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SELF-ADJOINTNESS AND SYMMETRICITY OF OPERATOR
MEANS

HIROYUKI OSAKA*

1. INTRODUCTION

We recall that a n-monotone function on [0,00) is a function which preserves
the order on the set of all n x n positive semi-definite matrices. Moreover, if f is
n-monotone for all n € N, then f is called operator monotone.

In the theory of operator connections by Kubo and Ando it is well-known that
there is an affine order isomorphism from the class of operator connections ¢ onto
the class of nonnegative operator monotone functions f on (0,00) by f(t) = Iot.
A connection ¢ is called mean if it satisfies the normalization condition Iol = I,
which is equivalent to that the representing function f of o satisfies f(1) = 1.
This theory has found a number of applications in operator theory and quantum
information theory. Restricting the definition of operator connections on the set of
positive semi-definite matrices of order n, we can consider matrix connections of
positive matrices of order n (or matrix connections of order n).

Definition 1.1. A binary operation ¢ on M,", (A, B) — Ao B is called a matriz
connection of order n (or n-connection) if it satisfies the following properties:

() A<C and B < D imply AcB < CoD.
(II) C(AeB)C < (CAC)o(CBC).
(ITI1) A, | A and B, | B imply A,0B, | AcB
where A,, | A means that A; > A2 > ... and A, converges strongly to A.
A mean is a normalized connection, i.e. 161 = 1. An operator connection means
a connection of every order. A n-semi-connection is a binary operation on M’
satisfying the conditions (II) and (III).

1
Recall that a n-monotone function f is symmetric if f(t) = tf (z) and f is

_L
1

/(3)

A function f: Ry — R, is called an interpolation function of order n ([1]) if for

any T,Ae M, with A>0and T*T <1
T*AT <A = T*f(A)T < f(A).

self-adjoint if f(t) =

We denote by C,, the class of all interpolation functions of order n on R;.

Date: 15 Jan., 2015.
2000 Mathematics Subject Classification. Primary 46L30; Secandary 15A45.



135

Remark 1.2. Let P(Ry) be a set of all Pick functions on Ry, P’ the set of all
positive Pick functions on R, i.e., functions of the form

_ (1+1t)s
h(s) = /[O’w] 2 dpe), s >0,
where p is some positive Radon measure on [0,00]. For n € N denote by P, the
set of all strictly positive n-monotone functions. The following properties can be
found in [1], [2],[3], [12], [17] or [4], :
(i) P'=nz2, P, , P'=032,Cn 5
(i) Cnt1 C Cr;
(iil) Pyiq € Cont1 SCon C P, P, CCy
(iv) Con G Py, [20]; .
(v) A function f: R, — R, belongs to C, if and only if m belongs to Cy, [4,
Proposition 3.5].

The following useful characterization of a function in C, is due to Donoghue (see
(10], [9]), and to Ameur (see [1}).

Theorem 1.3. [4, Cbrollary 2.4] A function f: R, — R, belongs to C, if and
only if for every n-set {X;}%; C Ry there exists a positive Pick function h on R,
such that

F)=h(X) for i=1,...,n.

As a consequence, Ameur gave a ‘local’ integral representation of every function
in C,, as follows.

Theorem 1.4. [2, Theorem 7.1] Let A be a positive definite matrix in M,, and
f € Cn. Then there exists a positive Radon measure p,(4) on [0, 0] such that

(1) f(4) = AL+ s)(A + 5) " dpoa) (s),

[0,00]
where 0(A) is the set of eigenvalues of A.

Applying this representation, we give a ‘local’ integral formula for a connection of
order n corresponding to a n-monotone function on (0, co) Furthermore, this ‘local’
formula also establishes, for each interpolation function f of order 2n, a connection
o of order n corresponding to the given interpolation function f. Therefore, it
shows that the map from the n-connections to the interpolation functions of order
n is injective with the range containing the interpolation functions of order 2n.

In this note we present two topics as follows:

(1) For each n € N there is an affine isomorphism from the set of matrix
symmetric connections of order n onto the class of matrix symmetric n-
monotone functions, which is based on [D. T. Hoa, T. M. Ho, H. Osaka,
Interpolation classes and matrix means, Banach Journal of Mathematical
Analysis, 9(2015), no. 3, 140-152).

(2) We characterize a class of non-selfadjoint operator means and a class of non-
symmetric operator means between the harmonic mean ! and the arithmetic
mean V which is based on the joint work with Shuhei Wada.



2. FROM n-CONNECTIONS TO P,

For any n-connection o, the matrix I,o(tl,) is a scalar by {13, Theorem 3.2],
and so we can define a function f on (0,00) by

F@)In = Ino(tly),
where I, is the identity in M,,. Then f € P,’L C Cn. Moreover, this correspondence
is injective.
Let f be a function belonging to C,. We can define a binary operation o on
positive definite matrices in M,, by:

(2) AoB = A f[AT BAT|A%, VA,B>0.
This operation satisfies the property (III) of the definition of connection.
Lemma 2.1. Let f be a positive function on (0, 00) belonging to C,,. Then there

is a semi-connection of order n, o, such that f(t)I, = I,o(tl,) for t > 0. (i.e.,a
binary operation o satisfying the axiom (II) and (III) in Definition 1.1).

Proof. We can define a binary o by the formula (2). Because of the continuity of
f (see Remark 2.2 below), we imply that o has the property (III}) in the definition.
By Theorem 1.4, there exists a Radon measure p such that

1+s
AoB = ‘/[07001 . {(sA) : B}dp(s)

For any positive definite matrix C of order n,

C(AsB)C = /[0 ]1+SC{(sA):B}C’dp(s)

8

- / L1 8 1(sCAC) : CBCYdp(s)
[0,00] s
— (CAC)s(CBO).

In the proof above, we need the continuity of f € C,. Actually, we follow the
definition of interpolation function in [4] and the continuity is the prior assumption
for any function. However, even if we did not assume the continuity of the functions
under consideration, we have

Remark 2.2. If f € C,(I) for n > 2 then f is continuous on I.

Now we can state the main theorem of this section.

Theorem 2.3. For any natural number n there is an injective map ¥ from the set
of matrix connections of order n to P,; D Cay,, associating each connection o to the
function f, such that f,(¢)I, = I,o(tl,) for t > 0. Furthermore, the range of this
map contains Ca,.

Proof. We have only to prove that the range of the map ¥ contains Cs,. For any
f € Can, since Cp,, C Cy,, by Lemma 2.1 there is a semi-connection o defined by
the formula (2) and f(t)I, = I,04(tI,) on (0,00). Since f € Cap, by Theorem 1.4
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we have that for any 0 < A < C and 0 < B < D there exists a Radon measure p
on 6(AT BAT)Ua(CT DC:’}) such that

1+s )
AosB = /[0’001 £2{(s4) - Bldn(s),
CosD = 1 :_s{(sC) : D}dp(s).

{0,00]
Since {(sA) : B} < {(sC) : D}, the condition (I) satisfies. Hence o is a connection
of order n. Since X(0f)(t)I, = I,0¢(tl,) = f(t)I, for any t € R*, we are done.
|

3. SYMMETRIC CONNECTIONS

As the same in [13], we can recall some notations and properties of connections
as follows. Let o be a n-connection. The transpose o', the adjoint o* and the dual
ot of o are defined by

Ao'B = BoA, Ac*B=(A"'¢B™ )71, ol=0"

A connection is called symmetric if it equals to its transpose. Denoted by X5¥™
the set of n-monotone representing functions of symmetric n-connections, i.e., X3¥™
is the image of the set of all symmetric n-connections via the canonical map in
Theorem 2.3. Then, using the same argument as in [13], we can state the following
properties for any n-connection:

(1) o + 0’ and o(:)o’ are symmetric.
(2) wi(o)wr = 0; wp(o)w; = o', where Aw;B = A and Aw,B = B.

(3) The n-monotone representing function of the n-connection o(7)p is f(z)g[h(z)/f(z)],

where f, g, h are the representing functions of o, 7, p in Theorem 2.3, respec-
tively.
(4) o is symmetric if and only if its n-monotone representing function f is
symmetric, that is, f(z) = zf(z™1).
Each n-connection corresponds to a positive n-monotone function belonging to
X, by Theorem 2.3. Therefore, combining with the observation above, we get the
following.

Proposition 3.1. Let f(z), g(z), h(z) belong to X,. Then the following statements
hold true:
(i) k(z) = zf(@™!), f*(2) = f(z71)7Y, &, f(@)glh(2)/f(2)], af(z) + by(z)
all belong to X,,;
(il) f(z)+ k(z), ZEEEL all belong to Ty,

Corollary 3.2.
C2n g Zn g Pr’L

But if we restrict our attention to the class of the symmetric, we get the following
equality.

Theorem 3.3.
E:ym — Prllsym’

where P}*¥™ is the set of all symmetric functions in P’.
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Proof. The inclusion 8™ C P;*¥™ is trivial by Theorem 2.3.
Let f be a symmetric function in P,,. We can define a binary operation on
positive definite matrices of order n by

AcB = At f[A7 BAT]A}.

For any B < D, then AT BA7 < AT DA% . Since f is n-monotone and the
conjugate action preserves the order on self-adjoint matrices, we obtain

A f[AT BAT)A? < A} f[AT DAT|A%.
This means AcB < Ao D. Since f is symmetric, we also have
| AoD = D}f[D7 AD7|D%.

Using this identity, we can also show that AcD < CoD whenever A < C. Thus,
AoB < AoD < CoD for any positive matrices A, B,C, D with A < C and B < D.
|

Remark 3.4. We would like to mention that even P, ; C P;, but we still do not
know whether P,’¥" C P.*¥™ holds or not. As the first thought, we can obtain a
symmetric functlon from the polynomial in P, , but not in P} and such a function
is a candidate to show P, ¥7" ¢ P.¥™. Unfortunately, this is not true as the
following example.

4. NON-SYMMETRIC OPERATOR MEANS

In [13] any symmetric operator mean o satisfies ! < ¢ < V. In this section we
show that there are many non-symmetric operator means o such that ! <o < V.

4.1. Barbour transform. In [14] for any strictly positive continuous functions on
(0,00) the Barbour path function @4 g,y : [0,1] = OM} introduced by

az + (1 - z)

T+ (1 - z)
and the basic proparties are studied in [14], [18]. In [7] Barbour studied a function
Fy(1,t) = é: i, vi(x) which is an approximation of the exponential function ¢*.

We will denote a Barbour path ¢q 4,4 (= ¢) such that $(0) = f, ¢(3) = g, ¢(1) =
by the triple [f, g, h].

¢a,ﬁ,v( )

Proposition 4.1. ([14]) For f € OM, the Barbour path 1, 3£ %, t] exists on OM}.

The transform ~ : OM, — OM} by f — 1 + 7 plays an important role in the
analysis of OM, and we call this transform the Barbour transform.
Proposition 4.2. ([14)])
(1) The Barbour transform is injective and 5]\4: = OMi\{1,t}.

(2 {feoMil<f<V}= 'O/J\H, where ! < f means that ! < oy, that is,
for any positive operators A and B A!B < AcsB.
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For g € OM] we can define the inverse map ~of the Barbour transform by

t—g
§(t) = —=
§(t) FESE

then § € OM,.

Using the Barbour transform we can characterize the self-adjointness and the
symmetricity in OM,..

Theorem 4.3. Let f be a positive cntinuous function on (0,00). The folowings
are equivalent.
(1) f € OMI\{1,¢} and f = f*.
(2) There exists an operator monotone function g € OM, such that f = /gg*.
(3) There exixts an operator monotone function g € OM,. such that

t+g+g

I=1rgrg
g+yg

Remark 4.4. In [13] they asked existence of self-adjoint operator means except
trivial means wj, wy., the geometric mean f, and o4 (p € [0,1]), where Aw;B = A,
Aw,.B = B, A{B = A%(A“ll‘BA’%)%A% for any positive operators A and B. Using
Theorem 4.3 we can construct many examples. For example, if g(t) = log(t + 1),
then corresponding operator means of functions 1/log(t + 1)/ log(t—1 + 1) and
t+log(t+1) +tlog(t=t +1)
1+log(t+1) +tlog(t—* +1)

are self-adjoint. |

Theorem 4.5. Let f be a positive cntinuous function on (0,00). The folowings
are equivalent.

(1) f € OMI\{1,t} and f = f".
(2) There exists an operator function g € OM, such that
f=g9+4d.
(3) There exists an operator monotone functions g € OM,, such that
F=tZV99"
v9g* —1
Proposition 4.6. Let f be a positive continuous function on (0, c0). The followings
are equivalent.
(1) f € OMI\{1,t} and f = f.

(2) There exists an operator monotone function g € OM, such that

Fottveg
1++/g9*
Proof. This follows from the same argument in Theorem 4.3 using the formula
(k) = h* for he OM,.. 1



5. NON SELF-ADJOINT OPERATOR MEANS

In [13] any symmetric operator mean o satisfies ! < o < V. In this section
we consider the converse problem and show that there are many non self-adjoint
operator means o such that ! <o < V.

Lemma 5.1. Let f: (0,00) — (0,00) be a continuous function. The followings are
equivalent.
(1) f € OMy and f > fy, that is f(t) > 1t for t € (0, 00).
(2) There exists an operator monotone g € OM, and nonnegative real number
a,b> % such that lim; ¢ g(t) =0, lim, %—Q =0, and

f(t) =a+bt+g(t) (t €(0,00)).

Lemma 5.2. Let f: (0,00) — (0,00) be a continuous function. The followings are
equivalent.
(1) f € OM, and f < fy, that is, f(t) < 25 (t € (0,00)).
(2) There exists an operator monotone g € OM, and nonnegative real number
a,b > 1 such that lim;—o g(t) = 0, limp—co ﬂtﬁ =0, and

£t !

Corollary 5.3. If f € OM} and f < f, then f = fi.

Corollary 5.4. If f € OM} and f > fv, then f = fy.

Proposition 5.5. Suppose that f € OM, and f < fi. Then fi < fs Jv and fis
not self-adjoint.

Corollary 5.6. Let a,b be nonnegative real number greater than % and g € OM,
satisfying the condition (2) in Lemma 5.2. Define a function f: (0,00) — (0, 00)

by f(t) = sreigm (¢ € (0,00)). Then f € OMy, fi < f < fv, and f is not
self-adjoint.

Lemma 5.7. If a symmetric operator mean is self-adjoint, then ¢ = §.

Proof. Let f be a corresponding operator monotone function to o. Then

1 1
&) =tf(3) = —1
f (z)
Hence, f(t) = vt ,and o = 4. |
Remark 5.8. From Lemma 5.7 we know that all operator means of Arithmetric

mean, logarithmic mean, Harmonic mean, Heinz mean, Petz-Hasegawa mean, Lehmer
mean, and Power difference mean, are non-self-adjoint.
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5.1. Non-symmetric operator means. In this section we present an algorizum
for making non-symmetric means o such that ! <o < V.

Lemma 5.9. Let f be a positive operator monotone function on (0, 00) with f(1) =
1. The followings are equivalent:

(1) o} is non-symmetric and ! < 0; <V,

(2) f is non-self-adjoint.

Proof. (2) — (1): Since (f) = ?:, if f is non-self-adjoint operator monotone, f
is non-symmetric, that is, of is non-symmetric. We have, then, ! < 0f < V by
Proposition 4.2 (2).

(1) — (2): If f is self-adjoint, then f is symmetric, and a contradiction.

Hence we have the following result.
Proposition 5.10.
{f| f: non-symmetric, fi < f < fy}
= { f [ f: non—self—adjoint}

= { flf: non—symmetric}

D {f | f: symmetric} \ {t}

Remark 5.11. From Proposition 5.10 a non-self-adjoint positive monotone func-
tions f with f(1) = 1 give non-symmetric operator mean such that ! < o; < V. For
examples, let —1 < p < 2 and ALG,, be the corresponding function to the power
diffrence mean defined by

p—1 1—tP
ALGp(t) = p 1—tp-1 t#1
1 t=1
and the Petz-Hasegawa function f, which is defined by

—1)2
fP(t) = p(p - 1)(tp _(:f)(tll_)_p _ 1)

are non-self-adjoint. Hence, ¢
between ! and V.

— and o+ are non-symmetric operator means
ALG, o

Using Lemmas 5.1 and 5.2 we can give non-symmetic operator means between !
and V.

The following should be well-known.

Corollary 5.12. Let f € OM, such that oy > V and let ¢ € OM, such that
f(t) = a+bt+ g(t) in Lemma 5.1 (a,b > %) Suppose that g is symmetric and

a # b. Then f is not symmetric and ! < o j < V.
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Proof. Since g is symmetric,

(3) = ta+ b3 +9(3)

1
=ta+b+1g(;)
=ta+b+g(t).

Hence we know that f is not symmetric because that a # b.
Therefore, by Proposition 5.10 f is not symmetric and ! < o ; <v.l1
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