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1. INTRODUCTION

In this note, we explain Borcherds method to calculate the automorphism

group of a certain chamber in a hyperbolic space associated with an even hy-

perbolic lattice, and its application to the study of the automorphism groups

of $K3$ surfaces. We then present some examples of our computations. See the
preprint [18] for details.

2. BORCHERDS METHOD

First we fix some terminologies and notation. Let $S$ be a lattice; that is, $S$ is
a free $\mathbb{Z}$-module of finite rank with a non-degenerate symmetric bilinear form

$\langle, \rangle:S\cross Sarrow \mathbb{Z}.$

We say that $S$ is hyperbolic if $S\otimes \mathbb{R}$ is of signature $(1, n-1).$ A positive cone of
a hyperbolic lattice $S$ is one of the two connected components of

$\{x\in S\otimes \mathbb{R} x^{2}>0\}.$

Let $\mathcal{P}(S)$ be a positive cone of a hyperbolic lattice $S$ . The stabilizer subgroup in
$O(S)$ of $\mathcal{P}(S)$ is denoted by $O^{+}(S)$ . We say that $S$ is even if $x^{2}\in 2\mathbb{Z}$ holds for
any $x\in S$ . Suppose that $S$ is even. A root is a vector $r\in S$ such that $r^{2}=-2.$

Each root $r\in S$ defines a reflection

$s_{r}:x\mapsto x+\langle x, r\rangle r.$

We denote by $W(S)$ the subgroup of $O^{+}(S)$ generated by all the reflections $\mathcal{S}_{r}$

with respect to the roots. Then $W(S)$ is a normal subgroup of $O^{+}(S)$ , and $W(S)$

acts on $\mathcal{P}(S)$ . For $v\in S\otimes \mathbb{R}$ with $v^{2}<0$ , we put

$(v)^{\perp}:=\{x\in \mathcal{P}(S) \langle x, v\rangle=0\}.$

Let $N$ be the closure in $\mathcal{P}(S)$ of a connected component of

$\mathcal{P}(S)\backslash \bigcup_{r^{2}=-2}(r)^{\perp},$
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and we consider its automorphism group

$Aut(N) :=\{g\in O^{+}(S) N^{g}=N\}.$

(We let $O(S)$ act on $S\otimes \mathbb{R}$ from the right.) Then $N$ is a standard fundamental

domain of the action of $W(S)$ on $\mathcal{P}(S)$ , and $O^{+}(S)$ is the semi-direct product

$W(S)xAut(N)$ . Let $G$ be a subgroup of $O^{+}(S)$ with finite index. Borcherds

method [1, 2] is a method to calculate a finite set of generators of

$Aut(N)\cap G$

by embedding $S$ into an even hyperbolic unimodular lattice of rank $n=10$ , 18

or 26 primitively.

Remark 2.1. The lattices for which $Aut(N)$ is finite are classified by Nikulin [11,

12] and Vinberg [23]. Therefore we will be concerned with the cases where

$Aut(N)$ is infinite.

Borcherds method is based on the theory of Weyl vectors due to Conway [3].

Let $L_{n}$ denote the even hyperbolic unimodular lattice of rank $n=10$ , 18 or 26.

Then $L_{n}$ is unique up to isomorphisms. Let $\mathcal{D}$ be the closure in $\mathcal{P}(L_{n})$ of a

connected component of

$\mathcal{P}(L_{n})\backslash \bigcup_{r^{2}=-2}(r)^{\perp},$

which is a standard fundamental domain of the action of $W(L_{n})$ on $\mathcal{P}(L_{n})$ . We

call $\mathcal{D}$ a Conway chamber. We say that a vector $w\in L_{n}$ is a Weyl vector of $\mathcal{D}$ if

$\{(r)^{\perp} r^{2}=-2, \langle w, r\rangle=1\}$

is the set of walls of $\mathcal{D}.$

Theorem 2.2 (Conway [3]). A Weyl vector exists.

In fact, Conway [3] gave an explicit description of Weyl vectors.

Example 2.3. Let $U$ denote the hyperbolic plane with a Gram matrix

$(\begin{array}{ll}0 11 0\end{array}),$

and let $\Lambda$ be the negative-definite Leech lattice. Then we have $L_{26}\cong U\oplus\Lambda.$

Under this isomorphism, we denote vectors of $L_{26}$ by $(x, y, \lambda)$ , where $(x, y)\in U$

and $\lambda\in\Lambda$ . Then $w_{0}:=(1,0,0)$ is a Weyl vector of a Conway chamber $\mathcal{D}_{0}$ . The

set of walls of $\mathcal{D}_{0}$ is equal to $\{(r)^{\perp}|r\in \mathcal{R}_{0}\}$ , where

$\mathcal{R}_{0}:=\{(-1-\lambda^{2}/2,1, \lambda) \lambda\in\Lambda\}.$

Hence $Aut(\mathcal{D}_{0})\subset O^{+}(L_{26})$ is isomorphic to the Conway group $Co_{\infty}.$
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Suppose that we are given the following objects:

$\bullet$ an even hyperbolic lattice $S$ of rank $<26,$

$\bullet$ a subgroup $G\subset O^{+}(S)$ of finite index, and
$\bullet$ a standard fundamental domain $N$ of the action of $W(S)$ on $\mathcal{P}(S)$ .

We assume that $S$ is embedded in $L_{n}$ primitively, and that any element of $G$ can
be extended to an isometry of $L_{n}$ . (In the actual application to the study of $K3$

surfaces, the second condition can be easily checked by the theory of discriminant
forms.) Moreover, when $n=26$ , we further assume that the orthogonal comple-

ment $R$ of $S$ in $L_{26}$ cannot be embedded into $\Lambda$ . (This condition is satisfied if $R$

has a vector of square norm $-2.$ )

A Conway chamber $\mathcal{D}$ is said to be $S$ -nondegenerate if $D:=\mathcal{D}\cap \mathcal{P}(S)$ con-
tains a non-empty open subset of $\mathcal{P}(S)$ . In this case, we say that $D$ is an induced

chamber. Since $\mathcal{P}(L_{n})$ is tiled by Conway chambers, $\mathcal{P}(S)$ is tiled by induced
chambers. Moreover, since a root of $S$ is a root of $L_{n}$ , the given standard fun-

damental domain $N$ in $\mathcal{P}(S)$ is a union of induced chambers. Two induced

chambers $D$ and $D’$ are said to be $G$ -congruent if there exists $g\in G$ such that
$D’=D^{g}.$

Proposition 2.4. The number of $G$ -congruence classes of induced chambers is

finite.

Proposition 2.5. The number of walls of an induced chamber $D=\mathcal{D}\cap \mathcal{P}(S)$ is
finite, and we can calculate the set of walls of $D$ from the Weyl vector of $\mathcal{D}.$

Hence $Aut(D)\cap G=\{g\in G|D^{9}=D\}$ is finite for any induced chamber $D.$

Moreover, for two induced chambers $D$ and $D’$ , we can determine whether $D$

and $D’$ are $G$-congruent or not.

Borcherds method makes a complete list $\mathbb{D}$ of representatives of all $G$-congruence
classes of induced chambers contained in $N$ . We start from an induced chamber
$D_{0}$ contained in $N$ , set $\Gamma$

$:=$ $\{\}$ and $\mathbb{D}$ $:=[D_{0}]$ , and proceed as follows. For an
induced chamber $D_{i}\in \mathbb{D}=[D_{0}, . . . , D_{k}]$ , we calculate the set of walls of $D_{i}$ and
the finite group Aut $(D_{i})\cap G$ . We append a set of generators of Aut $(D_{i})\cap G$ to
$\Gamma$ . For each wall $(v)^{\perp}$ of $D_{i}$ that is not a wall of $N$ , we calculate the induced
chamber $D’$ adjacent to $D_{i}$ along $(v)^{\perp}$ , and determine whether $D’$ is $G$-congruent

to some $D_{j}\in \mathbb{D}$ . If there are no such $D_{j}$ , then we set $D_{k+1}$ $:=D’$ and append it

to $\mathbb{D}$ as a representative of a new $G$-congruence class. If there exist $D_{j}\in \mathbb{D}$ and
$h\in G$ such that $D’=D_{j}^{h}$ , then we append $h$ to $\Gamma$ . We repeat this process until
we reach the end of the list $\mathbb{D}$ . By Proposition 2, this algorithm terminates.
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Then the group $Aut(N)\cap G$ is generated by the elements in the finite set $\Gamma.$

Moreover, for each $D\in \mathbb{D}$ , let $F(D)\subset D$ be a fundamental domain of the action

of the finite group Aut $(D)\cap G$ on $D$ . Then their union $\cup F(D)$ is a fundamental

domain of the action of $Aut(N)\cap G$ on $N.$

3. THE AUTOMORPHISM GROUP OF A $K3$ SURFACE

Let $X$ be a complex algebraic $K3$ surface, or a supersingular $K3$ surface in odd

characteristic. In virtue of the Torelli-type theorem due to Piatetski-Shapiro and

Shafarevich [15] and Ogus [13, 14], we can study Aut(X) by the N\’eron-Severi

lattice $S_{X}$ of $X$ . Using Borcherds method, we will obtain a finite set of generators

of the image the natural homomorphism

$\varphi_{X}:Aut(X)arrow O(S_{X})$ .

For simplicity, we concentrate upon a complex algebraic $K3$ surface $X$ . Then

we have
$S_{X}$ $:=$ { $[D]\in H^{2}(X, \mathbb{Z})$ $D$ is a divisor of $X$ }.

Note that $S_{X}$ is an even hyperbolic lattice. Let $\mathcal{P}(S_{X})$ be the positive cone of
$S_{X}$ containing an ample class, and we put

$N(X):=$ { $x\in \mathcal{P}(S_{X})$ $\langle x,$ $[C]\rangle\geq 0$ for any curve $C$ on $X$ }.

Then $N(X)$ is bounded by $([C])^{\perp}$ , where $C$ runs through the set of smooth

rational curves on $X$ . Since $C^{2}=-2$ for any smooth rational curve $C$ on $X,$

the domain $N(X)$ is a standard fundamental domain of the action of the Weyl

group $W(S_{X})$ on $\mathcal{P}(S_{X})$ . (See [16], for example.) By Torelli theorem due to

Piatetski-Shapiro and Shafarevich [15], the natural homomorphism $\varphi_{X}$ has only

finite kernel. Let $G_{\omega}$ denote the subgroup of $O^{+}(S_{X})$ consisting of elements

$g\in O^{+}(S_{X})$ that lift to a Hodge isometry of $H^{2}(X, \mathbb{Z})$ . Note that $G_{\omega}$ is of finite

index in $O^{+}(S_{X})$ . Then we have

${\rm Im}\varphi_{X} :=Aut(N(X))\cap G_{\omega}.$

Therefore, applying Borcherds method, we can calculate a finite set of generators

of ${\rm Im}\varphi_{X}.$

Example 3.1. The first application was done by Kondo [9]. Let $C$ be a generic

genus 2 curve, and let $Jac(C)$ be the Jacobian variety of $C$ . We consider the

Kummer surface

$X:=Km(Jac(C))$

associated with $Jac(C)$ ; that is, $X$ is the minimal resolution of the quotient

$Jac(C)/\langle\iota\rangle$ with 16 ordinary nodes, where $\iota$ is the inversion $x\mapsto-x$ of $Jac(C)$ .
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Let $p_{0}$ , . . . , $p_{5}$ be the Weierstrass points of $C$ , and let $\Theta_{0}$ be the image of

$C\mapsto Jac(C)=Pic^{0}(C)$

given by $p\mapsto\lceil p-p_{0}$]. For a 2-torsion point $t$ of $Jac(C)$ , let $\Theta_{t}$ denote the

translate of $\Theta_{0}$ by $t$ . Then $\Theta_{t}/\langle\iota\rangle$ is a rational curve passing through exactly 6

points of the 16 ordinary nodes of $Jac(C)/\langle\iota\rangle$ . Let $D_{t}$ be the strict transform of
$\Theta_{t}/\langle\iota\rangle$ by the minimal resolution $Xarrow Jac(C)/\langle\iota\rangle$ , and let $E_{t}$ be the exceptional

curve over the node of $Jac(C)/\langle\iota\rangle$ corresponding to $t$ . Since we have assumed

that $C$ is generic, these $32=16+16$ curves $\{D_{t}, C_{t}\}$ on $X$ generate the N\’eron-

Severi lattice $S_{X}$ of $X$ . We have rank$(S_{X})=17$ and disc$(S_{X})=64$ . On the

other hand, the subgroup $G_{\omega}$ is of index 32 in $O^{+}(S_{X})$ .

We embed $S_{X}$ into $L_{26}=U\oplus\Lambda$ , where $U$ is the hyperbolic plane and $\Lambda$ is the

Leech lattice. Then, at the end of the Borcherds method, we have $\mathbb{D}=\{D_{0}\},$

and $|Aut(D_{0})\cap G_{\omega}|=32$ . The induced chamber $D_{0}$ has 316 walls, which are
decomposed by the action of $Aut(D_{0})\cap G_{\omega}$ into 23 orbits as

$316=32\cross 1+4\cross 15+32\cross 7 (23=1+15+7)$ .

The first orbit consists of 32 walls of $N(X)$ , and corresponds to the set $\{D_{t}, C_{t}\}$

of smooth rational curves on $X$ . From the other 22 orbits, we obtain extra

automorphisms. Hence the image of $\varphi_{X}:Aut(X)arrow O(S_{X})$ is generated by the

finite group $Aut(D_{0})\cap G_{\omega}$ and those 22 extra automorphisms.

Since this work, automorphism groups of the following $K3$ surfaces have been

determined by this method;

$\bullet$ the supersingular $K3$ surface in characteristic 2 with Artin invariant 1 by

Dolgachev and Kondo [4],
$\bullet$ complex Kummer surfaces of product type by Keum and Kondo [8],
$\bullet$ the Hessian quartic surface by Dolgachev and Keum [5],
$\bullet$ the singular $K3$ surface $X$ with disc $T_{X}=7$ by Ujikawa [21], where $T_{X}$ is

the transcendental lattice of $X$ , and
$\bullet$ the supersingular $K3$ surface in characteristic 3 with Artin invariant 1 by

Kondo and Shimada [10].

The classical result of Vinberg [22] can be also treated by this method.

However, in all $the\mathcal{S}e$ cases, there $exi_{\mathcal{S}}ts$ only one $G$ -congruence classes, and

the computation is very easy. In fact, Borcherds [1, Lemma 5.1] gave a suffi-

cient condition for any two induced chambers to be $O^{+}(S)$-congruent, when the

orthogonal complement $R$ of $S$ in $L_{26}$ contains a root lattice as a sublattice of

finite index.
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4. NEW EXAMPLES

We have written Borcherds method using the $C$ library gmp [6], and carried

out the computation in some cases with many $G$-congruence classes. It turns

out that, in the case where the orthogonal complement $R$ of $S$ in $L_{26}$ is not $a$

root lattice, the number of $G$-congruence classes of induced chambers can be

very large.

Our main algorithm contains sub-algorithms that calculate the set of walls of

a given induced chamber, compute the adjacent induced chamber along a given

wall, and determine whether an induced chamber is $G$-congruent to another

induced chamber. In these algorithms, we use methods given in our previous

paper [17]. In order to calculate the set of walls of an induced chamber, we had

to employ the standard algorithm of linear programming.

Example 4.1. Let $X$ be a $K3$ surface with rank$(S_{X})=20$ and disc$(S_{X})=11.$

Then the transcendental lattice $T_{X}$ of $X$ has a Gram matrix

$\{\begin{array}{ll}2 11 6\end{array}\},$

and $X$ is unique up to isomorphisms by the theorem of Shioda and Inose [20].

We embed $S_{X}$ into $L_{26}=U\oplus E_{8}\oplus E_{8}\oplus E_{8}$ . Then we have $|\mathbb{D}|=1098$ . The

domain $\cup D$ has 719 walls, among which 347 are walls of $N(X)$ . In particular,

the action of Aut(X) on the set of smooth rational curves on $X$ has at most 347

orbits. The output $\Gamma$ consists of 789 elements.

Example 4.2. Let $X$ be a $K3$ surface with rank$(S_{X})=20$ and disc$(S_{X})=15,$

which is unique up to isomorphisms. Then we have $|\mathbb{D}|=2051$ . The output $\Gamma$

consists of 1098 elements.

Example 4.3. Let $X$ be a $K3$ surface with rank$(S_{X})=20$ and disc$(S_{X})=16,$

which is unique up to isomorphisms. Then we have $|\mathbb{D}|=4538$ . The output $\Gamma$

consists of 3308 elements.

See the author’s web page [19] for the numerical outputs of the computation

of these three cases.

When rank S is small, we can embed $S_{X}$ into $L_{10}.$
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Example 4.4. Let $X$ be a $K3$ surface whose N\’eron-Severi lattice $S_{X}$ has a Gram

matrix

$\{\begin{array}{llll}2 4 1 04 2 0 11 0-2 00 1 0 -2\end{array}\},$

and whose period is suffciently generic. We embed $S_{X}$ into $L_{10}=U\oplus E_{8}$ . Then

we have $|\mathbb{D}|=504$ . The output $\Gamma$ consists of 7 elements.

Example 5. Let $k$ be an integer $>1$ . Let $X$ be a $K3$ surface whose N\’eron-

Severi lattice $S_{X}$ has a Gram matrix

$\{\begin{array}{lll}0 1 01-2 000 -2k\end{array}\},$

and whose period is sufficiently generic. This $K3$ surface $X$ has an elliptic

fibration $\phi$ : $Xarrow \mathbb{P}^{1}$ with a zero section. We can assume that the vector
$[1, 0, 0]\in S_{X}$ is the class $f_{\phi}$ of a fiber of $\phi$ and that the vector $[0, 1, 0]\in S_{X}$

is the class $z_{\phi}$ of the zero section of $\phi$ . Since $k>1$ , the Mordell-Weil group
$MW_{\phi}$ of $\phi$ : $Xarrow \mathbb{P}^{1}$ is of rank 1. Therefore Aut(X) contains a subgroup
$MW_{\phi}\rangle\triangleleft\langle\iota_{X}\rangle\cong \mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/2\mathbb{Z}$ generated by the translations by $MW_{\phi}$ and the

inversion $\iota_{X}$ of $\phi$ : $Xarrow \mathbb{P}^{1}$ . This subgroup is generated by the two involutions

$h_{1} :=\iota_{X}=\{\begin{array}{lll}1 0 00 1 00 0-1 \end{array}\}, h_{2} :=\{\begin{array}{lll}1 0 0k 1-1 2k 0-1 \end{array}\}$

The norm of $[1, x, y]\in S_{X}\otimes \mathbb{R}$ is $2x-2x^{2}-2ky^{2}$ . Hence, by the map $[1, x, y]\mapsto$

$(x, y)$ , the hyperbolic plane associated with $S_{X}$ is identified with

$H_{X} :=\{(x, y)\in \mathbb{R}^{2} (x-1/2)^{2}+(\sqrt{k}y)^{2}<1/4\}.$

The vector $f_{\phi}$ corresponds to the point $(0,0)$ of $\overline{H}_{X}$ , and the hyperplane $(z_{\phi})^{\perp}$

is given by $x=1/2.$

Suppose that $2k=-18$ . The union

$F:= \bigcup_{D\in \mathbb{D}}D$

is depicted in Figure 4.2 using $H_{X}$ . For each $D\in \mathbb{D}$ , we have $Aut(D)\cap G_{\omega}=\{1\},$

and hence $F$ is the fundamental domain of the action of Aut(X) on $N(X)$ . The
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$y$

FIGURE 4.1. $H_{X}$

domain $F$ has 4 walls, two of which are walls of $N(X)$ and is depicted by thick

lines, while the other two walls correspond to the two automorphisms $h_{1}$ and $h_{2}.$

Suppose that $2k=-20$ . Then $F$ is depicted in Figure 4.3. For each $D\in \mathbb{D},$

we have $Aut(D)\cap G_{\omega}=\{1\}$ , and hence $F$ is the fundamental domain of the

action of Aut(X) on $N(X)$ . The domain $F$ has 5 walls, two of which are walls of
$N(X)$ , while the other 3 walls correspond to the automorphisms $h_{1}$ and $h_{2}$ and

an extra automorphism

$h_{3} :=\{\begin{array}{lll}121 40 -18120 41 -181080 360 -161\end{array}\}$

See the author’s web page [19] for more examples of this type.

5. INTRACTABLE EXAMPLES

We applied our algorithm to the following $K3$ surfaces.

(1) The complex Fermat quartic surface $X\subset \mathbb{P}^{3}$ . The Picard number of $X$ is

20, and a Gram matrix of the transcendental lattice is

$\{\begin{array}{ll}8 00 8\end{array}\}$

Note that $X$ contains 48lines. We can calculate a Gram matrix of $S_{X}$ , because
$S_{X}$ is generated by the classes of 20 lines on $X.$

(2) The double plane $\pi$ : $Xarrow \mathbb{P}^{2}$ branched along the Fermat curve $B\subset \mathbb{P}^{2}$

of degree 6 in characteristic 5. This $K3$ surface $X$ is supersingular with Artin
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FIGURE 4.2. $F$ for the case $-2k=-18$

FIGURE 4.3. $F$ for the case $-2k=-20$

invariant 1, and contains 252 smooth rational curves that are mapped to lines on
$\mathbb{P}^{2}$ isomorphically by $\pi$ . The lattice $S_{X}$ is generated by the classes of 22 curves
among them. Thus we can calculate a Gram matrix of $S_{X}.$

The computation for these two cases did not terminate in a reasonable time,

because there are too many $G$-congruence classes of induced chambers. However,

we obtained many interesting automorphisms of these $K3$ surfaces. For the

supersingular case (2), see the preprint [7].
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