}\wedge$ is not symmetric and! $\leq\sigma_{\hat{\hat{f}}}\leq\nabla.$

$I$
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