
A FINITE PRESENTATION OF THE LEVEL 2 PRINCIPAL
CONGRUENCE SUBGROUP OF $GL(n;\mathbb{Z})$
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ABSTRACT. It is known that the leve12 principal congruence subgroup of $GL(n;\mathbb{Z})$ has a
finite generating set (see [6]). In this paper, we give a finite presentation of the leve12
principal congruence subgroup of $GL(n;\mathbb{Z})$ .

1. INTRODUCTION

For $n\geq 1$ , let $\Gamma_{2}(n)=ker(GL(n;\mathbb{Z})arrow GL(n;\mathbb{Z}_{2}))$ denote the level 2 principal congruence
subgroup of $GL(n;\mathbb{Z})$ . Note that for $A\in\Gamma_{2}(n)$ the diagonal entries of $A$ are odd and the
others are even.

For $1\leq i,j\leq n$ with $i\neq j$ , let $E_{ij}$ denote the matrix whose $(i,j)$ entry is 2, diagonal
entries are 1 and others are $0$ , and let $F_{i}$ denote the matrix whose $(i, i)$ entry is $-1$ , other
diagonal entries are 1 and others are O. It is known that $\Gamma_{2}(n)$ is generated by $E_{ij}$ and $F_{i}$ for
$1\leq i,j\leq n$ with $i\neq j$ (see [6]).

In this paper, we give a finite presentation of $\Gamma_{2}(n)$ .

Theorem 1.1. For $n\geq 1,$ $\Gamma_{2}(n)$ has a finite presentation with generators $E_{ij}$ and $F_{i}$ , for
$1\leq i,j\leq n$ with $i\neq j$ , and with relators

(1) $F_{i}^{2}$ for $1\leq i\leq n,$

(2) $(E_{ij}F_{i})^{2},$ $(E_{ij}F_{j})^{2},$ $(F_{i}F_{j})^{2}$ for $1\leq i,j\leq n$ with $i\neq j$ (when $n\geq 2$),
(3) (a) $[E_{ij}, E_{ik}],$ $[E_{ij}, E_{kj}],$ $[E_{ij}, F_{k}],$ $[E_{ij}, E_{ki}]E_{kj}^{2}$ for $1\leq i,j,$ $k\leq n$ , and $i,j,$ $k$ are

mutually different (when $n\geq 3$)
(b) $[E_{ji}F_{j}E_{ij}F_{i}E_{ki}^{-1}E_{kj}, E_{ki}F_{k}E_{ik}F_{i}E_{ji}^{-1}E_{jk}]$ for $1\leq i<j<k\leq n$ (when $n\geq 3$),

(4) $[E_{ij}, E_{kl}]$ for $1\leq i,$ $j,$ $k,$ $l\leq n$ , and $i,j,$ $k,$ $l$ are mutually different (when $n\geq 4$),

where $[X, Y]=X^{-1}Y^{-1}XY.$

We now explain about an application of Theorem 1.1. For $g\geq 1$ , let $N_{g}$ denote a non-
orientable closed surface of genus $g$ , that is, $N_{g}$ is a connected sum of $g$ real projective
planes. Let : $H_{1}(N_{g};R)\cross H_{1}(N_{g}, R)arrow \mathbb{Z}_{2}$ denote the $mod 2$ intersection form, and let
$Aut(H_{1}(N_{g};R), \cdot)$ denote the group of automorphisms over $H_{1}(N_{g};R)$ preserving the mod2
intersection form ., where $R=\mathbb{Z}$ or $\mathbb{Z}_{2}$ . Consider the natural epimorphism

$\Phi_{g}:Aut(H_{1}(N_{g};\mathbb{Z}), \cdot)arrow Aut(H_{1}(N_{g};\mathbb{Z}_{2})$ ,

MacCarthy and Pinkall [6] showed that $\Gamma_{2}(g-1)$ is isomorphic to $ker\Phi_{g}.$

We denote by $\mathcal{M}(N_{g})$ the group of isotopy classes of diffeomorphisms over $N_{g}$ . The group
$\mathcal{M}(N_{g})$ is called the mapping class group of $N_{g}$ . In [6] and [3], it is shown that the natural
homomorphism $\mathcal{M}(N_{g})arrow Aut(H_{1}(N_{g};R), \cdot)$ is surjective, where $R=\mathbb{Z}$ or $\mathbb{Z}_{2}$ . Let $\mathcal{I}(N_{g})$

denote the kernel of $\mathcal{M}(N_{g})arrow Aut(H_{1}(N_{9};\mathbb{Z})$ , We say $\mathcal{I}(N_{g})$ the Torelli group of $N_{g}$ . In
[4], Hirose and the author obtained a generating set of $\mathcal{I}(N_{g})$ for $g\geq 4$ , using Theorem 1.1.

2. PRELIMINARIES

In this section, we explain about some facts for presentations of groups.
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2.1. Basics on presentations of groups.
Let $G_{1},$ $G_{2}$ and $G_{3}$ be groups with a short exact sequence

$1arrow G_{1}arrow\phi G_{2}arrow\pi G_{3}arrow 1.$

If $G_{1}$ and $G_{3}$ are presented then we can obtain a presentation of $G_{2}$ . In particular, if $G_{1}$ and
$G_{3}$ are finitely presented then $G_{2}$ can be finitely presented.

More precisely, a presentation of $G_{2}$ is obtained as follows. Let $G_{1}=\langle X_{1}|R_{1}\rangle$ and
$G_{3}=\langle X_{3}|R_{3}\rangle$ . For each $x\in X_{3}$ , we choose $\tilde{x}\in\pi^{-1}(x)$ . We put $X_{2}=\{\phi(x_{1})$ , $\tilde{x_{3}}|x_{1}\in$

$X_{1},$ $x_{3}\in X_{3}\}$ . For $r=a_{1}^{\epsilon_{1}}\cdots a_{k}^{\epsilon_{k}}\in R_{3}$ , let $\tilde{r}=\tilde{a_{1}}^{\epsilon_{1}}\cdots\tilde{a_{k^{\epsilon_{k}}}}$ . For $g\in ker\pi$ , let $\overline{g}$ be a

word over $\phi(X_{1})$ with $g=\overline{g}$ . Let $A=\{\phi(r_{1})|r_{1}\in R_{1}\},$ $B=\{\tilde{r_{3}}\overline{\tilde{r_{3}}}1|r_{3}\in R_{3}\}$ and
$C=\{\tilde{x_{3}}\phi(x_{1})\tilde{x_{3}}^{-1}\overline{\tilde{x_{3}}\phi(x_{1})\tilde{x_{3}}^{-1^{-1}}}|x_{1}\in X_{1}, x_{3}\in X_{3}\}$ . We put $R_{2}=A\cup B\cup C$ . Then we
have $G_{2}=\langle X_{2}|R_{2}\rangle.$

In addition, if there is a homomorphism $\rho$ : $G_{3}arrow G_{2}$ such that $\pi 0\rho=id_{G_{3}}$ , choose
$\tilde{x}=\rho(x)\in\pi(x)^{-1}$ for $x\in X_{1}$ . Then, we have the relation in $G_{2}$ for $r\in R_{3}.$

If $G_{2}$ is presented then we can examine a presentation of $G_{1}$ , by the Reidemeister-Schreier
method. In particular, if $G_{3}$ is a finite group, that is, the index of ${\rm Im}\phi$ is finite, then $G_{1}$ can
be finitely presented.

For further information see [5].

2.2. Presentations of groups acting on a simplicial complex.
Let $X$ be a simplicial complex, and let $G$ be a group acting on $X$ by isomorphisms as a

simplicial map. We suppose that the action of $G$ on $X$ is without rotation, that is, for a
simplex $\triangle\in X$ and $g\in G$ , if $g(\triangle)=\triangle$ then $g(v)=v$ for all vertices $v\in\triangle$ . For a simplex
$\triangle\in X$ , let $G_{\triangle}$ be the stabilizer of $\triangle$ . For $k\geq 0$ , the $k$ -skeleton $X^{(k)}$ is the subcomplex of $X$

consisting of all simplices of dimension at most $k.$

Consider a homomorphism $\Phi$ $:*_{v\in X(0)}G_{v}arrow G$ . For $g\in G$ , if $g$ stabilizes a vertex $w\in X^{(0)},$

we denote $g$ by $g_{w}$ as an element in $G_{w}<*_{v\in X(0)}G_{v}$ . For a 1-simplex $\{v, w\}\in X$ and
$g\in G_{v}\cap G_{w}$ , we have $g_{v}g_{w}^{-1}\in ker\Phi$ . We call this the edge relator.

At first, for any 1-simplex $\{v, w\}$ , choose an orientation such that orientations are preserved
by the action of $G$ . Namely, orientations of $\{v, w\}$ and $g\{v, w\}$ are compatible for all $g\in G.$

We denote the oriented 1-simplex $\{v, w\}$ by $(v, w)$ . Similarly, choose orders of 2-simplices, and
denote the ordered 2-simplex $\{v_{1}, v_{2}, v_{3}\}$ by $(v_{1}, v_{2}, v_{3})$ . For an oriented 1-simplex $e=(v, w)$ ,
let $o(e)=v$ and $t(e)=w$ . For an oriented 2-simplex $\tau=(v_{1}, v_{2}, v_{3})$ , we call $v_{1}$ the base point
of $\mathcal{T}.$

Next, choose an oriented tree $T$ of $X$ such that a set of vertices of $T$ is a set of representative
elements for vertices of the orbit space $G\backslash X$ . Let $V$ denote the set of vertices of $T$ . In addition,
choose a set $E$ of representative elements for oriented 1-simplices of $G\backslash X$ such that $o(e)\in V$

for $e\in E$ and 1-simplices of $T$ is in $E$ , and a set $F$ of representative elements for ordered
2-simplices of $G\backslash X$ such that the base point of $\tau$ is in $V$ for $\tau\in F$ . For $e\in E$ , let $w(e)$

denote the element in $V$ which is equivalent to $t(e)$ by the action of $G$ , and choose $g_{e}\in G$

such that $g_{e}(w(e))=t(e)$ and $g_{e}=1$ if $e\in T.$

For a 1-simplex $\{v, w\}$ with $v\in V$ , note that $\{v, w\}=\{o(e), hg_{e}w(e)\}$ or $\{w(e), hg_{e}^{-1}o(e)\}$

for some $e\in E$ and $h\in G_{v}$ . Then we define respectively $g_{\{v,w\}}=hg_{e}$ or $hg_{e}^{-1}$ . Let $\alpha$ be a
loop in $X$ starting at a vertex of $V$ . We denote $\alpha=\{v_{i}, \{v_{i}, v_{i+1}\}|1\leq i\leq k, v_{k+1}=v_{1}\}.$

Note that $v_{1},$
$g_{1}^{-1}v_{2}\in V$ , where $g_{1}=g_{\{v_{1},v_{2}\}}$ . For $2\leq i\leq k$ , define $g_{i}=g_{g_{i-1}^{-1}\cdots g_{1}^{-1}\{v_{t},v_{i+1}\}},$

inductively. Note that for $2\leq i\leq k$ , there exists an oriented 1-simplex $e_{i}$ such that $o(e_{i})\in V$

and $\{v_{i}, v_{i+1}\}=g_{1}\cdots g_{i-1}\{o(e_{i}), t(e_{i})\}$ . Let $g_{\alpha}=g_{1}\cdots g_{k}$ . We have $g_{\alpha}(v_{1})=v_{1}$ , namely,
$g_{\alpha}\in G_{v1}.$
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For $e\in E$ , put a word $\hat{g}_{e}$ . For a 1-simplex $\{v, w\}$ with $v\in V$ , let $\hat{g}_{\{v,w\}}=h\hat{g}_{e}$ or $h\hat{g}_{e}^{-1}$ if
$g_{\{v,w\}}=hg_{e}$ or $hg_{e}^{-1}$ , respectively. For aloop $\alpha$ in $X$ starting at a vertex of $V$ , let $\hat{g}_{\alpha}=\hat{g}_{1}\cdots\hat{g}_{k}$

if $g_{\alpha}=g_{1}\cdots g_{k}$ . Note that we can define $g_{\tau}$ and $\hat{g}_{\tau}$ for $\tau\in F$ , regarding $\tau$ as a loop in $X.$

Let $\hat{G}=(*_{v\in V}G_{v})*(*_{e\in E}\langle\hat{g}_{e}\rangle)$ .
The following theorem is a special case of the result of Brown [1].

Theorem 2.1 ([1]). Let $X$ be a simply connected simplicial complex, and let $G$ be a group
acting without rotation on $X$ by isomorphisms as a simplicial map. Then $G$ is isomorphic to
the quotient of $\hat{G}$ by the normal subgroup generated by followings

(1) $\hat{g}_{e}$ , where $e\in T,$

(2) $\hat{g}_{e}^{-1}X_{o(e)}\hat{g}_{e}(g_{e}^{-1}Xg_{e})_{w(e)}^{-1}$ , where $e\in E$ and $X\in G_{e},$

(3) $\hat{g}_{\tau}g_{\tau}^{-1}$ , where $\tau\in F.$

3. $0$UTLINE OF THE PROOF OF THEOREM 1. 1

We will prove Theorem 1.1 by induction on $n$ . Let $e_{1}$ , . . . , $e_{n}$ be canonical normal vectors
in $\mathbb{Z}^{n}$ , and let $\Gamma_{2}(n)_{e_{t}}$ denote a subgroup of $\Gamma_{2}(n)$ which consists of matrices $A\in\Gamma_{2}(n)$ such
that $Ae_{t}=e_{t}$ . We first prepare the next lemma.

Lemma 3.1. For $1\leq t\leq n$ there is a short exact sequence

$0arrow \mathbb{Z}^{n-1}arrow\Gamma_{2}(n)_{e_{t}}arrow\Gamma_{2}(n-1)arrow 1.$

Proof. For $\mathbb{Z}^{n-1}$ we give the presentation $\mathbb{Z}^{n-1}=\langle x_{1}$ , . . . , $x_{n-1}|x_{i}x_{j}x_{i}^{-1}x_{j}^{-1}(1\leq i<j\leq$

$n-1$ Let $\mathbb{Z}^{n-1}arrow\Gamma_{2}(n)_{e_{t}}$ be the homomorphism which sends $x_{i}$ to $E_{u}$ when $i<t$ and to
$E_{ti+1}$ when $i\geq t$ . Let $\Gamma_{2}(n)_{e_{t}}arrow\Gamma_{2}(n-1)$ be the homomorphism which sends $A$ to $A_{tt}$ , where
$A_{ij}$ is the $(n-1)$-submatrix of $A$ obtained by removing the $i$-row vector and the $j$ -column
vector of $A$ . Then, it follows that the sequence $0arrow \mathbb{Z}^{n-1}arrow\Gamma_{2}(n)_{e_{t}}arrow\Gamma_{2}(n-1)arrow 1$ is
exact. $\square$

It is clear that Theorem 1.1 is valid in the case $n=1$ . In addition, the case $n=2$ of
Theorem 1.1 is proved by using the Reidemeister-Schreier method. We now prove Theorem 1.1
for $n\geq 3$ , using Lemma 3.1.

3.1. The case $n=3$ of Theorem 1.1.
For $R=\mathbb{Z}$ or $\mathbb{Z}_{2}$ , let $\mathcal{B}_{n}(R)$ denote the simplicial complex whose $(k-1)$-simplex $\{x_{1}, . . . , x_{k}\}$

is the set of $k$-vectors $x_{i}\in R^{n}$ such that $x_{1}$ , . . . , $x_{k}$ are mutually different column vectors of
a matrix $A\in GL(n;R)$ . In [2], Day and Putman proved that $\mathcal{B}_{n}(\mathbb{Z})$ is $(n-2)$-connected.
Here, a simplicial complex $X$ is $m$-connected if its geometric realization $|X|$ is $m$-connected.
In addition, $X$ is $-1$-connected if $X$ is nonempty. Note that there is the natural left action
$\Gamma_{2}(n)\cross \mathcal{B}_{n}(\mathbb{Z})arrow \mathcal{B}_{n}(\mathbb{Z})$ defined by $A\{x_{1}, . . . , x_{k}\}=\{Ax_{1}, . . . , Ax_{k}\}$ for $A\in\Gamma_{2}(n)$ and
$\{x_{1}, . . . , x_{k}\}\in \mathcal{B}_{n}(\mathbb{Z})$ , and that the action is without rotation.

Since $GL(n;\mathbb{Z}_{2})$ is the quotient of $GL(n;\mathbb{Z})$ by $\Gamma_{2}(n)$ , it follows that the orbit space
$\Gamma_{2}(n)\backslash \mathcal{B}_{n}(\mathbb{Z})$ is isomorphic to $\mathcal{B}_{n}(\mathbb{Z}_{2})$ . Let $\varphi$ : $\mathcal{B}_{n}(\mathbb{Z})arrow \mathcal{B}_{n}(\mathbb{Z}_{2})$ be a natural surjection induced
by the surjection $GL(n;\mathbb{Z})arrow GL(n;\mathbb{Z}_{2})$ . For $1\leq i\leq 7$ , let $v_{i}$ be $v_{1}=e_{1},$ $v_{2}=e_{2},$ $v_{3}=e_{3},$

$v_{4}=e_{1}+e_{2},$ $v_{5}=e_{1}+e_{3},$ $v_{6}=e_{2}+e_{3}$ and $v_{7}=e_{1}+e_{2}+e_{3}$ . Then, the vertices of $\mathcal{B}_{n}(\mathbb{Z}_{2})$ are
$\varphi(v_{i})$ , the 1-simplices are $\varphi(\{v_{i},$

$v_{j}$ and the 2-simplices are $\varphi(\{v_{1},$ $v_{2},$ $v_{3}$ $\varphi(\{v_{1},$
$v_{2},$ $v_{5}$

$\varphi(\{v_{1},$
$v_{2},$ $v_{6}$

$\varphi(\{v_{1},$ $v_{2},$ $v_{7}$
$\varphi(\{v_{1},$

$v_{3},$ $v_{4}$ $\varphi(\{v_{1},$ $v_{3},$ $v_{6}$
$\varphi(\{v_{1},$

$v_{3},$ $v_{7}$
$\varphi(\{v_{1},$

$v_{4},$ $v_{5}$

$\varphi(\{v_{1},$ $v_{4},$ $v_{6}$ $\varphi(\{v_{1},$ $v_{4},$ $v_{7}$
$\varphi(\{v_{1},$ $v_{5},$ $v_{6}$ $\varphi(\{v_{1},$ $v_{5},$ $v_{7}$ $\varphi(\{v_{2},$ $v_{3},$ $v_{4}$ $\varphi(\{v_{2},$

$v_{3},$ $v_{5}$

$\varphi(\{v_{2},$
$v_{3},$ $v_{7}$ $\varphi(\{v_{2},$ $v_{4},$ $v_{5}$

$\varphi(\{v_{2},$ $v_{4},$ $v_{6}$ $\varphi(\{v_{2},$ $v_{4},$ $v_{7}$ $\varphi(\{v_{2},$ $v_{5},$ $v_{6}$ $\varphi(\{v_{2},$
$v_{6},$ $v_{7}$

$\varphi(\{v_{3},$
$v_{4},$ $v_{5}$ $\varphi(\{v_{3},$ $v_{4},$ $v_{6}$

$\varphi(\{v_{3^{d}},$
$v_{5},$ $v_{6}$ $\varphi(\{v_{3},$

$v_{5},$ $v_{7}$ $\varphi(\{v_{3},$ $v_{6},$ $v_{7}$ $\varphi(\{v_{4},$ $v_{5},$ $v_{7}$

$\varphi(\{v_{4}, v_{6}, v_{7}\})$ and $\varphi(\{v_{5},$
$v_{6},$ $v_{7}$ (Note that $\{v_{1}, v_{2}, v_{4}\},$ $\{v_{1}, v_{6}, v_{7}\},$ $\{v_{1}, v_{3}, v_{5}\},$ $\{v_{2}, v_{3}, v_{6}\},$

$\{v_{2}, v_{5}, v_{7}\},$ $\{v_{3}, v_{4}, v_{7}\}$ and $\{v_{4}, v_{5}, v_{6}\}$ are not 2-simplices of $\mathcal{B}_{n}(\mathbb{Z}).$ )
We prove the next lemma.
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Lemma 3.2. $\Gamma_{2}(3)$ is isomorphic to the quotient $of*\Gamma(3)_{v_{i}}$ by the normal subgroup
generated by edge relators.

Proof. We set followings

$\bullet V=\{v_{1}, \cdots v_{7}\},$

$\bullet T=\{(v_{1}, v_{i})|2\leq i\leq 7\}UV,$

$\bullet E=\{(v_{i}, v_{j})|1\leq i<j\leq 7\},$

$\bullet F=\{(v_{\iota’}, v_{j}, v_{k})|1\leq i<j<k\leq 7, \varphi(\{v_{i}, v_{j}, v_{k}\})\in \mathcal{B}_{n}(\mathbb{Z}_{2})\}.$

For $e=(v_{i}, v_{j})\in E$ , since $w(e)=t(e)$ , we choose $g_{e}=1$ , and write $g_{ij}=g_{e}$ . By Theorem 2.1,
$\Gamma_{2}(3)$ is isomorphic to the quotient of $(*\Gamma(3)_{v_{i}})*(*1\leq i<j\leq 7\langle\hat{g}_{ij}\rangle)$ by the normal subgroup
generated by followings

(1) $\hat{g}_{1i}$ , where $2\leq i\leq 7,$

(2) $\hat{g}_{ij}^{-1}X_{v_{i}}\hat{g}_{ij}X$ , where $1\leq i<j\leq 7$ and $X\in\Gamma_{2}(3)_{(v_{i)}v_{j})},$

(3) $\hat{g}_{\tau}g_{\tau}^{-1}$ , where $\tau\in F.$

Note that $g_{\tau}=g_{ij}g_{jk}g_{ik}^{-1}$ for $\tau=(v_{i}, v_{j}, v_{k})$ . Hence, the relation $\hat{g}_{\tau}g_{\tau}^{-1}=1$ is equivalent to the
relation $\hat{g}_{ij}\hat{g}_{jk}=\hat{g}_{ik}$ . Since $\hat{g}_{1i}=1$ for $2\leq i\leq 7$ , we have the relation $\hat{g}_{ij}=1$ for $2\leq i<j\leq 7$

except $(i,j)=(2,4)$ , $(3, 5)$ and $(6, 7)$ . For example, the relation $\hat{g}_{23}=1$ is obtained from the
relation $\hat{g}_{12}\hat{g}_{23}=\hat{g}_{13}$ . In addition, relations $\hat{g}_{24}=1,$ $\hat{g}_{35}=1$ and $\hat{g}_{67}=1$ are obtained from
relations $\hat{g}_{23}\hat{g}_{34}=\hat{g}_{24},$ $\hat{g}_{23}\hat{g}_{35}=\hat{g}_{25}$ and $\hat{g}_{26}\hat{g}_{67}=\hat{g}_{27}$ , respectively. Hence, we have the relation
$\hat{g}_{ij}=1$ for $1\leq i<j\leq 7$ . Therefore, $\Gamma_{2}(3)$ is isomorphic to the quotient $of*\Gamma(3)_{v_{i}}$ by
the normal subgroup generated by $A=\{X_{v_{i}}X_{v_{j}}^{-1}|1\leq i<j\leq 7, X\in\Gamma_{2}(3)_{(v_{i},v_{j})}\}$ . Since $A$

is the set of edge relators, we obtain the claim. $\square$

Fkom Lemma 3.1 and Lemma 3.2, we obtain the presentation of $\Gamma_{2}(3)$ .

3.2. The case $n\geq 4$ of Theorem 1.1.
In this subsection, we introduce a simplicial complex which $\Gamma_{2}(n)$ acts on.
Let $\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})$ denote the subcomplex of $\mathcal{B}_{n}(\mathbb{Z})$ whose $(k-1)$-simplex $\{x_{1}, . . . , x_{k}\}$ is the set

of $k$-vectors $x_{i}\in \mathbb{Z}^{n}$ such that $x_{1}$ , . . . , $x_{k}$ are mutually different column vectors of a matrix
$A\in\Gamma_{2}(n)$ . Note that for a vertex $v$ , we have $v\equiv e_{i}$ mod2 for some $1\leq i\leq n.$

We have the following.

Proposition 3.3. For $n\geq 4$ , the simplicial complex $\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})$ is simply connected.

We will prove this proposition in Appendix. We now prove Theorem 1.1.

Lemma 3.4. For any $n\geq 4,$ $\Gamma_{2}(n)$ is isomorphic to the quotient $of*\Gamma(n)_{e_{i}}$ by the
normal subgroup generated by edge relators.

Proof For $a(k-1)-$simplex $\triangle=\{x_{1}, . . . , x_{k}\}\in\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})$ with $x_{j}\equiv e_{i(j)}$ mod2, let $A\in\Gamma_{2}(n)$

be an extension of $\triangle$ . Then we have $A^{-1}\cdot\triangle=\{e_{i(1)}, . . . , e_{i(k)}\}$ . Therefore, we have

$\Gamma_{2}(n)\backslash \Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})=\{\{e_{i(1)}, . .. , e_{i(k)}\}|1\leq k\leq n, 1\leq i(1)<\cdots<i(k)\leq n\}.$

It is clear that $\Gamma_{2}(n)\backslash \Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})$ is contractible. Note that the action of $\Gamma_{2}(n)$ on $\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})$ is
without rotation.

We first set followings.

$\bullet T=\{(e_{1}, e_{i})|2\leq i\leq n\}.$

$\bullet E=\{(e_{i}, e_{j})|1\leq i<j\leq n\}.$

$\bullet F=\{(e_{i}, e_{j}, e_{k})|1\leq i<j<k\leq n\}.$

$\bullet$ For $e\in E$ , we choose $g_{e}=1$ , and write $g_{e}=g_{ij}$ when $e=(e_{i}, e_{j})$ .
$\bullet$ For $\tau=(e_{i}, e_{j}, e_{k})\in F$ , let $g_{\tau}=g_{ij}g_{jk}g_{ik}^{-1}.$
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Then, since $\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})$ is simply connected, it follows from Theorem 2.1 that $\Gamma_{2}(n)$ is isomorphic
to the quotient of $((*\Gamma(n)_{e_{i}})*(*1\leq i<j\leq n\langle\hat{g}_{ij}\rangle))$ by the normal subgroup generated by
followings

(1) $\hat{g}_{1i}$ , where $2\leq i\leq n,$

(2) $\hat{g}_{ij}^{-1}X_{e_{i}}\hat{g}_{ij}X$ , where $1\leq i<j\leq n$ and $X\in\Gamma_{2}(n)_{(ei_{)}e_{j})},$

(3) $\hat{g}_{\mathcal{T}}g_{\tau}^{-I}$ , where $\tau\in F.$

Since $g_{\tau}=1$ , the relation $\hat{g}_{\tau}g_{\tau}^{-1}$ is equivalent to the relation $\hat{g}_{ij}\hat{g}_{jk}=\hat{g}_{ik}$ if $\tau=(e_{i}, e_{j}, e_{k})$ .
By relations $\hat{g}_{1i}=1$ , we have the relation $\hat{g}_{ij}=1$ for $1\leq i<j\leq n$ . Thus, we obtain the
claim. $\square$

From Lemma 3.1 and Lemma 3.4, we obtain the presentation of $\Gamma_{2}(n)$ , by induction on $n.$

Thus, we finish the proof of Theorem 1.1.

APPENDIX $A$

In this appendix, we prove Proposition 3.3. In a proof of this proposition, we will use their
idea for proving that $\mathcal{B}_{n}(\mathbb{Z})$ is $(n-2)$-connected (see [2]).

A.l. Preparation.
Let $X$ be a simplicial complex. Then we define followings.

$\bullet$ For a simplex $\Delta\in X,$ $star_{X}(\Delta)$ is the subcomplex of $X$ whose simplex $\triangle’\in X$ satisfies
that $\Delta,$ $\Delta’\subset\triangle"$ for some simplex $\Delta"\in X$ . We also define $star_{X}(\emptyset)=X.$

$\bullet$ For a simplex $\triangle\in X,$ $1ink_{X}(\Delta)$ is the subcomplex of $star_{X}(\triangle)$ whose simplex $\triangle’\in$

$star_{X}(\triangle)$ does not intersect $\triangle$ . We also define $1ink_{X}(\emptyset)=X.$

For $a(k-1)$-simplex $\triangle=\{x_{1}, . . . , x_{k}\},$ $A\in\Gamma_{2}(n)$ is an extension of $\Delta$ if each $x_{i}$ is a
column vector of $A$ . Here, we prove followings.

Lemma A.l. For $n\geq 2,$ $\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})$ is path connected.

Proof We first consider the case $n=2$ . Let $v_{0}=v_{01}e_{1}+v_{02}e_{2}\in\Gamma_{2}\mathcal{B}_{2}(\mathbb{Z})$ be a vertex.
Then there exist vertices $v_{1}=v_{11}e_{1}+v_{12}e_{2}$ , . . . , $v_{k}=v_{k1}e_{1}+v_{k2}e_{2}\in\Gamma_{2}\mathcal{B}_{2}(\mathbb{Z})$ such that
$\{v_{i}, v_{i+1}\}\in\Gamma_{2}\mathcal{B}_{2}(\mathbb{Z})$ , $|v_{i1}|>|v_{i+11}|$ for $0\leq i\leq k-1$ and $v_{k}=e_{1}$ or $e_{2}$ , for some positive
integer $k$ . Hence, $\Gamma_{2}\mathcal{B}_{2}(\mathbb{Z})$ is path connected.

Next, we suppose $n\geq 3$ . Let $v,$ $w\in\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})$ be vertices. Without loss of generality, we
suppose $v\equiv e_{1}$ and $w\equiv e_{2}$ mod2. Then there is an extension $A\in\Gamma_{2}(n)$ of $v$ . We write
$A^{-1}w= \sum_{i=i}^{n}a_{i}e_{i}$ . Let $S_{A^{-1}w}= \sum_{i=3}^{n}|a_{i}|$ . For $3\leq i\leq n$ , if $|a_{2}|<|a_{i}|$ , there is an integer
$u\in \mathbb{Z}$ such that $|a_{2}|>|a_{i}+2ua_{2}|$ . Then we have that $S_{E^{\grave{u}_{2}}A^{-1}w}<S_{A^{-1}w}$ and $E_{i2}^{u}A^{-1}v=e_{1}.$

If $|a_{2}|>|a_{i}|\neq 0$ , there is an integer $u’\in \mathbb{Z}$ such that $|a_{2}+2u’a_{i}|<|a_{i}|$ . Then we have that

$S_{E_{2i}^{u’}A^{-1}w}<S_{A^{-1}w}$ and $E_{2i}^{u’}A^{-1}v=e_{1}$ . Repeating this operation, we conclude that there exists
$B\in\Gamma_{2}(n)$ such that $S_{Bw}=0$ and $Bv=e_{1}$ . Note that $Bw$ can be regarded as a vertex in
$\Gamma_{2}\mathcal{B}_{2}(\mathbb{Z})$ . Hence, $Bw$ is joined to $e_{1}$ or $e_{2}$ , that is, $Bw$ is joined to $Bv$ . Therefore, $v$ and $w$

are joined by a path. Thus, $\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})$ is path connected. $\square$

Lemma A.2. Let $\triangle\in\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})$ be $a(k-1)$ -simplex. Then we have followings.
$\bullet$ $star_{\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})}(\triangle)$ is $isomor^{\urcorner}phic$ to $star_{\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})}(\{e_{1}, \ldots, e_{k}\})$ as a simplicial complex.
$\bullet$ $1ink_{\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})}(\triangle)$ is isomorphic to $1ink_{\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})}(\{e_{1}, \ldots, e_{k}\})$ as a simplicial complex.

Proof. For $\triangle=\{x_{1}, . . . , x_{k}\}$ , suppose $x_{j}\equiv e_{i(j)}$ mod2. Let $A\in\Gamma_{2}(n)$ be an extension of $\triangle.$

Then restrictions of the action of $A^{-1}$ on $\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})$

$A^{-1}|_{star_{\Gamma_{2}B_{n}(Z)}(\Delta)}$ : $star_{\Gamma_{2}\mathcal{B}_{\mathfrak{n}}(\mathbb{Z})}(\triangle)arrow star_{\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})}(\{e_{i(1)}, \ldots, e_{i(k)}\})$ ,

$A^{-1}|_{1ink_{\Gamma_{2}B\mathfrak{n}(Z)}(\Delta)}$ : $1ink_{\Gamma_{2}\mathcal{B}_{\mathfrak{n}}(\mathbb{Z})}(\triangle)arrow 1ink_{\Gamma_{2}\mathcal{B}_{n}(Z)}(\{e_{i(1)}, \ldots, e_{i(k)}\})$
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are isomorphisms as a simplicial map. It is clear that $star_{\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})}(\{e_{i(1)}, \ldots, e_{i(k)}\})$

and $1ink_{\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})}(\{e_{i(1)}, \ldots, e_{i(k)}\})$ are respectively isomorphic to $star_{\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})}(\{e_{1}, \ldots, e_{k}\})$ and
$1ink_{\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})}(\{e_{1},$

$\ldots,$
$e_{k}$ Thus, we obtain the claim. $\square$

Corollary A.3. Let $\triangle\in\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})$ be $a(k-1)$ -simplex. If $n-k\geq 2$ , then $1ink_{\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})}(\triangle)$ is
path connected.

Proof By a similar argument to the proof of Lemma A. 1, we have that $1ink_{\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})}(\{e_{1}, \ldots, e_{k}\})$

is path connected. By Lemma A.2, $1ink_{\Gamma_{2}\mathcal{B}_{n}(Z)}(\triangle)$ is also path connected. $\square$

A.2. Proof of Proposition 3.3.
We suppose $n\geq 4$ . Let $\alpha=\{x_{i}, \{x_{i}, x_{i+1}\}|1\leq i\leq k, x_{k+1}=x_{1}\}$ be a loop on $\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})$ .

We show that $\alpha$ is null-homotopic.
For $v= \sum_{=1}^{n}v_{i}e_{i}\in \mathbb{Z}^{n}$ , we define Rank$(v)=|v_{n}|$ . Let $R_{\alpha}= \max Rank(x_{i})$ .
We first prove the next lemma.

Lemma A.4. For $a$ 1-simplex $\{v, w\}\in\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})$ with Rank(v) $=Rank(w)=0$, we have
$\{v, w\}\in 1ink_{\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})}(e_{n})$ .

Proof. Note that $v\not\equiv w$ mod2. Suppose that $v\equiv e_{i},$ $w\equiv e_{j}$ mod2 and $i<j$ . Since
Rank(v) $=Rank(w)=0$ , we have that $v,$ $w\not\equiv e_{n}$ mod2. Then there exists an extension
$A=(a_{1}\cdots a_{n})\in\Gamma_{2}(n)$ of $\{v, w\}$ . Let $S_{A}= \sum_{l=1}^{n}$ Rank(a). Note that $S_{A}$ is odd.

First, we consider the case $S_{A}=1$ . Note that Rank$(a_{l})=0$ for $1\leq l\leq n-1$ and
Rank$(a_{n})=1$ . Then there exists $B\in\Gamma_{2}(n)$ such that $BA=(a_{1}\cdots a_{n-1}e_{n})$ . Hence, we have
that $\{v, w\}=\{a_{i}, a_{j}\}\in 1ink_{\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})}(e_{n})$ .

Next, we suppose $S_{A}\geq 3$ . Note that there exists $1\leq l\leq n-1$ exceptl $=i,$ $j$ such that
Rank$(a_{l})\neq$ O. If Rank$(a_{l})>Rank(a_{n})$ , there exists an integer $u\in \mathbb{Z}$ such that Rank$(a_{l}+$

$2ua_{n})<Rank(a_{n})$ . Then we have that $AE_{nl}^{u}$ is an extension of $\{v, w\}$ and that $S_{AE_{nl}^{u}}<S_{A}.$

Similarly, if Rank$(a_{l})<Rank(a_{n})$ , there exists an integer $u’\in \mathbb{Z}$ such that Rank$(a_{l})>$

$Rank(a_{n}+2u’a_{l})$ . Then we have that $AE_{ln}^{u’}$ is an extension of $\{v, w\}$ and that $S_{AE_{ln}^{u’}}<S_{A}.$

Repeating this operation, we conclude that there exists an extension $A’\in\Gamma_{2}(n)$ of $\{v, w\}$ such
that $S_{A’}=1$ . Therefore, we have $\{v, w\}\in 1ink_{\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})}(e_{n})$ . Thus, we obtain the claim. $\square$

When $R_{\alpha}=0$ , by this lemma, we have $\{x_{i}, x_{i+1}\}\in 1ink_{\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})}(e_{n})$ . Namely, the loop $\alpha$ is in
$1ink_{\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})}(e_{n})$ . Since $1ink_{\Gamma_{2}\mathcal{B}_{n}(Z)}(e_{n})$ is the subcomplex of $star_{\Gamma_{2}\mathcal{B}_{n}(Z)}(e_{n})$ and $star_{\Gamma_{2}\mathcal{B}_{n}(Z)}(e_{n})$

is contractible, $\alpha$ is null-homotopic. Therefore, we next assume $R_{\alpha}>0.$

Suppose that $R_{\alpha}$ is odd. Then there exists $1\leq i\leq k$ such that Rank$(x_{i})=R_{\alpha}$ . Since $R_{\alpha}$

is odd, we have that $x_{i}\equiv e_{n},$ $x_{i\pm 1}\not\equiv e_{n}$ mod2 and Rank$(x_{i\pm 1})<R_{\alpha}$ . By Corollary A.3,
we have that $1ink_{\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})}(x_{i})$ is path connected. Since $x_{i\pm 1}\in 1ink_{\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})}(x_{i})$ , there exists a
path $\{y_{j}, y_{l}, \{y_{j}, y_{j+1}\}|1\leq j\leq l-1\}$ on $1ink_{\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})}(x_{i})$ between $x_{i\pm 1}$ such that $y_{1}=x_{i-1}$

and $y_{l}=x_{i+1}$ (see Figure 1). Since $R_{\alpha}$ is odd and Rank$(y_{j})$ is even for each $y_{j}$ , there exists
an integer $s_{j}\in \mathbb{Z}$ such that Rank$(y_{j}’)<R_{\alpha}$ , where $y_{j}’=y_{j}+2s_{j}x_{i}$ . We choose $s_{j}=0$ if
Rank$(y_{j})<R_{\alpha}$ . Then we have that the path $\{y_{j}’, y_{l}’, \{y_{j}’, y_{j+1}’\}|1\leq j\leq l-1\}$ between $x_{i\pm 1}$ is
in $1ink_{\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})}(x_{i})$ (see Figure 1). Let $\alpha’=\alpha\cup\{y_{j}’, y_{l}’, \{y_{j}’, y_{j+1}’\}|1\leq j\leq l-1\}\backslash \{x_{i},$ $\{x_{i},$ $x_{i\pm 1}$

Then $\alpha’$ is homotopic to $\alpha$ (see Figure 1). For all $x_{i}$ with Rank$(x_{i})=R_{\alpha}$ , applying the same
operation, we conclude that $R_{\beta}<R_{\alpha}$ , where $\beta$ is a resulting loop which is homotopic to $\alpha.$

Next, suppose that $R_{\alpha}$ is even. Then there exists $1\leq i\leq k$ such that Rank$(x_{i})=R_{\alpha}.$

Since $R_{\alpha}$ is even, we have $x_{i}\not\equiv e_{n}$ mod2.

Remark A.5. Under the assumption $n\geq 4$ , we may suppose all of following conditions.
$oRank(x_{i\pm 1})<R_{\alpha},$

$\bullet x_{i\pm 1}\not\equiv e_{n}mod 2,$

$\bullet x_{i-1}\not\equiv x_{i+1}mod 2.$
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FIGURE 1. The case $R_{\alpha}$ is odd.

Proof. If Rank$(x_{i-1})=R_{\alpha}$ , then there exists a vertex $y\in 1ink_{\Gamma_{2}\mathcal{B}_{n}(Z)}(\{x_{i-1}, x_{i}\})$ such that
$y\equiv e_{n}$ mod2 and Rank(y) $<R_{\alpha}$ , since $R_{\alpha}$ is even and Rank(y) is odd. Let $\alpha’=\alpha\cup$

$\{y, \{x_{i-1}, y\}, \{y, x_{i}\}\}\backslash \{\{x_{i-1},$ $x_{i}$ Then $\alpha’$ is homotopic to $\alpha$ . Hence, considering $\alpha’$ in
place of $\alpha$ , we may suppose Rank$(x_{i-1})<R_{\alpha}$ . Similarly, we may suppose Rank$(x_{i+1})<R_{\alpha}.$

If $x_{i-1}\equiv e_{n}$ mod2, then there exists a vertex $y\in 1ink_{\Gamma_{2}B_{n}(\mathbb{Z})}(\{x_{i-1}, x_{i}\})$ such that $y\not\equiv e_{n}$

mod2 and Rank(y) $<Rank(x_{i-1})(<R_{\alpha})$ , since Rank$(x_{i-1})$ is odd and Rank(y) is even. Let
$\alpha’=\alpha\cup\{y, \{x_{i-1}, y\}, \{y, x_{i}\}\}\backslash \{\{x_{i-1},$ $x_{i}$ Then $\alpha’$ is homotopic to $\alpha$ . Hence, considering
$\alpha’$ in place of $\alpha$ , we may suppose Rank$(x_{i-1})<R_{\alpha}$ and $x_{i-1}\not\equiv e_{n}$ mod2. Similarly, we may
suppose Rank$(x_{i+1})<R_{\alpha}$ and $x_{i+1}\not\equiv e_{n}$ mod2.

Suppose that Rank$(x_{i\pm 1})<R_{\alpha}$ and $x_{i\pm 1}\not\equiv e_{n}$ mod2. If $x_{i-1}\equiv x_{i+1}$ mod2, then there
exists a vertex $y\in 1ink_{\Gamma_{2}\mathcal{B}_{n}(Z)}(\{x_{i-1}, x_{i}\})$ such that $y\not\equiv x_{i+1},$ $e_{n}$ mod2 and Rank$(y)\leq$

$Rank(x_{i-1})(<R_{\alpha})$ , since $n\geq 4$ . Let $\alpha’=\alpha\cup\{y, \{x_{i-1}, y\}, \{y, x_{i}\}\}\backslash \{\{x_{i-1},$ $x_{i}$ Then $\alpha’$ is
homotopic to $\alpha$ . Hence, considering $\alpha’$ in place of $\alpha$ , we may suppose that Rank$(x_{i\pm 1})<R_{\alpha},$

$x_{i\pm 1}\not\equiv e_{n}mod 2andx_{i-1}\not\equiv x_{i+1}$ mod2. $\square$

We now suppose the conditions of the above remark. Suppose that $x_{i}\equiv e_{s},$ $x_{i-1}\equiv e_{t}$

and $x_{i+1}\equiv e_{u}$ mod2, where $s,$
$t$ and $u$ are mutually different and not equal to $n$ . Then

there exists $A\in\Gamma_{2}(n)$ such that $Ax_{i}=e_{s},$ $Ax_{i-1}=e_{t}$ and Rank$(Ax_{i+1})=0$ . In fact, since
$\{x_{i-1}, x_{i}\}$ is a 1-simplex in $\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})$ , there is an extension $B\in\Gamma_{2}(n)$ of $\{x_{i-1}, x_{i}\}$ . We write
$B^{-1}x_{i+1}= \sum_{j=1}^{n}a_{j}e_{j}$ . It follows that there exist an even integer $b_{u}$ and an odd integer $b_{n}$

such that $a_{u}b_{n}-a_{n}b_{u}=gcd(a_{u\backslash }a_{n})$ . Then we have that

$(a_{n}/gcd(a_{u},a_{n})a_{u}/gcd(a_{u},a_{n}) b_{n}b_{u})^{-1}(\begin{array}{l}a_{u}a_{n}\end{array})=(gcd(a_{u}, a_{n})0)\cdot$

Let $C\in\Gamma_{2}(n)$ be the matrix whose $(u, u)$ entry is $a_{u}/gcd(a_{u}, a_{n})$ , $(n, u)$ entry is $a_{n}/gcd(a_{u}, a_{n})$ ,
$(u, n)$ entry is $b_{u},$ $(n, n)$ entry is $b_{n}$ , other diagonal entries are 1 and other entries are O. Then
it follows that $Ax_{i}=e_{s},$ $Ax_{i-1}=e_{t}$ and Rank$(Ax_{i+1})=0$ , where $A=C^{-1}B^{-1}.$

Since $\{e_{s}, Ax_{i+1}\}$ is a 1-simplex and Rank$(e_{s})=Rank(Ax_{i+1})=0$ , by Lemma A.4, we
have that $\{e_{s}, Ax_{i+1}\}\in 1ink_{\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})}(e_{n})$ . Namely, we have that $e_{n}\in 1ink_{\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})}(\{e_{s},$ $Ax_{i+1}$

In addition, it is clear that $e_{n}\in 1ink_{\Gamma_{2}\mathcal{B}_{n}(Z)}(\{e_{S},$ $e_{t}$ Hence, we have that $A^{-1}e_{n}\in$

$1ink_{\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})}(\{x_{i}, x_{i\pm 1}\})$ (see Figure 2). Then, there exists an integer $l$ such that Rank$(x_{i}’)<R_{\alpha},$

where $x_{i}’=A^{-1}e_{n}+2lx_{i}$ . We have also that $x_{i}’\in 1ink_{\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})}(\{x_{i}, x_{i\pm 1}\})$ (see Figure 2). Let
$\alpha’=\alpha\cup\{\{x_{i}’\}, \{x_{i}’, x_{i\pm 1}\}\}\backslash \{x_{i},$ $\{x_{i},$ $x_{i\pm 1}$ Then $\alpha’$ is homotopic to $\alpha$ (see Figure 2). Sim-
ilar to the case $R_{\alpha}$ is odd, for all $x_{i}$ with Rank$(x_{i})=R_{\alpha}$ , applying the same operation, we
conclude that $R_{\beta}<R_{\alpha}$ , where $\beta$ is a resulting loop which is homotopic to $\alpha.$
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FIGURE 2. The case $R_{\alpha}$ is even.

Repeating this operation until $R_{\alpha}=0$ , we conclude that the loop $\alpha$ on $\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})$ is null
homotopic. Thus, $\Gamma_{2}\mathcal{B}_{n}(\mathbb{Z})$ is simply connected.
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