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The present study has been carried out based upon the motivation to clarify the mathematical mechanism
usually hidden in the background of biological systems, mainly by making use of mathematical models
including stochastic models.  In particular, we are interested in branching models, and we are very eager
to characterize their fundamental properties by formulating an aspect of random branching in the viewpoint
of functional equations. As an exciting case study, when a certain class of integral equations is given, then
we are going to introduce in this article a method to construct its solution in a probabilistic manner by
using branching models. To put things in a distinct way, this implies that the above-mentioned integral
equations themselves are nothing but a characterization of the mathematical model that is constructed by
a branching process arising in the description of biological systems. Paying attention to the treé structure
that a proper branching process determines, we would introduce a space of marked trees and construct a
“tree-based functional” in terms of non-commutative star-product. It is proven that if a certain tree-based
ordinary multiplication functional satisfies the integrability condition, then there exists a proper weighted
tree-based star-product functional such that the function determined by expectation of the functional gives
a unique solution to the original deterministic integral equations.
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1 Introduction
Let Do := R\ {0} and Ry := [0, 00). For every a, 8 € C3, we use the symbol a - 3 for inner product,
and we put e, := z/|x| for every z € Dy. In this article we consider the deterministic nonlinear integral

equation of the type
t
(e, ) = w(@)+ 5 [ ds & [ (s, 550)n(z, )y
0
At As|z|?
+ 3/ € f(s,z)ds, for V(t,z) € Ry x Dy, (1)
0

where u is an unknown function : Ry x Dy — C3, A > 0, and ug : Dy — C? is the initial data. Moreover,
f: Ry x Dy — C? is a given function satisfying f(t,z)/|z|> = f € L'(Ry) for each z € Dy. The term
p in (1) is given by

p(t, @, y5u) = u(t,y) - ex{u(t,z — y) — ex(u(t,z — y) - ) }. (2)

Suppose that the integral kernel n(z,y) is bounded and measurable with respect to dz x dy. While, we
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consider a Markov kernel K : Dy — Dy x Dy, namely, for every z € Dy, K,(dz,dy) lies in the space
P(Dy x Dy) of all probability measures on Dy x Dg. When the kernel k is given by k(z, y) = i|z| 2n(z,y),
then we define K, as a Markov kernel satisfying that for any positive measurable function h = h(z,y) on
Dy x Dy,

// h(z,y)K,(dz,dy) = /h(a:,z - z)k(z, z)dz. (3)

Moreover, we assume that for every measurable functions f,g > 0 on R,

/ h(l2l)v(dz) / o(jz) K. (dz, dy) = / o(2)(dz) / h(ly]) K (de, dy) (4)

holds, where the measure v is given by v(dz) = |2|~3d.

2 Main results

In this section we shall state the main results on the existence and uniqueness of solutions to the
nonlinear integral equation (1). That is to say, we derive a probabilistic representation of the solutions
to (1) by employing the star-product functional. As a matter of fact, the solution u(t, ) is nothing but

a probabilistic solution. Let
M7 () = [T Hiam Ed ms luo, £1(w), (5)

be a random quantity in terms of tree-based star-product functional with weight functions (ug, f). On
the other hand, M{"™ (w) denotes the associated *-product functional with weight (U, F). In fact, in
a similar manner as (5) we can construct a (U, F)-weighted tree-based *-product functional MUE (w).
This quantity is indexed by the nodes (x,,) of a binary tree. We suppose that U (resp. F) is a non-
negative measurable function on Dy (resp. Ry x Dy) respectively, and also that F(-,z) € L*(R,) for
each z. Indeed, ordinary multiplication * is taken in construction of the *-product functional, instead of

the star-product % in (5).

THEOREM 1. Suppose that juo(z)| < U(x) for Yz and |f(t,x)| < F(t,x) for Vt,z, and also that for
someT >0 (T >> 1 sufficiently large),

Er MY (W) < 0, ae -z (6)

Then there exists a (ug, f)-weighted tree-based star %-product functional M,ﬁ‘ o.f) (w), indezed by a set of
node labels accordingly to the tree structure which a binary critical branching process Z%=(t) determines.

Furthermore, the function

u(t,z) = By o[ My ()] (7)

gives a unique solution to the integral equation (1). Here E; , denotes the ezpectation with respect to a

probability measure P, , as the time-reversed law of Z%=(t).

3 Construction of branching model and tree-like structure

In this section we consider a continuous time binary critical branching process ZX=(t) on Dy, whose
branching rate is given by a parameter \|z|?, whose branching mechanism is binary with equi-probability
(see Figure 1), and whose descendant branching particle behavior (or distribution) is determined by the
kernel K,. Next, taking notice of the tree structure by the process ZX=(t), we denote the space of marked

trees
w = (t7 (tm)’ (wm)v (nm)’m € V) (8)
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by Q. Furthermore, the time-reversed law of Z%=(t) on Q is written as P, ;. Here t denotes the birth
time of common ancestor, and the particle z,, dies when 7,, = 0, while it generates two descendants
Zml, Tm2 When 7,, = 1. On the other hand,

v=J{1,2)

£>0
is a set of all labels, namely, finite sequences of symbols with length £. For w € Q we denote by N'(w) the
totality of nodes being branching points of tree, and let N, (w) be the set of all nodes m being a member
of V\ N(w), whose direct predecessor lies in A (w) and which satisfies the condition ¢,,(w) > 0, and let
N_(w) be the same set as described above, but satisfying ¢,,(w) < 0. Finally we put ‘

N(w) = Ny (w) UN_(w). 9

4 Star %-product functional and *-product functional
Let us now introduce a tree-based star-product functional. First of all, we denote by the symbol
Proj*(-) a projection of the objective element onto its orthogonal part of the z component in C3, and we

define a Ye-product of 3, for z € Dy as
Bk (Y = —i(B - e,)Proj*(v). (10)

We shall define ©™(w) for each w € € realized as follows. When m € N, (w), then O™(w) =
f(tm(w), Tm (w)), while ©™(w) = up(zm(w)) if m € N_ (w). Then we define

Ermams (W) = ERL oy [uo, fl(w) = 0™ (w)kz,, ;0™ (W), (11)

where as for the product order in the star-product ¥, when we write m < m’ lexicographically with
respect to the natural order <, the term ©™ labelled by m necessarily occupies the left-hand side and
the other ©™ labelled by m’ occupies the right-hand side. And besides, we write

820 o(w) =22, yluo, fl(w) == O™ (W), (12)

when m € V is a label of single terminal point.
Under these circumstances, we consider a random quantity which obtained by executing the star-
product v inductively at each node in M(w), and we call it a tree-based Y-product functional, and we

express it symbolically as
Miumﬁ (LU) = H *[wm]Em;mg [uOv f](w)v (13)

where m; € N(w) and ma, m3 € N(w), and by the symbol [ % (as a product relative to the star-product)
we mean that the star-products %’s should be succeedingly executed in a lexicographical manner with

respect to Ty, such that m € N(w) N {|M| = £ — 1} when |m,| = £.
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X 2 Example of a Realized Tree w:

& 3 Classification of Nodes for w;

EXAMPLE 2. Suppose that a tree structure wy (€ §2) has been realized here (see Figure 2). Clearly we
have N (w1) = {¢,1,2,21}, Ny (w1) = {22,211}, and N_(w;) = {11,12,212}. However, for this w; € Q,
unfortunately labels {121}, {122} are not included in any N (w:), N4 (w1), nor N_(w;). As a matter of

fact, we can construct
E%1,12(“"1) = ell(wl)*[xllem(wl)

by a star-product uo(xu(wl))*[xl]ug(:cig(wl)) in accordance with the rule, because both m; = 11
and my = 12 lie in N_(w). As to the node 21, it goes similarly. Hence E3}; 515(w1) is given by
f(tgu(‘wl),:r211(wl))*[mm]uo(xmg(wl)), see Figure 3. Consequently, we obtain finally an bexplicit repre-

sentation of the star-product functional

Miuo'”(m) = (uo(#11) K[z, U0 (Z12)) Kz,
{ (f(tml,$211)*[z21}uo($212)) *[zz]f(t22) $22)} . (14)

a

5 A sketch of the proof of existence result

In this section we shall first construct a (U, F))-weighted tree-based *-product functional M (w),
which is indexed by the. nodes (zm) of a binary tree. Moreover, in construction of the functional, the
.product is taken as ordinary multiplication * instead of the star-product ¥%. We need the following

technical lemma.



LEMMA 3. For 0 <t < T and z € Dy, the function V(t,z) = Et,z[M,fU’m (w)] satisfies

My (1 2) /d Az )\s|w|{ F(s, )

-/ V(s,y)ws,z)m(dy,dz)}. (15)

Proof of lemma 3. By making use of the conditional expectation we can get

V(t, ) = By o[MYT ()]
= B, o [MPT(w), t4 <0+ EuoMEYP (W), ty > 0]
= B, [MUF (), ty < 0]+ B o MYUP (W), ty >0, ny = 0]
+ B MO W), 14> 0, ng =1]. (16)

As to the first term in (16), the *-product functional is allowed to have a simple representation:
Ey oMY 14 < 0] = By oM 1{t¢<0}] U(z) - Pi(ts < 0)
=U(:c)/ fr(s)ds = / Mz|%e —slal® g
t
= U(z) - exp{-At|z|?}. (17)

As to the third term, the Markov property guarantees that the lower tree structure below the first
generation branching node point (or location) z; is independent of that below the location zp with
realized w € 2, hence a *-product functional branched after time s is also probabilistically independent

of the other *-product functional branched after time s. Therefore, an easy computation provides with

1 [t
Et,z[M*SU’F)vt¢ >0,np = 1] = 5/ dSAJxlze_Alzlz(t_s) X // E; [M*] 'Es,zz [M*]Kz(dxladw2)'
0
Note that as for the second term, it goes almost similarly. Finally, summing up we obtain
V(t,z) = By o[ M ()]

t 2
= U(z)r—=l* +/ —M;' el (t=9) (s 2)ds

0

EAZ aepe—s)
+ e Vis,y)V (s, z) K (dy,dz)ds. (18)
0
This completes the proof. O

Next notice that -
By oM ()] < 00 (19)

holds for V¢ € [0,T] and z € E., where a measurable set E, denotes the totality of all the elements z
in Dy such that ET,z[M,fU’m] < oo holds for a.e.-z. Another important aspect for the proof consists in

establishment of the M,-control inequality.

LEMMA 4. (M,-control inequality) The following inequality
M0 (@) < M) () (20)

holds P, z-a.s.
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In fact, the M,-control inequality yields immediately from a simple inequality
lwhkev] < w| - [v] for every w,v€C® and every =z € Do.
If we define wof)
u(t,z) = { BalM{*" W), on E.,

0, otherwise,

then u(t, z) is well-defined on the whole space Dy under the assumptions of the main theorem (Theorem

1). Moreover, it follows from the M,-control inequality (20) that

lu(t,z)] < V(t,z) on [0,T] x Do. (21)

On this account, it is easy to see from (15) that

T .
/ ds/|u(s,y)| - |u(s, 2)| Kz(dy,dz) < oo for ze€E,. (22)
0
Hence, taking (22) into consideration we define the space D of solutions to (1) as

D:i={p:Ry x Dy — C3, ¢ is continuous in ¢ and measurable such that
o0
/ ds/e’“’”'zsl(p(s, Y)| - le(s, 2)|Kz(dy,dz) < oo holds a.e. — z}. (23)
0

By employing the Markov property with respect to time ¢, and by a similar technique as in the proof of

Lemma 3, we may proceed in rewriting‘and calculating the expectation: for Vt > 0 and z € E,
u(t, ) = By o [M{0 (W)

t
= e—’\t'zl2uo(x) +/ ds /\|.11:|2e"\(t_“")|”|2 X
0

<3 {760+ [[ B Mk Bua MK (001, 022) | (24)

Furthermore, we may apply the integral equality (3) in the assumption on the Markov kernel for (24) to

obtain
A t
Et,x[M.(kuo’f)(w)] - e—-)\tl:ﬂz {Uo(.’l) + 5/ eAs1z|2f(S’w)ds
0
)\ t 2 .
+ 5/ ds/e"‘s{“”| (s, ,v; u)n(x,y)dy}‘ (25)
0

Finally we attain that u(t,z) = Ei » [ML"C"f )(w)] satisfies the integral equation (1), and this u(t,z) is a

solution lying in the space D. This completes the proof of the existence.
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