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Towards the variation of Jorgensen’s theory for the
torus with a single cone point*

Hirotaka Akiyoshi

1 Introduction

In his famous unfinished paper [6], Jorgensen gave a description of the combinatorial
structure of the Ford domain of a once-punctured torus Kleinian group. As pointed
out by Sullivan [9], there seems to be a parallel theory if we replace the “puncture”
to a “cone singularity”. In fact, Jorgensen [7] gave examples of doubly degenerate
groups with cone angle 27 /n for natural numbers n, and applied them to construct
hyperbolic structures for certain closed surface bundles over the circle. In this article,
I will give an overview of the project to establish a variation of Jorgensen’s theory
for the cone manifolds obtained from the original once-punctured torus by replacing
the puncture to a single cone point of cone angle 6 € (0, 27).

2 Torus with a single cone point

Let 0 be a real number with 0 < € < 27. Let T be the torus and v a point in 7.
We denote the triplet (T, {v}, 8) by Ty and call it the torus with a single cone point
v with cone angle §. Set M =T xR and ¥ = {v} x R C M, and denote the triplet
(M, %,0) by My (see Figure 1).

Let Sy be the intersection of two half spaces of H? with dihedral angle 6 at the
intersection £ of the boundary planes, and H} the quotient space obtained from Sy
by identifying the pairs of points in 85y by the rotation about £ of angle 6 (see
Figure 2). A standard ball of angle 6 is defined to be a ball in H} centered at a point
in the image of ¢, and a standard horoball of angle 6 is defined to be the projected
image in H3 of the intersection of Sp and a horoball centered at an endpoint of £.

*This work was supported by JSPS KAKENHI Grant Number 23740064.
tDepartment of Mathematics, Graduate School of Science, Osaka City University, 3-3-138,
Sugimoto, Sumiyoshi-ku Osaka, 558-8585 Japan



Mo

Figure 1: The cone manifolds 7 and My

A cone hyperbolic structure on My is a length metric on My such that (i) each
point in M — ¥ has a neighborhood isometric to a ball in H3, and (ii) each point in
¥ has a neighborhood isometric to a standard ball of angle 6. '

Set Ty = T — {v} and My = M — X. Then the projection My — Ty x {0} = Tp
induces the isomorphism (M) = m;(Ty); we denote the group by G. We fix a
peripheral loop in Ty and denote it by k (see Figure 3). Associated with a cone
hyperbolic structure on My, we obtain a smooth incomplete hyperbolic structure on
M,, and hence the holonomy representation p : G — PSL(2,C). For a holonomy
representation p, we have tr p(k) = £2cos(6/2).

3 Space of representations

3.1 Elliptic generators

When we study the space of representations of G into PSL(2,C) or SL(2,C), it
is convenient to work with the orbifold fundamental group G of the orbifold Oy =
(52;00,2,2,2), the orbifold with the once-punctured sphere as underlying space and
with three singular points of order 2, obtained as the quotient of Ty by the elliptic
involution. Denote the canonical projection by prp : To — Op. The group G has a
presentation

a:<PO,Q0’ROIP027Q(2)’R(2))’
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Figure 2: Neighborhood of a point in the cone singularity

where each P, Qo and Ry is represented by a loop which encircles a singular point,
and K = RyQo P, is represented by a peripheral loop of Oy such that prg, (k) = K.
An elliptic generator triple is a triple (P, @, R) of elements of order 2 in G such
that G = (P,Q,R) and RQP = K. Each P, Q and R in an elliptic generator
triple is called an elliptic generator. For any elliptic generator P, the element K P is
contained in pry, (G) and represented by a simple loop in T} obtained as the image of
a straight line in the universal abelian cover R%2 —Z? whose slope is a rational number
or co. We call the slope of the straight line the slope of P and denote by s(P). Let D
be the Farey complex, namely, D is the 2-dimensional simplicial complex embedded
in HZ such that the set of 2-simplices is {7(c0,0,1) |y € PSL(2,Z)}, where 9H? is
identified with R = R U {0}, and (00,0,1) denotes the ideal triangle with vertices
00, 0 and 1 (see Figure 3). The set of vertices of D is equal to Q@ = QU {0}. The
following property is well-known (see [2, Section 2.1] for example):

1. If (P,Q, R) is an elliptic generator triple, then any consecutive three elements
in the following sequence is also an elliptic generator triple:

. RET PETLQXT RKT PQ, R, PK,QX RK PX’, ..
Here XY denotes the conjugate Y XY L.
2. If (P,Q, R) is an elliptic generator triple, then so are (P, R, Q%) and (QF, P, R).

3. Any elliptic generator triple is obtained from (P,, Qo, Ry) by a finite sequence
of operations in 1 and 2.
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Figure 3: Punctured torus and the quotient orbifold, and the Farey complex D

4. For any elliptic generator triple (P, Q, R), 0 = (s(P), s(Q), s(R)) is a triangle
in D, which is invariant under the operation of 1. The sequence in 1 is called
the sequence of elliptic generators associated with o.

3.2 Space of representations containing holonomy represen-
tations

As mentioned in Section 2, the holonomy representation of a cone hyperbolic struc-

ture on M, induces the holonomy representation p : G — PSL(2,C) such that

tr p(k) = +2cos(6/2). We call a representation of a group into SL(2, C) or PSL(2,C)

to be elementary if the image has a fixed point in H3. We introduce the following

representation spaces, where the relation ~ is induced from the conjugacy in the
target group and we use the symbol pr,, : SL(2,C) — PSL(2,C) for the projection:

e Rg={p:G— SL(2,C) : non-elementary | tr p(K) = —2cos(6/2)}/ ~
e Rg={p=pry0p:G— PSL(2,C)|p € Ro}/ ~
e Ro={p:G— PSL(2,C) : non-elementary | p(K) = (0/2)-rotation on H*}

We also denote by ®, the set of (2 — 2cos(6/2))-Markoff maps in the sense of [10],
namely, we set

Oy = {(z,y,2) € C*|2?> + 3> + 2® — zyz — 2 = —2c0s(0/2)}.

As in the case of once-punctured torus groups, there is a Zg @ Z,-action on R¢ which
keeps invariant the representation in Ry obtained by the post-composition of pr,,.
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Figure 4: The values of 9, for a sequence of elliptic generators

This induces the 4-to-1 correspondence between Re and Re. We can see that the
map Re — Re induced from the inclusion G — G is bijective. Also, there is a subset

¢ of ®y which is in 1-to-1 correspondence with Ry by the theory of generalized
Ma,rkoff maps [10]. These correspondence provides a framework parallel to that for
once-punctured torus groups.

- 1:1
ne
Re <> Py

l4:1
~ 1:1

3.3 Geometric parametrization

We can define a geometric parametrization for R which plays the counterpart of
the complex probability introduced by Jorgensen in the theory of once-punctured
torus groups. In what follows, we always use a representative for p € Ry such that
p(K) maps each z € C to /22,

Let £G be the set of elliptic generators. To each p € ’R,g, we associate a map
Y, EG — C defined by Y,(P) = p(P)(00). From the choice of representatives, this
map is well-defined up to a multiple of a non-zero complex number. In fact, we have
the following, and hence the map 9, : £G — C gives a parametrization for R4. (See
Figure 4 which illustrates the values of 9, for a sequence of elliptic generators.)

Proposition 3.1. For p,p’ € 7/2\9, p = p if and only if Y, = MYy for some X €
C - {0}.
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Figure 5: Switch of sequences of elliptic generators

Idea of Proof. First, suppose that p = p/, namely, there exists T € PSL(2,C) such
that p'(g9) = Tp(g)T~! for any g € G. Then we obtain T(00) = oo and T(0) = 0 by
the assumption 0 < 6 < 27. Thus there exists A € C — {0} such that T(z) = Az for
any z € C, and hence 9,(P) = My (P) for any P € £G. Next, suppose 1, = Ay
for A € C — {0}. By taking a suitable conjugate, we may assume that ¢, = 9.
We can show, by using the assumption that 0 < 6 < 2w, that there is a sequence of
elliptic generators {P;} such that 9,(P;) # oo for any j € Z. From the property of
a sequence of elliptic generators and the normalization of p and p/, both p(F;) and
¢'(P;) enjoy the following same equation on X € PSL(2,C) for any j € Z:

X(00) = 6p(P),  X(W(Pre1) = $ulPrsn),  X(Wpl(Praa)) = (P,

Thus we obtain p(P;) = p/(P;) for any j € Z. Since {P;} is a sequence of elliptic
generators, this implies p = p'. a

The value of 1, for sequences of elliptic generators associated with adjacent trian-
gles in D can be calculated by a method analogous to that for complex probabilities
(see Figure 5). Let {P;} and {P}} be sequences of elliptic generators with Py = P,
P = P, and P = PP P,. Then these sequences are associated with a pair of
adjacent triangles in D. Let p € Ry such that none of ¢; = ¥,(P;) and s = ¥p(Fj)
for j € Z is equal to co. Then the sequence {c}} is obtained from {c;} as follows.
Let j =3k+1fork € Zand! e {0,1,2}. If | =0 (resp. j = 1), then P} = F;
(resp. Pj = Pj;1), and hence ¢; = ¢; (resp. ¢ = cj1). 1f I = 2, then there is a
orientation-preserving similarity transformation of C which maps the three points
Cj—2, ¢i—1 and ¢; to ¢, ¢; and ¢_;, respectively. This characterizes {c]}.

4 Good fundamental polyhedron

Let p € 7%.9. In order to define a good fundamental polyhedron for p, we introduce
several conditions analogous to those for once-punctured torus groups (cf. [2]). Fol-
lowing [2], we denote by I(v) (resp. ITh(7)) the isometric circle (resp. the isometric
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hemisphere) for v € PSL(2,C) with v(00) # oco. We also denote the inside (resp.
outside) of I(y) by D(7) (resp. E(v)), and the inside (resp. outside) of Ih(y) by
Dh(y) (resp. Eh(y)).

Let { P;} be a sequence of elliptic generators such that 9,(P;) # oo for any j € Z.
For each j € Z, set ¢; = ¢,(P;) and denote the segment in C w1th endpoints c¢; and
cj+1 by I, and suppose that [; does not contain the origin. Let [ : R — C — {0} be
the map such that the restriction to the closed interval [j,j + 1] is the affine map
into C satisfying I(j) = ¢; and I(j + 1) = ¢;41. Then we have I(t + 3k) = e™*%/2|(t)
for any t € R and k € Z. (See Figure 4.)

Let exp : C —» C — {0} be the universal covering, and let d be the metric on C
obtained as the pull-back of the Euclidean metric on C — {0} by the covering map
exp. We denote the metric space (C,d) by Co. Let 1: R — Cy be a continuous
lift of [ by exp. We define the isometric action of the infinite cyclic group Z on R
(resp. Co) by 1-t=1¢+3 (resp. 1.2 =2 +i6/2). Then | is equivariant with respect
to these actions of Z. Let S' = R/Z and Cy = Co /Z equipped with the metrics
so that the covering projections are local isometries. We remark that Cy can be
naturally regarded as the “boundary” of the model space H3. We denote H3 U C,
by H—g. Then [ induces the map Iy : S — Cy whose image is the union of three
(geodesic) segments lo([7,5 + 1]) (5 € {0,1,2}). We denote the image of Iy in Cy
by L¢(p, o). Under the above notation, we say that p satisfies the condition Simple
at o if lp : S* — Cy is a homeomorphism onto its image L4(p, o) and also L4(p, o)
bounds the bounded (resp. unbounded) component of Cy — Ly(p, o) in its left (reap.
right) hand side.

For p € Ry which satisfies the condition Simple at o, let £; be the length of
l; for each j € Z. By definition, &; is also equal to the length of the segment
obtained as the image lg([j,7 + 1]). We say p satisfies the triangle inequality at
o if /&, V&1, V& satisfies the triangle inequality. By a parallel argument to the
case of once-punctured torus, p satisfies the triangle inequality at o if and only if
I(p(P;)) N I(p(Pj+1)) consists of exactly two points for any j € Z.

We say that p is admissible at o if p satisfies the condition Simple and triangle
inequality at o, and also if D(p(P;)) does not contain the origin for any j € Z.
The final condition corresponds to the condition NonZero introduced in [2] for the
case of once-punctured torus. For p which is admissible at o, we can define the side
parameter 0(p,0) = (6~ (p), 6% (p)) by a similar way to the case of once-punctured
torus. :

Let v = (v~,v") be a pair of points in H?, and ¢ the geodesic segment in H?>
with endpoints v. Let 0y, 09,..., 0, be the triangles in D such that the interior of
oy intersects £ in this order, and denote the sequence {01, ...,0mn} by X(v), which
is called a chain of triangles in [2]. We also define the 2-dimensional simplicial
complex L(v) = L(X(v)) associated with v following [2]. As the argument in
the above, where we define the condition Simple, there is a natural action of Z



Figure 6: A developed image of a good fundamental polyhedron in H?3

on L(v). We denote the quotient L(v)/Z by Lg(v). We say that a pair (p,v),
which is called a labeled representation, satisfies the condition Simple if p satisfies
the condition Simple at each oy, and if there is a linear extension of S* — L4(p, o)
(k€ {1,...,m}) to Ly(v) — Cy which is a homeomorphism onto the image.

Let (p,v) be a labeled representation which satisfies the condition Simple. Then
we can define a “polyhedron” Eh(p,v) in HS as the “common exterior” to the family
of isometric hemispheres {Th(p(P))|s(P) € L(v)@}. This definition is a slight
modification of that is mentioned in Section 6.4 of [2], where a fundamental domain
modulo the action of the peripheral subgroup is discussed. For the polyhedron
Eh(p,v), we define the two conditions Duality and Frontier by simply following
Definitions 6.1.3 and 6.1.4 in [2].

A labeled representation (p,v) is said to be good if it satisfies the condition
Simple, and if the polyhedron Fh{p,v) satisfies the conditions Duality and Frontier.
We call Fh(p,v) a good fundamental polyhedron for p. By following [2], we can see
that a good fundamental polyhedron induces a complete cone hyperbolic structure
on My. See Figure 6, which illustrates a developed image of a good fundamental
polyhedron for the cone angle § = 47/7. We remark that the developed image does
not make sense if the cone angle 8 is an irrational multiple of 7 (see Figure 7).

By comparing the numerical results done by Yamashita based on his joint work
with Tan [12] and by the author, we proposed the following conjecture.

Conjecture 4.1 (Akiyoshi-Yamashita). For p € ﬁg, p has a good fundamental
polyhedron if and only if p satisfies the BQ-condition.

Except for the real representations described in the next section, this conjecture
is still open.
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0: rational with 7 @: irrational with 7

Figure 7: Rationality of cone angle with 7 and developed image

5 Real representations

In this section, we see a partial affirmative answer to Conjecture 4.1. To this end, we
introduce the real slices of the representation spaces. Let ’ﬁ]}} be the subspace of Reo
consisting of the representations with SL(2,R)-representations as representatives.
Let RE be the subspace of Ry consisting of the representations pr,, o p for p € 7’%‘5,
and let RR be the subspace of R4 corresponding to RR. Goldman and Tan-Wong-
Zhang made intensive studies on the space ’Iig, in which they showed the following
theorems.

Theorem 5.1 (Goldman [8]). For p € Ry, either (i) p is realized as the holonomy
representation of a cone hyperbolic structure on Ty, or (ii) p is elementary.

Theorem 5.2 (Tan-Wong-Zhang [10]). For p € RE, p satisfies the BQ-condition if
and only if p is realized as the holonomy representation of a cone hyperbolic structure
on Ty.

The following is the main theorem of [1].
Theorem 5.3. Any non-elementary p € RX has a good fundamental polyhedron.

Summarizing the above three theorems, we obtain a partial affirmative answer
to Conjecture 4.1 on RE.

The proof of Theorem 5.3 uses a specialization of the geometric parameterization
for Re to RY, which enables us to simplify the condition of good fundamental
polyhedra to a certain algebraic condition for the parameter. Then we obtain the
theorem by following the argument of Bowditch [4] and using the results of [10].



6 Uniqueness of a good fundamental polyhedron

In this section, we observe that a good fundamental polyhedron has a property
similar to that for the Ford domain of a Kleinian group. In what follows, we suppose
that My is equipped with the complete hyperbolic structure induced from a good
fundamental polyhedron Eh. Then there is a horoball H centered at co such that
the intersection H N Eh projects onto the subset H of M, isometric to a standard
horoball with cone angle 6. Let C' be the subset of My obtained as the image of
OFEh..

Let z € Mg — H. Then the closed r-neighborhood B(z,r) of z in Mj intersects H
for a sufficiently large positive number r. Since My is a complete length space which
is locally compact, B(z,r) is compact by the Hopf-Rinow theorem. Thus there is
an arc 7 in B(z,r) which connects x to 0H such that the length of v is equal to
the distance between x and H. From the minimality of the length of v, we see that
either (i) +y is contained entirely in X, or (ii) 7 is a geodesic disjoint from ¥ which
intersects 0H perpendicularly at an endpoint. Then C is characterized as the cut
locus of My with respect to H, namely, the following holds. For any = € Eh, let 7z
be the vertical geodesic segment in Eh connecting = to 0H, and vz be the projected
image of 7z in Mj. |

Proposition 6.1. Let T € Fh which project onto x € My — H.

1. Suppose that T is a point in the interior of Eh. Then 7z is the unique shortest
arc in My connecting x to H.

2. Suppose that T is a point in OFEh. Let T1,..., T be the points in OEh which
project onto x, where k € {2,3,4}. Then ~z,,...,7s, S the complete list of
shortest arcs in My connecting x to H.

Idea of proof. We give the idea of the proof for the assertion 1. The assertion 2 can
be proved by a similar argument. In the proof, we use the following property of
good fundamental polyhedra:

(i) The boundary of a good fundamental polyhedron Eh is a union of isometric
hemispheres.

(i) For any point z € Eh, there are at most three more points in Eh which are
identified with x by the side pairings.

(iii) The points in OFh that are identified by the side pairings have the same height
in the upper half space model.

Let z be a point in My — H such that there is a point = in the interior of Eh
projecting onto x. Suppose to the contrary that there is a path  distinct from 7z
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Figure 8: Shortcut between 3{) and 0; exists.

such that the length of ¢ is less than or equal to that of vz. We may suppose that
the length of § is equal to the distance between x and H, and so ¢ is a geodesic
which intersects 0H perpendicularly at an endpoint y € OH. Let y be the unique
lift of y contained in OH N Eh, and dy be the connected component of the lift of ¢
in Fh containing y. Then we can see that ¥ is not contained in 4z, and &y connects
y to a point, 2, in OFh, where it intersects a face of Eh transversely. Then there
is a point Z' in OFh and the component, d;, of the lift of § such that z and 2’ are
identified by the side pairing and that J; contains z’ as an endpoint (see Figure 8).

Let g{) be the vertical geodesic segment connecting 2’ to &H. Since Z and 7’ have
the same heights, the lengths of go and 3(’) are the same. Thus we can obtain an arc
0’ which has the same length with é by replacing 30 with 36 However, there is a
shortcut between 36 and 8;. This contradicts the assumption that 4 is the shortest
arc connecting x to H. O

Remark 6.2. We can see that a good fundamental polyhedron is unique for the
hyperbolic structure it induces. However, since we have not seen the uniqueness of
the hyperbolic structures for a given representation, there is a possibility that two
distinct good fundamental polyhedra induce the same holonomy representation.
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