
GEOMETRIC IDENTITIES

GREG MCSHANE

This is a survey of so-called geometric identities. In addition to the results mentioned
for open surfaces below we will mention recent progress on work for closed surfaces[5],[6].

1. INTRODUCTION

Let $\Sigma=\Sigma_{g,n}$ be an orientable surface of genus $g$ with $n$ punctures or geodesic boundary
components. We will suppose that $3g-3+n\geq 1$ so that $\Sigma$ admits a Riemannian metric
of constant curvature $-1$ , a hyperbolic structure of finite area, which, by Gauss-Bonnet,
satisfies Area $\Sigma=2\pi|\chi(\Sigma)|=2\pi(2g-2+n)$ .

For simplicity, we suppose that $n=1$ so that $\Sigma$ has a single boundary component or
possibly a cusp, of length $\ell(\delta)\geq 0$ where a boundary component of length $0$ is a cusp. $A$

geometric identity is a relation between the lengths of the closed simple geodesics on the
surface $\Sigma$ . The known geometric identities fall into 3 groups:

(1) Basmajian Identities
(2) McShane Identities
(3) Bridgeman Identities

We will explain briefly how each of these groups of identities is proven. The proofs follow
from the existence of a decomposition of some geometric object related to the surface into
two parts one of which is neglible and the other which further decomposes into pieces
which can be classified and their (size” computed.

Common to the proof all these identities is the following well known result which allows
us to conclude that one of the two parts is negligible hence makes no contribution to the
identity.

Theorem 1.1 (Ahlfors). Let $\Gamma$ be a finitely generated fuchsian group and $\Lambda\subset\partial \mathbb{H}$ its
limit set. Then either $\Lambda$ is $\partial \mathbb{H}$ or $\Lambda$ has measure zero.

1.1. Unified approach. We present here a unified approach to the Basmajian and Mc-
Shane identities. The Basmajian identity is proved using the standard decomposition of
the ideal boundary $\partial \mathbb{H}$ into the limit set A and the regular set, classifying the components
of the regular set and associating a “size” to each of them and finally applying Theorem
1.1 to deduce the identity. Likewise, we sketch a proof of the McShane identity using a
decomposition of the ideal boundary into a subset of the limit set $\Lambda_{x}$ and its complement,
we classify the components of the complement and associating a (size” to each of them
and finally apply Theorem 1.1 to deduce the identity.
To state the Basmajian and Bridgeman Identities it is necessary to define ortho-

geodesics. Let $\hat{\delta},$
$\hat{\delta}’$ be a pair of disjoint geodesics in $\mathbb{H}\cup\partial \mathbb{H}$ lifts of some, not necessarily

distinct, geodesics $\delta,$
$\delta’$ on the surface $\Sigma$ . Under the hypothesis $\hat{\delta},$

$\hat{\delta}’$ admit a common
perpendicular and the projection of this to the surface is an orthogeodesic $\alpha^{*}.$
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FIGURE 1. An orthogeodesic in an embedded pair of pants

McShane’s identities are usually stated in terms of embedded pairs of pants. However,
in the context of this article, it is useful to bear in mind that an embedded pair of pants
contains a unique unoriented orthogeodesic (Figure 1).

2. LIMIT SET

A Fuchsian group $\Gamma$ is a discrete subgroup of $isom^{+}(\mathbb{H})$ . If $\Gamma$ is torsion free then the
quotient of $\mathbb{H}$ by the action of $\Gamma$ is a surface $\Sigma=\mathbb{H}/\Gamma$ . and $\pi_{1}(\Sigma)\simeq\Gamma$ . The limit set $\Lambda(\Gamma)$

of $\Gamma$ is the smallest closed $\Gamma$-invariant subset and, provided $\Gamma$ is not virtually abelian,
this is a perfect set. The complement of the limit set $\Omega(\Gamma)$ is called the regular set it is
$a$ (possibly empty) Pinvariant open set. Further, if $\Gamma$ is finitely generated and $\Sigma$ does
not have finite area then $\Omega(\Gamma)$ is dense and consists of countably many open intervals. If
$\Gamma$ contains no parabolic elements then the orbits of the action of $\Gamma$ on $\Omega(\Gamma)$ are in 1-1
correspondence with the ends of $\Sigma$ . Thus, we have a $\Gamma$-invariant decomposition of the
ideal boundary of $\mathbb{H}$ as

$\partial \mathbb{H}=\Lambda(\Gamma)\sqcup\Omega(\Gamma)$ .

We shall denote $\partial\Omega$ the set of all the points $a,$
$b$ such that the intersection of the interval

$[a, b]\subset\partial \mathbb{H}$ with the limit set $\Lambda$ is $\{a, b\}.$

Given $\Gamma$ finitely generated and $\Sigma$ of infinite area there is a canonical way to associate a
subsurface $C(\Sigma)\subset\Sigma$ of finite area with totally geodesic boundary called the convex core.
Let $C(\Lambda)\subset \mathbb{H}$ be the convex hull of the limit set, this is a closed, $\Gamma$-invariant subset whose
frontier consists of countably many complete geodesics. The quotient $C(\Sigma)$ $:=C(\Lambda)/\Gamma$

embeds naturally into $\Sigma=\mathbb{H}/\Gamma$ . By construction, $C(\Lambda)$ is the universal cover of $\Sigma$ the
embedding induces an isomorphism between $\pi_{1}(\Sigma)\simeq\Gamma$ and $\pi_{1}(C(\Sigma))$ . In particular :

Proposition 2.1. The components of the regular set, $i.e$ . the maximal intervals in the
complement of $\Lambda$ , are in 1-1 correspondence with lifls of the boundary geodesics of $\Sigma.$

Note that if $\gamma\subset \mathbb{H}$ is a geodesic with an endpoint in $\partial\Omega$ then the corresponding geodesic
in the surface $\Sigma$ contains some boundary geodesic in its closure. In what follows we will
think of $C(\Lambda)$ as a generalized polygon and refer to the geodesics of $C(\Lambda)$ as sides. We
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FIGURE 2. Convex hull of the limit set for a 2 generator Fuchsian group

associate to pairs of distinct sides an orthogeodesic $\hat{\alpha}^{*}$ this is just the unique common
perpendicular joining the sides. The image of $\hat{\alpha}^{*}$ is an geodesic arc $\alpha^{*}$ which meets the

boundary of $C(\Sigma)$ perpendicularly which is an orthogeodesic on the surface. By definition,

the lengths of $\hat{\alpha}^{*}$ and $\alpha^{*}$ are the same and clearly the length of $\hat{\alpha}^{*}$ can be computed as a
cross ratio of the endpoints of the associated sides of $C(\Lambda)$ .

Finally, recall that an action is minimal iff the orbit of any point is dense.

Proposition 2.2. The action of $\Gamma$ on $\Lambda(\Gamma)$ is minimal.

See for example [2] for a proof.

2.1. Remarks. In the next section we state and sketch proof of the analogues of Propo-

sitions (2.1) and 2.2 for the action of the mapping class group. We record the following
useful observations:

(1) From the above we have

$\Lambda\subset\cap\overline{\Gamma.z}.$

(2) In addition we have
$\forall z\in\Gamma, \overline{\Gamma.z}\subset\Lambda,$

so the fact that the set there is a dense orbit $\Lambda_{x}$ means that there is no hope

of decomposing the orbit structure further. Note that if $\Gamma_{1}\subset\Gamma$ is a non trivial
normal subgroup then, by minimality,

$\Lambda(\Gamma_{1})=\Lambda(\Gamma)$

3. NIELSEN ACTION OF THE MAPPING CLASS GROUP

Let $\Sigma$ be a compact surface with non empty totally geodesic boundary as above. In this
paragraph we describe a construction due to Nielsen of an action of the mapping class
group of $\Sigma$ on the limit set of $\Gamma$ . Recall that mapping class group is the set of isotopy
classes of diffeomorphisms that fix the boundary of $\Sigma$ pointwise.
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3.1. Construction of the action. We now construct an action of the mapping class
group on the limit set A following [9]. Consider the closure of the convex hull $\overline{C(\Lambda)}$ with
respect to the induced topology on $\mathbb{H}\sqcup\partial \mathbb{H}$ considered as a subset of the Riemann sphere.
The frontier of this set $\partial\overline{C(\Lambda)}\subset \mathbb{H}\sqcup\partial \mathbb{H}$ consists of lifts of the boundary of $\Sigma$ together
with the closure in $\partial \mathbb{H}$ of the set of their ideal endpoints. The intersection $\partial C(\Lambda)\cap\partial \mathbb{H}$

is non empty and, by minimality of the action of $\Gamma$ on the limit set, $\partial C(\Lambda)\cap\partial \mathbb{H}=\Lambda.$

Fix a basepoint $p\in\partial C(\Lambda)$ and we denote $\delta^{\sim}$ the unique geodesic in $\partial C(\Lambda)$ containing
$p$ . Let $z\in\partial C(\Lambda)$ and $\lceil J^{3},$ $z$ ] denote the geodesic ray starting at $p$ and with (possibly ideal)
endpoint $z.$

Proposition 3.1. (1) There is a natural action of the mapping class group of $\Sigma$ on
$\partial C(\Lambda)$ .

(2) The set $\Lambda_{0}$ $:=$ { $z\in\Lambda$ : $\lceil p,$ $z]$ is the lift of a simple ray on $\Sigma$ } is invariant.
(3) The limit set $\Lambda$ is invariant under this action but is not minimal.

The argument to prove (1) is standard negatively curved spaces (compare $[?]$ ). Let
$\phi$ be a diffeomorphism of $\Sigma$ that fixes $\partial\Sigma$ pointwise then there is a unique lift $\phi^{\sim}$ to
$C(\Sigma)$ that fixes $p$ . This map extends to a homeomorphism of $\overline{C(\Sigma)}$ which we continue to
denote $\phi^{\sim}$ If $\psi$ is a diffeomorphism isotopic to $\phi$ through isotopies that fix the boundary
pointwies then the corresponding extension $\psi\sim$ coincides with $\phi^{\sim}$ on $\partial\overline{C(\Sigma)}$ . In other
words the restriction of the extension only depends on the mapping class of $\phi$ . To prove
this one must see that if $z$ is an ideal endpoint of one of the support geodesics of $C(\Sigma)$

then $\phi^{\sim}(z)=\psi^{\sim}(z)$ . It is easy to see that it suffices to show that the geodesic rays
$\beta p,$ $\phi^{\sim}(z)]$ and $\lceil p,$ $\psi^{\sim}(z)$ ] are the same. Since the surface is compact the and $\psi,$ $\phi$ the
image of $[p, z]$ under $\psi\sim$ (resp. $\phi^{\sim}$ ) remains at bounded distance from $[p, \phi^{\sim}(z)]$ (resp.
$k3,$ $\psi^{\sim}(z)])$ . Further $\psi,$ $\phi$ are homotopic so the images remain at bounded distance from
each other and so the result follows.

To prove (2) let $z\in$ A such that $[p, z]$ is the lift of a simple ray $\gamma\subset\Sigma$ and $\phi^{\sim}$ the
extension of a lift of a diffeomorphism of $\Sigma$ as before. The curve $\phi(\gamma)$ is simple since $\phi$

is a injective and the image of $[p, z]$ under $\phi^{\sim}$ is a lift of $\phi(\gamma)$ at bounded distance fom
$[p, \phi(z)]$ . It is not difficult to see that $[p, \phi(z)]$ projects to a simple curve on $\Sigma.$

The invariance of A under the action is proved in a similar way. Finally, if $z\in\Lambda_{0}$

the the closure of its orbit is contained in $\Gamma_{0}$ . Suppose $w\in\Lambda\backslash \Lambda_{0}$ then there is a non
trivial element $g\in\Gamma$ such that $g(\lceil jJ, W])$ $\cap\lceil\gamma 0,$ $w$] $=x$ where $x$ is evidently the lift of a self
intersection point of the projection of $[p, z]$ to $\Sigma$ . By continuity of 9, if $w’$ is sufficiently
close to $w$ then $g([p,$ $w$ $\cap[p,$ $w’]\neq\emptyset$ so that $\lceil p,$ $w’]$ is the lift of a curve with at least one
self intersection. Thus $w’\not\in\Lambda_{0}$ and so $\Lambda_{0}$ , contains the orbit of $z\in\Lambda_{0}$ , but is not dense
in $\Lambda$

$\square$

3.2. Orbit decomposition of the limit set. The limit set decomposes into orbits under
the $\mathcal{M}C\mathcal{G}$-action described in the previous paragraph.

Suppose that $z\in\Gamma_{0}$ and let $\gamma$ denote the geodesic determined by $[p, z]$ . The point $z$ is
the fixed point of a hyperbolic elements of $\Gamma$ if and only if there is a closed simple geodesic
$\omega$ in the closure of $\gamma$ and for brevity we say $\gamma$ spirals to $\omega$ . Define

$\Lambda_{h}$ $:=\Lambda_{0}\cap$ { $set$ of fixed points of hyperbolic elements of $\Gamma$ }

51



GEOMETRIC IDENTITIES

Lemma 3.2. The set $\Lambda_{h}$ decomposes into finitely many $\mathcal{M}C\mathcal{G}$ orbits.

If $z\in\Lambda_{h}$ then $[p, z]$ determines a geodesic $\gamma_{z}$ . The geodesic $\gamma_{z}$ determines a unique
embedded pair of pants in $P\subset\Sigma$ which has $\delta$ as one boundary component and $\gamma$ , the
closed simple geodesic in the closure of $\gamma_{z}$ . By the classification of surfaces the complement
of $P$ fall into finitely many homeomorphisms types. Therefore, there are only finitely many
possibilities for $\gamma_{z}$ up to the action of the group of homeomorphisms of $\Sigma.$

$\square$

Corollary 3.3. If $w,$ $z\in\Lambda_{h}$ and and the closed geodesic $\omega$ determined by $z$ is not a
boundary component ($i.e$ . it is essential) then

$z\in\overline{\mathcal{M}C\mathcal{G}.w}$

so that
$\overline{\mathcal{M}C\mathcal{G}.w}\subset\overline{\mathcal{M}C\mathcal{G}.z}.$

In particular if both $w$ and $z$ both determine essential closed simple geodesics in $\Sigma$ then
$\overline{\mathcal{M}C\mathcal{G}.w}=\overline{\mathcal{M}C\mathcal{G}.z}.$

Proof. The inclusion follows trivially from the first part since orbit closures are $\mathcal{M}C\mathcal{G}-$

invariant.
To show that $z$ is an accumulation point of $w$ ’s orbit we begin by noting that there

are finitely many mapping classes $\phi_{k}$ such that the closed simple geodesics determined
by the images of $\phi_{k}(\omega)$ fill the surface. Let $\beta$ denote the geodesic determined by $[p, w]$

then $\beta$ meets one of the $\phi_{k}(\omega)$ . The images of $\beta$ by iterates of a Dehn twist round $\phi_{k}(\omega)$

provide a sequence of geodesics that converge to $\phi_{k}(\gamma)$ . Lifting to $\mathbb{H}$ one sees that the
corresponding sequence of of images of $w$ converge to $z.$

$\square$

Now we define $\Lambda_{x}\subset\Lambda_{0}$ to be the set of $z$ such that the geodesic on $\Sigma$ determined by
$[p, z]$ does not spiral to a boundary component.

Theorem 3.4. (1) The set $\Lambda_{x}$ is contained in the closure of the orbit of any point $z.$

(2) Moreover $\Lambda_{x}$ is a minimal set for the action of the mapping class group.

Proof. The proof of (1) is exactly the same as Corollary 3.3. The key to showing mini-
mality is Lemma 3.2 above. It suffices to show that given $w\in\Lambda_{x}$ there is some sequence
of points $z_{n}\in\Lambda_{h}$ that converges to $w$ . Since there are only finitely many $\mathcal{M}C\mathcal{G}$-orbits
we can suppose that all the $z_{n}$ belong to the same orbit, $\mathcal{M}C\mathcal{G}.z$ say, so that $w$ is an
accumulation point of this orbit so $\mathcal{M}C\mathcal{G}.z=\Gamma_{x}$ . But by (1)

$\overline{\mathcal{M}C\mathcal{G}.z}\subset\overline{\mathcal{M}C\mathcal{G}.w}\subset\Gamma_{x}$

so all the orbits are dense.
Let $w\in\Gamma_{x}$ and $\beta$ denote the geodesic determined by $[p, w]$ then $w\in\overline{\mathcal{M}C\mathcal{G}.z}$ for a point

$z$ as above. The techniques introduced in [7] apply and one can construct a sequence $\gamma_{n}$

of simple common perpendiculars to the boundary that converge to $\beta$ . Each of these
arcs determines a pair of pants and a corresponding a gap on the boundary $\delta$ . The gaps
are bounded by points in $\Gamma_{x}$ such that the corresponding orthogeodesics spiral to closed
simple geodesics. For each $n$ one can choose a point $z_{n}\in\Gamma_{x}$ that an endpoint of the gap
determined by $\gamma_{n}$ and which lies between the initial point of $\gamma_{n}$ and the initial point of $\beta.$

$\square$
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3.3. Remarks. Before continuing to the prove the identities we record the following
useful observations:

$\bullet$ The point (1) can be expressed succinctly as:

$\Lambda_{x}\subset\cap\overline{\mathcal{M}C\mathcal{G}.z}.$

$\bullet$ In addition we have
$\forall z\in\Lambda_{x}, \overline{\mathcal{M}C\mathcal{G}.z}\subset\Lambda_{x},$

so the fact that the set there is a dense orbit $\Lambda_{x}$ means that there is no hope, just
as before, of decomposing the orbit structure further. With a little more care one
can show that this set is minimal for any finite index subgroup of the mapping
class and even for non trivial normal subgroups such as the Torelli group.

$\bullet$ In fact, $\Lambda_{x}$ is the set of non isolated points of $\Lambda_{0}.$

4. BASMAJIAN

The easiest identity is that of Basmajian and is almost a direct application of Theorem
1.1 and Proposition 2.1.

Theorem 4.1 (Basmajian). Let $\Sigma$ be a surface with a single totally geodesic boundary
component $\delta$ . Then

$\sum_{\alpha^{*}}2\sinh^{-1}(\frac{1}{\sinh(\ell(\alpha^{*})})=\ell(\delta)$

Proof. : Let $\Omega$ be the regular set, that is the complement of $\Lambda\subset\partial \mathbb{H}$ . Under the hypothesis
$\Omega$ is a countable union of intervals. The identity is proved by considering the nearest point
retraction of $\Omega$ onto a geodesic $\delta^{\sim}$ which is a lift of $\delta$ . The geodesic $\delta$ decomposes into a
negligible piece, i.e. the image of $\Lambda$ , and the image of $\Omega$ . This second part (Proposition
2.1) further decomposes into the images of its connected component each of which is
associated to (the lift of) an orthogeodesic $\alpha^{*}.$

$\square$

5. McSHANE IDENTITIES

McShane’s identities provide a relation for the lengths of closed geodesics, in particular,
if $\Sigma$ is a hyperbolic punctured

$\sum_{\alpha}\frac{1}{1+e^{\ell(\alpha)}}=\frac{1}{2},$

where the sum is over all closed simple geodesics $\alpha$ . This can be obtained as a limiting
case when $\ell(\delta)arrow 0$ of the identity for the one holed torus (see [7])

$\sum_{\alpha}\log(\frac{1+e^{\frac{1}{2}(\ell(\alpha)-\ell(\delta))}}{1+e^{\frac{1}{2}(\ell(\alpha)+\ell(\delta))}})=\ell(\delta)$ ,

This is in turn a special case of the identity for a one-holed surface of genus $g$ (see [8])

$\sum_{P}\log(\frac{1+e^{\frac{1}{2}(\ell(\alpha)+\ell(\beta)-\ell(\delta))}}{1+e^{\frac{1}{2}(\ell(\alpha)+\ell(\beta)+l(\delta))}})=\ell(\delta)$

where $P$ is an embedded pair of pants with waist $\delta$ and legs $\alpha,$
$\beta$
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We remark that the identity for the punctured torus $P$ on a holed torus is just the
indentity for a one-holed surface of genus $g$ where an embedded pants has “waist” of
length $\delta$ and “legs” $\alpha,$

$\alpha$ . So in some senses it is an “happy accident”’ that the sum over
all closed simple geodesics.

5.1. Proof. The identity is proved, in a completely analogous fashion to Basmajian’s
identity, by considering the nearest point retraction of the complement of $\Lambda_{x}$ onto a
geodesic $\delta^{\sim}$ which is a lift of $\delta$ . The set $\Lambda_{x}$ is invariant under the subgroup of $\Gamma$ that
preserves $\delta^{\sim}$ so this yields a decomposition of $\delta$ as a a negligible piece $K$ , namely the
image of $\Gamma_{x}$ , and its complement. The latter further decomposes into countably many
pieces, called gaps, in 1-1 correspondence with simple orthogeodesics and hence pairs of
pants via:

Theorem 5.1. The intervals in the complement of $\Lambda_{x}$ are in 1-1 correspondence with lifts
of embedded pairs of pants $P.$

Proof. The follows from the classification as in [7] and [8] $\square$

Corollary 5.2.

$\sum_{P}\log(\frac{1+e^{\frac{1}{2}(\ell(\alpha)+\ell(\beta)-\ell(\delta))}}{1+e^{\frac{1}{2}(l(\alpha)+\ell(\beta)+\ell(\delta))}})=\ell(\delta)$

Proof. The computation of the size of a gap cna be found in [8] $\square$

6. BRIDGEMAN

The Bridgeman identity is based on a decomposition of the unit tangent bundle of
the surface. We denote $p$ : $T\mathbb{H}^{n}arrow \mathbb{H}^{n}$ the canonical map that associates to a tangent
vector its basepoint. If $v\in T\mathbb{H}^{n}$ is $a$ (non zero) tangent vector then $\gamma_{v}$ : $\mathbb{R}arrow \mathbb{H}^{n}$ is the
unique geodesic parameterised by arclength such that $\dot{\gamma}_{v}(O)$ is a positive multiple of $v.$

The geodesic $\gamma_{v}$ determines a pair of distinct points $\gamma_{v}(\pm\infty)$ in the ideal boundary of $\mathbb{H}^{n}.$

Observe that the map

$v \mapsto \gamma_{v}(-\infty)$

$T\mathbb{H}^{n} arrow \partial \mathbb{H}^{n}$

is smooth and, in particular, the preimage of any measurable subset of $\partial \mathbb{H}^{n}$ is a measurable
subset of the tangent bundle. By considering $\gamma_{-v}(\infty)$ ) $=\gamma_{v}(-\infty)$ as well, one obtains a
smooth embedding of the unit tangent bundle into the product
$\partial \mathbb{H}^{n}\cross\partial \mathbb{H}^{n}\cross \mathbb{R}$ and we apply Fubini’s Theorem to obtain:

Lemma 6.1. If $K\subset\partial \mathbb{H}^{n}$ is measure $0$ then $K_{\infty}=\{v, \gamma_{v}(\infty)\in K\}\subset T\mathbb{H}^{n}$ is measure
O.

Bridgeman [3] constructs a decomposition of the unit tangent bundle of $CH(\Lambda)$ , the
convex hull of $\Lambda$ . Fix a lift $\hat{\delta}$ of $\delta$ and let $\Omega$ be as before. The endpoints of $\hat{\delta}$ determine
a connected component of $\Omega$ and, moreover, any other such component shares endpoints
with some another lift of $\delta,$

$\hat{\delta}’$ say. Define the Bridgeman’s set $\mathcal{B}(\hat{\delta},$ $\delta$ for the pair $\hat{\delta},\hat{\delta}’$

to be the set of $v$ in the unit tangent bundle of $CH(\Lambda)$ tangent to a geodesic $\gamma_{v}$ meeting
both $\hat{\delta}$ and $\delta$

Theorem 6.2 (Bridgeman). (1) $CH(\Lambda)$ is the disjoint union a negligible part con-
tained in $K_{\infty}$ above and countably many Bridgeman’s sets.
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(2) The volume of $\mathcal{B}(\hat{\delta}, \delta is \mathcal{L}(\frac{4}{\cosh(\ell(\alpha^{*})/2)})$ where $\ell(\alpha^{*})$ is the length of the unique

ortho geodesic determined by the pair $\hat{\delta},$ $\delta$

(3) The volume of the unit tangent bundle of $\Sigma$ is

$\sum_{\alpha^{*}}8\mathcal{L}(\frac{1}{\cosh^{2}(\ell(\alpha^{*})/2)})$ .
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