Equivariant definable Tietze extension theorem

Tomohiro Kawakami Department of Mathematics, Wakayama University

Abstract

Let G be a definably compact definable group, X a definable G set and A a G invariant definably compact definable subset of X. We prove that every G invariant definable function $f: A \to R$ is extensible to a G invariant definable function $F: X \to R$ with F|A = f.

1 Introduction

In this paper we consider equivariant definable Tietze extension theorem in an o-minimal expansion $\mathcal{N} = (R, +, \cdot, <, ...)$ of a real closed field R. It is known that there exist uncountably many o-minimal expansions of the field \mathbb{R} of real numbers([7]).

Definable set and definable maps are studied in [2], [3], and see also [8]. Everything is considered in $\mathcal{N} = (R, +, \cdot, <, ...)$ and definable maps are assumed to be continuous unless otherwise stated.

Theorem 1.1 ([5]). Let G be a definably compact definable group, X a definable G set and A a G invariant definably compact definable subset of X. Every G invariant definable function $f : A \to R$ is extensible to a G invariant definable function $F : X \to R$ with F|A = f.

²⁰¹⁰ Mathematics Subject Classification. 14P10, 57S10, 03C64.

Key Words and Phrases. Tietze extension theorem, o-minimal, real closed fields.

2 Preliminaries

A subset X of \mathbb{R}^n is *definable* (in \mathcal{N}) if it is defined by a formula (with parameters). Namely, there exist a formula $\phi(x_1, \ldots, x_n, y_1, \ldots, y_m)$ and elements $b_1, \ldots, b_m \in \mathbb{R}$ such that $X = \{(a_1, \ldots, a_n) \in \mathbb{R}^n | \phi(a_1, \ldots, a_n, b_1, \ldots, b_m) \text{ is true in } \mathcal{N}\}.$

For any $-\infty \leq a < b \leq \infty$, an open interval $(a, b)_R$ means $\{x \in R | a < x < b\}$, for any $a, b \in R$ with a < b, a closed interval $[a, b]_R$ means $\{x \in R | a \leq x \leq b\}$. We call \mathcal{N} *o-minimal* (*order-minimal*) if every definable subset of R is a finite union of points and open intervals.

A real closed field $(R, +, \cdot, <)$ is an o-minimal structure and every definable set is a semialgebraic set [9], and a definable map is a semialgebraic map [9]. In particular, the semialgebraic category is a special case of a definable one.

The topology of R is the interval topology and the topology of R^n is the product topology. Note that R^n is a Hausdorff space.

The field \mathbb{R} of real nubmers, $\mathbb{R}_{alg} = \{x \in \mathbb{R} | x \text{ is algeraic over } \mathbb{Q}\}$ are Archimedean real closed fields.

The Puiseux series $\mathbb{R}[X]^{\wedge}$, namely $\sum_{i=k}^{\infty} a_i X^{\frac{i}{q}}, k \in \mathbb{Z}, q \in \mathbb{N}, a_i \in \mathbb{R}$ is a non-Archimedean real closed field.

Fact 2.1. (1) The characteristic of a real closed field is 0.

(2) For any cardinality $\kappa \geq \aleph_0$, there exist 2^{κ} many non-isomorphic real closed fields whose cardinality are κ .

(3) In a general real closed field, even for a C^{∞} function, the intermediate value theorem, existence theorem of maximum and minimum, Rolle's theorem, the mean value theorem do not hold. Even for a C^{∞} function f in one varianble, the result that f' > 0 implies f is increasing does not hold.

Definition 2.2. Let $X \subset \mathbb{R}^n$, $Y \subset \mathbb{R}^m$ be definable sets.

(1) A continuous map $f: X \to Y$ is a definable map if the graph of $f (\subset \mathbb{R}^n \times \mathbb{R}^m)$ is definable.

(2) A definable map $f: X \to Y$ is a definable homeomorphism if there exists a definable map $f': Y \to X$ such that $f \circ f' = id_Y, f' \circ f = id_X$.

Definition 2.3. A group G is a *definable group* if G is definable and the group operations $G \times G \to G, G \to G$ are definable.

Let G be a definable group. A pair (X, ϕ) consisting a definable set X and a G action $\phi : G \times X \to X$ is a *definable* G set if ϕ is definable. We simply write X instead of (X, ϕ) . **Definition 2.4.** Let X, Y be definable G sets.

(1) A definable map $f : X \to Y$ is a definable G map if for any $x \in X, g \in G, f(gx) = gf(x)$.

(2) A definable G map $f: X \to Y$ is a definable G homeomorphism if there exists a definable G map $h: Y \to X$ such that $f \circ h = id_Y$, $h \circ f = id_X$.

Definition 2.5. (1) A definable set $X \subset \mathbb{R}^n$ is definably compact if for any definable map $f : (a,b)_R \to X$, there exist the limits $\lim_{x\to a+0} f(x), \lim_{x\to b-0} f(x)$ in X.

(2) A definable set $X \subset \mathbb{R}^n$ is definably connected if there exist no definable open subsets U, V of X such that $X = U \cup V, U \cap V = \emptyset, U \neq \emptyset, V \neq \emptyset$.

A compact (resp. A connected) definable set is definably compact (resp. definably connected). But a definably compact (resp. a definably connected) definable set is not always compact (resp. connected). For example, if $R = \mathbb{R}_{alg}$, then $[0, 1]_{\mathbb{R}_{alg}} = \{x \in \mathbb{R}_{alg} | 0 \leq x \leq 1\}$ is definably compact and definably connected, but it is neither compact nor connected.

Theorem 2.6 ([6]). For a definable set $X \subset \mathbb{R}^n$, X is definably compact if and only if X is closed and bounded.

The following is a definable version of the fact that the image of a compact (resp. a connected) set by a continuous map is compact (resp. connected).

Proposition 2.7. Let $X \subset \mathbb{R}^n$, $Y \subset \mathbb{R}^m$ be definable set and $f : X \to Y$ a definable map. If X is definably compact (resp. definably connected), then f(X) is definably compact (resp. definably connected).

Theorem 2.8. (1) (The intermediate value theorem) For a definable function f on a definably connected set X, if $a, b \in X$, $f(a) \neq f(b)$ then f takes all values between f(a) and f(b).

(2) (Existence theorem of maximum and minimum) Every definable function on a definably compact definable set attains maximum and minimum.

(3) (Rolle's theorem) Let $f : [a,b]_R \to R$ be a definable function such that f is differentiable on $(a,b)_R$ and f(a) = f(b). Then there exists c between a and c with f'(c) = 0.

(4) (The mean value theorem) Let $f : [a, b]_R \to R$ be a definable function which is differentiable on $(a, b)_R$. Then there exists c between a and c with $f'(c) = \frac{f(b) - f(a)}{b-a}$.

(5) Let $f : (a,b)_R \to R$ be a differentiable definable function. If f' > 0 on $(a,b)_R$, then f is increasing.

Example 2.9. (1) Let \mathcal{N} be $(\mathbb{R}_{alg}, +, \cdot, <)$. Then $f : \mathbb{R}_{alg} \to \mathbb{R}_{alg}, f(x) = 2^x$ is not defined([10]).

(2) Let \mathcal{N} be $(\mathbb{R}, +, \cdot, <)$. Then $f : \mathbb{R} \to \mathbb{R}$, $f(x) = 2^x$ is defined but not definable in \mathcal{N} , and $h : \mathbb{R} \to \mathbb{R}$, $h(x) = \sin x$ is defined but not definable in \mathcal{N} .

Definition 2.10. A definable map $f: X \to Y$ is definably proper if for any definably compact subset C of Y, $f^{-1}(C)$ is definably compact.

Theorem 2.11 (Existence of definable quotient). Let G be a definably compact definable group and X a definable G set. Then the orbit space X/G exists as a definable set, and the orbit map $\pi : X \to X/G$ is definable, surjective and definably proper.

The following theorem is the topological case of Tietze extension theorem.

Theorem 2.12 (Tietze extension theorem). Let X be a normal space and A a closed subset of X. Then every continuous map $f : A \to \mathbb{R}$ is extensible to a continuous map $F : X \to \mathbb{R}$ with F|A = f.

The following theorem is the definable case of Tietze extension theorem.

Theorem 2.13 (Definable Tietze extension theorem, [1]). Let A be a definable closed subset of \mathbb{R}^n . Then every definable map $f: A \to \mathbb{R}$ is extensible to a definable map $F: \mathbb{R}^n \to \mathbb{R}$ with F|A = f.

3 Idea of proof of Theorem 1.1

A definable map $f: X \to Y$ is definably closed if for any definable closed subset A of X, f(A) is a definable closed subset of Y.

Theorem 3.1 ([4]). Let $f: X \to Y$ be a definable map. Then f is definably proper if and only if f is definably closed and has definably compact fibers.

Idea of Proof of Theorem 1.1. Using Theorem 2.11, 2.13, 3.1, we have the result.

References

- [1] M. Aschenbrenner and A. Fischer, *Definable versions of theorems by Kirszbraun and Helly*, Proc. Lond. Math. Soc. **102** (2011), 468–502.
- [2] L. van den Dries, *Tame topology and o-minimal structures*, Lecture notes series **248**, London Math. Soc. Cambridge Univ. Press (1998).
- [3] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540.
- [4] M. Edmundo, M. Mamino and L. Prelli, On definably proper maps, arXiv:1404.6634.
- [5] T. Kawakami, An equivariant version of definable Tietze extension theorem, in preparation.
- [6] Y. Peterzil and C. Steinhorn, Definable compactness and definable subgroups of o-minimal groups, J. London Math. Soc. 59 (1999), 769–786.
- [7] J.P. Rolin, P. Speissegger and A.J. Wilkie, Quasianalytic Denjoy-Carleman classes and o-minimality, J. Amer. Math. Soc. 16 (2003), 751-777.
- [8] M. Shiota, Geometry of subanalyitc and semialgebraic sets, Progress in Math. 150 (1997), Birkhäuser.
- [9] Tarski, A., A Decision Method for Elementary Algebra and Geometry, 2nd ed., University of California Press, Berkeley-Los Angeles, 1951.
- [10] R. Wencel, Weakly o-minimal expansions of ordered fields of finite transcendence degree, Bull. Lond. Math. Soc. 41 (2009), 109–116.