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A FINITE PRESENTATION OF THE LEVEL 2 PRINCIPAL
CONGRUENCE SUBGROUP OF GL(n;Z)

RYOMA KOBAYASHI

ABSTRACT. It is known that the level 2 principal congruence subgroup of GL(n;Z) has a
finite generating set (see [6]). In this paper, we give a finite presentation of the level 2
principal congruence subgroup of GL(n;Z).

1. INTRODUCTION

For n > 1, let I'y(n) = ker(GL(n; Z) - GL(n;Z,)) denote the level 2 principal congruence
subgroup of GL(n;Z). Note that for A € I';(n) the diagonal entries of A are odd and the
others are even.

For 1 < 4,7 <'n with ¢ # j, let E;; denote the matrix whose (,j) entry is 2, diagonal
entries are 1 and others are 0, and let F; denote the matrix whose (,7) entry is —1, other
diagonal entries are 1 and others are 0. It is known that I';(n) is generated by E;; and F; for
1<i,5 <nwith i # j (see [6]).

In this paper, we give a finite presentation of 'y(n).

Theorem 1.1. For n > 1, T'y(n) has a finite presentation with generators E;; and F;, for
1<4,j <n withi# j, and with relators

(1) Ffforlgign,

(2) (BEijFy)?, (E,]F) (FiF;)? for1 <4,j <n withi# j (whenn >2),

( ) (a) [ 153 ] [EzjaEk]]; [E1.J7Fk] [Eij1Eki]El%j fO?" 1< i,j,k < m, and i,j,k are

mutually different (whenn > 3)
(b) [E;iF; B FEL; lEkJ,E;kaEkFE 'Ej) for1<i<j<k<n (whenn>3),
(4) [Eyj, Enl forl <i,5,k,l <n, and i,7,k,| are mutually different (when n>4),

where [X,Y] = XY -1XY.

We now explain about an application of Theorem 1.1. For g > 1, let N, denote a non-
orientable closed surface of genus g, that is, Ny is a connected sum of g real projective
planes. Let - : H1(Ng; R) x Hi(Ng; R) — Zy denote the mod 2 intersection form, and let
Aut(H;(Ng; R),-) denote the group of automorphisms over H;(N,; R) preserving the mod 2
intersection form -, where R = Z or Z,. Consider the natural epimorphism

®, 0 Aut(H (Ng; Z), ) — Aut(Hq(Ng; Zs2), ).

MacCarthy and Pinkall [6] showed that I'z(g — 1) is isomorphic to ker ®,.

We denote by M(N,) the group of isotopy classes of diffeomorphisms over N,;. The group
M(N,) is called the mapping class group of Ny. In [6] and [3], it is shown that the natural
homomorphism M(N,;) — Aut(H;(Ng; R),-) is surjective, where R = Z or Z,. Let Z(N,)
denote the kernel of M(N,) — Aut(Hy(Ny;Z),-). We say Z(N,) the Torelli group of N,. In
[4], Hirose and the author obtained a generating set of Z(IV,) for g > 4, using Theorem 1.1.

2. PRELIMINARIES

In this section, we explain about some facts for presentations of groups.



2.1. Basics on presentations of groups.
Let G1, G, and G3 be groups with a short exact sequence

156G, 30,5 G —1.

If G, and G5 are presented then we can obtain a presentation of G,. In particular, if G; and
G3 are finitely presented then G, can be finitely presented.

More precisely, a presentation of Gy is obtained as follows. Let Gy = (X; | R;) and
Gs = (X5 | Rs). For each z € X3, we choose 7 € m~1(z). We put Xo = {é(z1),73 | 71 €
Xi,z3 € X3} Forr =a'---ap* € Rg, let ¥ = a1**---ax™*. For g € kerm, let g be a

word over ¢(X;) with g = g. Let A = {¢(ry) | 1 € R1}, B = {7‘37?3—1 | r3 € R3} and
-1

C = {:fggb(ml)i:},‘lcﬁgb(xl)@_l | 21 € X1,23 € X3}. Weput Ry = AUBUC. Then we
have Gg = <X2 l R2>

In addition, if there is a homomorphism p : Gs — G» such that 7 o p = idg,, choose
Z = p(z) € w(zx)* for z € X;. Then, we have the relation 7 = 1 in G, for r € R3.

If G5 is presented then we can examine a presentation of G;, by the Reidemeister-Schreier
method. In particular, if G3 is a finite group, that is, the index of Im¢ is finite, then G; can
be finitely presented.

For further information see [5].

2.2. Presentations of groups acting on a simplicial complex.

Let X be a simplicial complex, and let G be a group acting on X by isomorphisms as a
simplicial map. We suppose that the action of G on X is without rotation, that is, for a
simplex A € X and g € G, if g(A) = A then g(v) = v for all vertices v € A. For a simplex
A € X, let Gp be the stabilizer of A. For k > 0, the k-skeleton X® is the subcomplex of X
consisting of all simplices of dimension at most k.

Consider a homomorphism ® : %, x0 G, — G. For g € G, if g stabilizes a vertex w € X,
we denote g by g, as an element in G,, < *,cx©G,. For a l-simplex {v,w} € X and
g € G, NGy, we have g,g,! € ker . We call this the edge relator.

At first, for any 1-simplex {v, w}, choose an orientation such that orientations are preserved
by the action of G. Namely, orientations of {v,w} and g{v,w} are compatible for all g € G.
We denote the oriented 1-simplex {v, w} by (v, w). Similarly, choose orders of 2-simplices, and
denote the ordered 2-simplex {v;,vq,v3} by (v1,vs,v3). For an oriented 1-simplex e = (v, w),
let o(e) = v and ¢(e) = w. For an oriented 2-simplex 7 = (vy, v2, v3), we call v; the base point
of 7.

Next, choose an oriented tree T' of X such that a set of vertices of T is a set of representative
elements for vertices of the orbit space G\ X. Let V' denote the set of vertices of T". In addition,
choose a set E of representative elements for oriented 1-simplices of G\ X such that o(e) € V
for e € E and 1-simplices of T is in E, and a set F of representative elements for ordered
2-simplices of G\ X such that the base point of 7 is in V for 7 € F. For e € E, let w(e)
denote the element in V' which is equivalent to t(e) by the action of G, and choose g. € G
such that g.(w(e)) = t(e) and g. =1 ife € T.

For a 1-simplex {v, w} with v € V, note that {v, w} = {o(e), hgew(e)} or {w(e), hg;lo(e)}
for some e € E and h € G,. Then we define respectively gryu} = hge or hg;!. Let a be a
loop in X starting at a vertex of V. We denote o = {v;, {vi, vis1} | 1 <@ < k,vgq1 = v1}.
Note that vy, g7 vs € V, where ¢, = G{vi,vz}- For 2 < ¢ < k, define g; = Go g (vsi )
inductively. Note that for 2 < 4 < k, there exists an oriented 1-simplex e; such that o(e;) € V
and {v;,vit1} = g1+ - gi—1{o(e;), t(e;)}. Let go = g1---gr. We have go(v1) = v;, namely,
9o € Gy
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For e € E, put a word g,. For a 1-simplex {v,w} with v € V, let ;) = hge or hg, ' if
Jivw} = hge or hg,!, respectively. For aloop a in X starting at a vertex of V, let §o = G1 - - - g«
if go = g1 gx. Note that we can define g, and g, for 7 € F) regarding 7 as a loop in X.

Let G = (*veVGv) * (*eEE(ge))-
The following theorem is a special case of the result of Brown [1].

Theorem 2.1 ([1]). Let X be a simply connected simplicial complez, and let G be a group
acting without rotation on X by isomorphisms as a simplicial map. Then G is isomorphic to
the quotient of G by the normal subgroup generated by followings

(1) Ge, wheree € T,
(2) 95" Xo(e)3e(92 " X ge) y(ey» where e € E and X € G,
(3) §-9; !, where T € F.

3. OUTLINE OF THE PROOF OF THEOREM 1.1

We will prove Theorem 1.1 by induction on n. Let e;,...,e, be canonical normal vectors
in Z", and let I'y(n), denote a subgroup of I';(n) which consists of matrices A € I'y(n) such
that Ae; = e;. We first prepare the next lemma.

Lemma 3.1. For 1 <t < n there is a short exact sequence
0— Zn_l — Fz(n)et b d Fz(n - 1) — 1.

Proof. For Z™* we give the presentation Z"' = (z1,...,Zn_y | Zzjz; '2;'(1 < i < j <
n —1)). Let Z"! — I'y(n),, be the homomorphism which sends z; to Ey; when i < t and to
E;i 11 when i > t. Let I'y(n)e, = I'2(n—1) be the homomorphism which sends A to A, where
A;; is the (n — 1)-submatrix of A obtained by removing the i-row vector and the j-column
vector of A. Then, it follows that the sequence 0 — Z"! — TI'y(n),, = [a(n — 1) — 1 is
exact. &

It is clear that Theorem 1.1 is valid in the case n = 1. In addition, the case n = 2 of
Theorem 1.1 is proved by using the Reidemeister-Schreier method. We now prove Theorem 1.1
for n > 3, using Lemma 3.1.

3.1. The case n = 3 of Theorem 1.1.

For R = Z or Z,, let B, (R) denote the simplicial complex whose (k—1)-simplex {z1, ..., zx}
is the set of k-vectors z; € R" such that zi, ...,z are mutually different column vectors of
a matrix A € GL(n; R). In [2], Day and Putman proved that B,(Z) is (n — 2)-connected.
Here, a simplicial complex X is m-connected if its geometric realization |X| is m-connected.
In addition, X is —1-connected if X is nonempty. Note that there is the natural left action
Ty(n) X Bo(Z) — B,(Z) defined by A{zy,...,zx} = {Axi,...,Az;} for A € T'y(n) and
{z1,...,zx} € B,(Z), and that the action is without rotation.

Since GL(n;Z,) is the quotient of GL(n;Z) by I's(n), it follows that the orbit space
T2(n)\Br(Z) is isomorphic to B,(Z). Let ¢ : B,(Z) — B,(Z,) be a natural surjection induced
by the surjection GL(n;Z) —» GL(n;Z,). For 1 <1 < 7, let v; be v; = €1, v = €3, v3 = e3,
Vg = e+ ey, Us = €1 + €3, Ug = €2+ €3 and v; = e; + ey + e3. Then, the vertices of B,(Z,) are
©(v;), the 1-simplices are o({v;,v;}), and the 2-simplices are @({vy,va,vs}), @({v1, v2,v5}),
‘P({vl’ Vg, UG})a 90({1)1) V2, ’07}), <p({’U1, Vs, 04})’ (p({vl’ Us, ’Us}), 90({% Us, ’07}), 90({1)1’ U4, U5})’
e({v1,v4,v6}), p({v1,v4,v7}), ©({v1,vs,6}), P({v1,vs,v7}), ©({vz,v3,v4}), P({v2,v3,v5}),
¢({ve, vs,vr}), ©({v2,vs,05}), p({v2,va,v6}), @({v2,va,07}), @({v2,vs,v6}), w({v2,vs,v7}),
@({vs; va, vs}), ({vs, vs,v6}), p({vasvs, ve}), ({vs,vs,v7}), @({vs,ve,v7}), ©({vs,vs,v7}),
@({vs, ve,v7}) and o({vs, vs,vr}). (Note that {vy,va,va}, {v1,vs,v7}, {v1,v3, 05}, {ve,v3, 06},
{v2,vs,v7}, {vs,v4,v7} and {v4, vs,v6} are not 2-simplices of B,(Z).)

We prove the next lemma.



Lemma 3.2. T'y(3) is isomorphic to the quotient of *1<i<7T2(3),, by the normal subgroup
generated by edge relators.

Proof. We set followings
oV = {'Uh" 'U7},
® TZ{(UI,’Ui) ‘ 2SZ£7}UV,
[ EZ{(’U“’U])l].S’L<jS7},
o F'={(vi,vj,w) | 1 <i<j<k<T7,0{vi,vj,v}) € Ba(Zs)}.
For e = (v;,v;) € E, since w(e) = t(e), we choose g, = 1, and write 9ij = ge. By Theorem 2.1,
['5(3) is isomorphic to the quotient of (*;<;<7'2(3)y,) * (*1<i<j<7{Gi;)) by the normal subgroup
generated by followings
(1) Qu, where 2 < i < 7,
(2) G5 Xudi; X,)!, where 1 << j <7 and X € T5(3)u,.0,),
(3) g-971, where 7 € F.
Note that g, = gi;gjxg;" for 7 = (v;, vj, k). Hence, the relation g,g;! = 1 is equivalent to the
relation g;;gjx = gix. Since §;; = 1 for 2 <4 < 7, we have the relation §;; = 1 for2<i< j <7
except (4,7) = (2,4), (3,5) and (6, 7). For example, the relation §,3 = 1 is obtained from the
relation gi12g23 = §13. In addition, relations gos = 1, gss = 1 and g7 = 1 are obtained from
relations g23gss = o4, 23935 = Gos and Gogder = Gor, respectively. Hence, we have the relation
gij =1for 1 <i < j < 7. Therefore, I';(3) is isomorphic to the quotient of *;<;<7T'2(3),, by
the normal subgroup generated by A = {Xva_jl |1<i<j<7X €Ty(3)w,)} Since A
is the set of edge relators, we obtain the claim. O

From Lemma 3.1 and Lemma 3.2, we obtain the presentation of ['y(3).

3.2. The case n > 4 of Theorem 1.1.

In this subsection, we introduce a simplicial complex which Ty(n) acts on.

Let T'2B,(Z) denote the subcomplex of B,(Z) whose (k — 1)-simplex {1, ..., x4} is the set
of k-vectors x; € Z™ such that z,,...,; are mutually different column vectors of a matrix
A € T'y(n). Note that for a vertex v, we have v = ¢; mod 2 for some 1 < i < n.

We have the following,.

Proposition 3.3. Forn > 4, the simplicial complex ToB,(Z) is simply connected.
We will prove this proposition in Appendix. We now prove Theorem 1.1.

Lemma 3.4. For any n > 4, I'y(n) is isomorphic to the quotient of *1<i<nI'2(n)e, by the
normal subgroup generated by edge relators.

Proof. For a (k—1)-simplex A = {xy,..., 2} € [2B,(Z) with z; = e;j, mod 2, let A € T'y(n)
be an extension of A. Then we have A™1- A = {€i1) - - -, €iry }. Therefore, we have

I‘z(n)\I‘2Bn(Z) = {{ei(l), .. ‘,ei(k)} l 1<k < n, 1< 2(1) < <K< ’l(k) < Tl}

It is clear that ['y(n)\I'2B,(Z) is contractible. Note that the action of [s(n) on T'2B,(Z) is
without rotation.
We first set followings.
o T'={(e1,e;) | 2<i<n}
o E={(ej,e;) |1 <i<j<n}.
o F'={(esej,ex) |1 <i<j<k<n}.
e For e € E, we choose g, = 1, and write g, = g;; when e = (e;, ¢;).
o For 7 = (e, ej,ex) € F, let g, = gi;9;x95 -
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Then, since I'yB,(Z) is simply connected, it follows from Theorem 2.1 that I'y(n) is isomorphic
to the quotient of ((*¥1<i<nT2(n)e;) * (*1<icj<n(dij))) by the normal subgroup generated by
followings

(1) g1i, where 2 <1i < mn,

(2) g;lXetg”X -1, where 1 <i < j <nand X € I'y(n)ee,),

(3) grg7%, where 7 € F.
Since g, = 1, the relation §,g-! is equivalent to the relation §;;gjx = gix if 7 = (ei, €5, €x).
By relations §;; = 1, we have the relation g;; = 1 for 1 <4 < j < n. Thus, we obtain the
claim. O

-1

From Lemma 3.1 and Lemma 3.4, we obtain the presentation of I';(n), by induction on n.
Thus, we finish the proof of Theorem 1.1.

APPENDIX A

In this appendix, we prove Proposition 3.3. In a proof of this proposition, we will use their
idea for proving that B,(Z) is (n — 2)-connected (see [2]).

A.l1. Preparation.
Let X be a simplicial complex. Then we define followings.
e For a simplex A € X, stary(A) is the subcomplex of X whose simplex A’ € X satisfies
that A, A’ ¢ A” for some simplex A” € X. We also define starx () = X
e For a simplex A € X, linkx(A) is the subcomplex of starx(A) whose simplex A’ €
stary (A) does not intersect A. We also define linkx (0) = X.
For a (k — 1)-simplex A = {z1,...,zx}, A € I's(n) is an eatension of A if each z; is a
column vector of A. Here, we prove followings.

Lemma A.1l. Forn > 2, I'sB,(Z) is path connected.

Proof. We first consider the case n = 2. Let vg = vpi€1 + voee2 € I'2B2(Z) be a vertex.
Then there exist vertices v; = vi1€1 + V12€2,. ..,V = Uk1€1 + Uko€y € ['aBo(Z) such that
{v;,viy1} € TaBa(Z), |via| > |vit11]| for 0 <4 < k —1 and vx = e; or ey, for some positive
integer k. Hence, I';8y(Z) is path connected.

Next, we suppose n > 3. Let v,w € I'2B,(Z) be vertices. Without loss of generality, we
suppose v = e; and w = e; mod 2. Then there is an extension A € I'y(n) of v. We write
Alw = Y7 Laie;. Let Sa-1y = D iglail. For 3 <4 < n, if ag| < |ay|, there is an integer
u € Z such that |as| > |a; + 2uay|. Then we have that SEuA 1y < Sg-1, and ER A7) = ¢;.
If |ag| > |a;| # 0, there is an integer «’ € Z such that |as + 2u/a;| < |a;|. Then we have that
SE% A-1 < Sa-1, and E&A lv = e,. Repeating this operation, we conclude that there exists
B € I';(n) such that Sg, = 0 and Bv = e;. Note that Bw can be regarded as a vertex in
I'yB2(Z). Hence, Bw is joined to e; or ey, that is, Bw is joined to Bv. Therefore, v and w

are joined by a path. Thus, ['318,(Z) is path connected. O
Lemma A.2. Let A € T'3B,(Z) be a (k — 1)-simplex. Then we have followings.

e starr,p,z)(A) is isomorphic to starr,s,z)({e1,..-,ex}) as a simplicial complez.

o linkr,p,(z)(A) s isomorphic to linkr,s,z)({e1,...,ex}) as a simplicial complez.

Proof. For A = {=z,,...,z:}, suppose z; = e;;; mod 2. Let A € T'y(n) be an extension of A.
Then restrictions of the action of A~ on I',B,(Z)

A starp oy (8) ¢ StATT;B2)(A) = starrys, @) ({eiq), - e }),

A ke s, p(8) ¢ linkrys,z)(A) = linkr,s,@)({e:q); - - > €iw })



are isomorphisms as a simplicial map. It is clear that starr,z,(z)({€iq),---,eix})
and linkr,z, (z)({€i1), - - -, €ik)}) are respectively isomorphic to starr,s,zy({e1,...,ex}) and
linkr,g,z)({€1,--.,ex}). Thus, we obtain the claim. a

Corollary A.3. Let A € I'sB,(Z) be a (k — 1)-simplez. If n — k > 2, then linkr,s,(z)(A) is
path connected.

Proof. By a similar argument to the proof of Lemma A.1, we have that linkr,5,z)({€1, . - ., €x})
is path connected. By Lemma A.2, linkr,z,(z)(A) is also path connected. a

A.2. Proof of Proposition 3.3.

We suppose n > 4. Let a = {z;, {z;,ziy1} | 1 < i < k,zx41 = 21} be a loop on I'2B,(Z).
We show that o is null-homotopic. .

For v =73"" vie; € Z", we define Rank(v) = |v,|. Let R, = max Rank(z;).

We first prove the next lemma.

Lemma A.4. For a 1-simplex {v,w} € I'sB,(Z) with Rank(v) = Rank(w) = 0, we have
{U, ’lU} € linkngn(z)(en). '

Proof. Note that v # w mod 2. Suppose that v = e;, w = e¢; mod 2 and ¢ < j. Since
Rank(v) = Rank(w) = 0, we have that v,w # e, mod 2. Then there exists an extension
A=(a1---an) € T'y(n) of {v,w}. Let S4 = > -, Rank(a;). Note that S4 is odd.

First, we consider the case Sy = 1. Note that Rank(a;)) = 0for 1 <! <n -1 and
Rank(a,) = 1. Then there exists B € y(n) such that BA = (a; - - - a,_1e,). Hence, we have
that {v,w} = {a;,a;} € linkr,5,z)(en)-

Next, we suppose S4 > 3. Note that there exists 1 <! < n — 1 except | = 4,5 such that
Rank(a;) # 0. If Rank(a;) > Rank(a,), there exists an integer u € Z such that Rank(a; +
2ua,) < Rank(a,). Then we have that AEY is an extension of {v,w} and that Sapx, < Sa.
Similarly, if Rank(a;) < Rank(a,), there exists an integer ' € Z such that Rank(a;) >
Rank(a, + 2u'a;). Then we have that AEY is an extension of {v,w} and that S apy < Sa.

Repeating this operation, we conclude that there exists an extension A’ € I'y(n) of {v, w} such
that Sy = 1. Therefore, we have {v, w} € linkr,z,(z)(en). Thus, we obtain the claim. O

When R, = 0, by this lemma, we have {z;, 2,11} € linkr,g,z)(en). Namely, the loop a is in
linkr, 5, (z)(en). Since linkr,z,z)(en) is the subcomplex of starr, g, z)(e.) and starr,s, z)(€s)
is contractible, a is null-homotopic. Therefore, we next assume R, > 0.

Suppose that R, is odd. Then there exists 1 < i < k such that Rank(z;) = R,. Since R,
is odd, we have that z; = e, Z;x1 #Z €, mod 2 and Rank(z;1;) < R,. By Corollary A.3,
we have that linkr,s,(z)(%;) is path connected. Since z;+1 € linkr,g,(z)(2;), there exists a
path {y;, v, {y;,¥j41} | 1 < j <1 — 1} on linkp,g,(z)(z;) between z;4; such that y; = z;_;
and y; = z;41 (see Figure 1). Since R, is odd and Rank(y;) is even for each y;, there exists
an integer s; € Z such that Rank(y;) < R,, where y; = y; + 2s;z;. We choose s; = 0 if
Rank(y;) < R,. Then we have that the path {1/}, ], {t},¥j;1} | 1 < j < -1} between 24 is
in linkr, 5, (z)(2:) (see Figure 1). Let o = aU{y}, ¥, {¥}, ¥j1} | 1 < 7 < 1=1}\{zs, {2, ziza }}.
Then o' is homotopic to a (see Figure 1). For all z; with Rank(z;) = R,, applying the same
operation, we conclude that Rs < R,, where (3 is a resulting loop which is homotopic to a.

Next, suppose that R, is even. Then there exists 1 < 7 < k such that Rank(z;) = R,.
Since R, is even, we have z; # e, mod 2.

Remark A.5. Under the assumption n > 4, we may suppose all of following conditions.

° Rank(xiil) < R,,
® 7,41 e, mod 2,
e 1,y #1x;y, mod?2.
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!
Y3 Vi2 y' V2
r
Y, Vi — y ,2 Y
Xi1 X; Xit+1 X1 i Xiv]
] [}
V3 Y2
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v Y1
Xi1 X+l

FIGURE 1. The case R, is odd.

Proof. If Rank(z;_;) = R,, then there exists a vertex y € linkr,s,z)({Zi-1,%:}) such that
y = e, mod 2 and Rank(y) < R,, since R, is even and Rank(y) is odd. Let o/ = a U
{v, {zi—1; 9}, {v,z:}} \ {{zi=1,2:}}. Then o is homotopic to a. Hence, considering o’ in
place of a, we may suppose Rank(z;_;) < R,. Similarly, we may suppose Rank(z;y1) < R,.

If z,_, = e, mod 2, then there exists a vertex y € linkr,p, z)({Zi-1,%:}) such that y # e,
mod 2 and Rank(y) < Rank(z;-1)(< Ra), since Rank(z;_;) is odd and Rank(y) is even. Let
o =aU{y,{zi-1,y}, {v,z:}} \ {{zi-1,2:}}. Then o is homotopic to a. Hence, considering
o' in place of a, we may suppose Rank(z;_1) < R, and z;-; # e, mod 2. Similarly, we may
suppose Rank(z;;,) < R, and z;+1 # e, mod 2.

Suppose that Rank(z;1+;) < R, and z;11 # €, mod 2. If z,_; = z;4; mod 2, then there
exists a vertex y € linkr,s,z)({Zi-1,:}) such that y # z;;;,e, mod 2 and Rank(y) <
Rank(z;_1)(< R,), since n > 4. Let o = aU {y, {zi-1,y}, {y,z:}} \ {{zi=1,z:}}. Then o/ is
homotopic to a. Hence, considering o/ in place of a, we may suppose that Rank(z;41) < R,,
ZTix1 Z e, mod 2 and z;_; & z;y; mod 2. O

We now suppose the conditions of the above remark. Suppose that z; = es, ;-1 = &
and z;;1 = e, mod 2, where s, t and u are mutually different and not equal to n. Then
there exists A € I'2(n) such that Az; = e,, Az;,_; = e; and Rank(Az;;;) = 0. In fact, since
{zi_1,7;} is a 1-simplex in ['yB,(Z), there is an extension B € T'y(n) of {z;_;,z;}. We write
B lz, = Z?:l aje;. 1t follows that there exist an even integer b, and an odd integer b,
such that a,b, — a,b, = gcd(au\,an). Then we have that

. /gcd(au, an) by - au \ _ ( 8cd(au,an)
( an/gcd(ay, an) bn an | ( 0 ) )
Let C € I'y(n) be the matrix whose (u, u) entry is a, /gcd(ay, a.), (n, u) entry is a, /ged(ay, an),
(u,n) entry is by, (n,n) entry is b,, other diagonal entries are 1 and other entries are 0. Then
it follows that Az; = e,, Az;_; = e; and Rank(Az;,) = 0, where A = C~1B~1.

Since {e,, Az;;1} is a l-simplex and Rank(e,) = Rank(Az;1;) = 0, by Lemma A.4, we
have that {es, Az;11} € linkr,s,(z)(en). Namely, we have that e, € linkr,s,(z)({es, Az }).
In addition, it is clear that e, € linkyp,g,z)({€s;€:}). Hence, we have that Ale, €
linkr, 5, (z)({%:, Zix1}) (see Figure 2). Then, there exists an integer ! such that Rank(z;) < Ra,
where 7/ = A~ le, + 2lz;. We have also that z} € linkr,g,z)({Zi, Zi+1}) (see Figure 2). Let
o =aU{{z},{z}, zix1}} \ {zi, {z:, Tiz1}}. Then o' is homotopic to o (see Figure 2). Sim-
ilar to the case R, is odd, for all z; with Rank(z;) = R,, applying the same operation, we
conclude that Rg < R,, where 3 is a resulting loop which is homotopic to a.



-1
Ae, 4 e,
-—>
X1 X Xi+1 € € Ax;y
-1 -1
A’e,+2Ix, A'e,+2Ix;
—>
Xi1 Xy Xit1

FIGURE 2. The case R, is even.

Repeating this operation until R, = 0, we conclude that the loop a on I'2BB,(Z) is null
homotopic. Thus, I'zB,(Z) is simply connected.
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