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Abstract

Three notions dependent theory, $VC-dimension_{Z}$ and PAC-learnability have been
found to be closely related. In addition to the known relation among these notions
in model theory, finite combinatorics and probability theory, Chernikov, Palacin, and
Takeuchi found a relation between $n$-dependence and $VC_{n}$-dimension, which are gener-
alizations of dependence and VC-dimension respectively. We are now working to find a
generaJization of PAC-learnability corresponding to the above two generalizations. This
attempt is ajoint work with Takayuki Kuriyama and Kota Takeuchi. In this article, we
see basic definitions and known results as well as some examples.

1 Introduction

It is known that dependent theory, or NIP theory, has close relation to the notions from
finite combinatorics and probability theory, VC-dimension and PAC-learnability, respec-
tively. In [1], [2], Shelah introduced a generalized notion of dependence, $n$-dependence.
Recent study [7] of Chernikov, Palacin, and Takeuchi characterized $n$-dependence by
VC -dimension, which is a generalization of VC-dimension. However, the corresponding
generalization of PAC-learnability is remained to be unknown.

We attempt to find the generalization of PAC-learnability corresponding to the gen-
eralization from dependence to $n$-dependence and from VC-dimension to $VC_{n}$-dimension.
The attempt is a joint work with Takayuki Kuriyama and Kota Takeuchi. Our main
results are specificaHy presented in mother article of ours in this K\^oky\^uroku.

In this article, we first recall the definitions of VC-dimension and PAC-learnability
and the equivalence between these notions in section 2. Also, we mention Sauer-Shelah
lemma there. In section 3, we see the definition of $VC_{n}$-dimension and the corresponding
generalization of Sauer-Shelah lemma. After that, we introduce PAC -learnability and
examine an example in section 4.
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2 Preliminaries

We first recall the elementary notions in VC-theory. VC-dimension was introduced by

Vapnik and Chervonenkis in [4], but in a different symbol.

Definition 2.1 (Vapnik, Chervonenkis [4]). Let $X$ be a set and $C$ be a subclass of the

power set of $X$ . We identify a subset $C$ of $X$ with the indicator function of $C$ . This is

because we need to clarify the domain of $C$ in case we restrict the universal set $X$ to some
subset.

1. For a subset $A$ of $X$ , we write $C|_{A}$ for the set $\{C|_{A}|C\in C\}.$

2. A subset $A$ of $X$ is said to be shattered by $C$ if $C|_{A}=2^{A}.$

3. We define the VC-dimension of $C$ by

VC $(C)= \sup\{|A| \}$ $A$ is a finite subset of $X$ shattered by $C$ }.

Definition 2.2 (Shatter function). For a class $C$ of subsets of $X$ , we define $\pi_{C}$ : $\omegaarrow\omega$

the shatter functiQn of $C$ as follows:

$\pi_{\mathcal{C}}(m)=\sup$ { $|C\cap A||A$ is an $m$-element subset of $X$ },

where $C\cap A=\{C\cap A|C\in C\}.$

The following lemma is known as Sauer-Shelah lemma. In this article, we just state

the asymptotic behavior of shatter functions. For a more specific estimate, see [7].

Lemma 2.3. Suppose $VC(C)=d$ . Then, $\log(\pi_{C}(m))=O(\log m)$ .

Valiant introduced the notion of PAC-learnable in [3]. Here, for simplicity in measur-
ability arguments, we restrict the universal set $X$ to $\mathbb{R}^{k}$ or a product space of intervals in
$\mathbb{R}.$

Definition 2.4 (Valiant [3]). Let $X$ be $\mathbb{R}^{k}$ or a product space of intervals in $\mathbb{R},$
$\mathfrak{B}$ be the

Borel set of $X$ and $C$ be a subset of $\mathfrak{B}.$

1. Cfin $=$ { $C|_{A}|C\in C$ , and $A$ is a finite subset of $X$ }.

2. $D(\overline{a})=\{a_{0}, . .., a_{m-1}\}$ for a tuple $\overline{a}=(a_{0}, \ldots, a_{m-1})$ .

3. Let $H$ : Cfin $arrow \mathfrak{B}$ be a function. $C$ is said to be PAC-learnable with learning function
$H$ if for all $\epsilon,$

$\delta>0$ , there exists $N\in\omega$ such that for an arbitrary measure $(\mu,\mathfrak{B})$ on
$X$ , an arbitrary $C\in C$ , and $m\geq N,$

$\mu^{m}(\{\overline{a}\in X^{m}|\mu(H(C|_{D(\overline{a})})\triangle C)>\epsilon\})\leq\delta.$

Here, $\mu^{m}$ is the product measure and $\triangle$ is the symmetric difference of two sets.
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For a concept class $C$ , the finiteness of $VC(C)$ and the PAC-learnability of $C$ are
equivalent under some condition. This theorem was essentially proved in [4], but in a
different notation from here.

Theorem 2.5 (Vapnik, Chervonenkis [4]). Let $X$ be $\mathbb{R}^{k}$ or a product space of intervals
in $\mathbb{R},$

$\mathfrak{B}$ be the Borel set of $X$ and $C$ be a well-behavei subclass of $\mathfrak{B}$ . The following are
equivalent:

1. $C$ has finite $VC$ -dimension.

2. $C$ is $PAC$ -learnable.

We do not look closely into the property of being well-behaved, which is related to
measurability. For details, see [5, Appendix $A$].

3 $VC_{n}$-dimension

In this section, we see a generalization of VC-dimension.

Definition 3.6 ([7]). Let $X_{0}$ , . . ., $X_{n-1}$ be infinite sets, $X$ be the direct product $\prod_{i<n}X_{i},$

and $C$ be a subclass of the power set of X.

1. A subset $A$ of $X$ is said to be a box of size $m$ if $A= \prod_{i<n}A_{i}$ for some subsets $A_{i}$ of
$X_{i}$ with $|A_{i}|=m,$ $i<n.$

2. We define the $VC_{n}$-dimension of $C$ by

$VC_{n}(C)=\sup$ { $m|A$ is abox of size $m$ that is shattered by $C$ }.

Example 3.7. Let $X=[0$ , 1$]$ $\cross[0$ , 1 $],$ $C_{1}$ be the set of all finite union of subintervaJs in
$[0$ , 1 and $C=\{C_{1}\cross C_{2}|C_{1}, C_{2}\in C_{1}\}$ . Then, VC $(C)=\infty$ and $VC_{2}(C)=1.$

Indeed, $n$-element set $\{(i/n, i/n)|i<n\}$ is shattered by $C$ . Hence VC $(C)=\infty hold_{S_{4}}$

For any box $B=\{(a_{i}, b_{j})|1\leq i,j\leq 2\}$ of size 2, there do not exist $C$ in $C$ that satisfies
$B\cap C=B\backslash \{(a_{2}, b_{2})\}$ . This is the case because for any $C$ in $C,$ $C=C_{1}\cross C_{2}$ for some
$C_{1}$ and $C_{2}$ in $C$ by definition and so $\{(a_{1}, b_{1}), (a_{2}, b_{2})\}\subset C$ implies $B\subset C.$ $\square$

Definition 3.8 (Shatter function corresponding to $VC_{n}$-dimension). Let $X_{0}$ , . . . , $X_{n-1}$

be infinite sets, $X$ be the direct product $\prod_{i<n}X_{i}$ , and $C$ be a subclass of the power set of
X. We define $\pi_{C,n}$ : $\omegaarrow\omega$ the shatter function corresponding to $VC_{n}$-dimension of $C$ as
follows:

$\pi_{C,n}(m)=\sup$ { $|C\cap A||A$ is a box of size $m$ of $X$ },

where $\mathcal{C}\cap A=\{C\cap A|C\in C\}.$

It is known that a generalization of Sauer-Shelah lemma holds for $VC_{n}$-dimension.
Here, we focus on the asymptotic behavior as above. For a more specific estimate, see [7].

Lemma 3.9 ([7]). Suppose $VC_{n}(C)=d$ . Then, $\log(\pi_{C,n}(m))=O(m^{n-\epsilon}\log m)$ , where
$\epsilon=d^{-(n-1)}.$
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4 $PAC_{n}$-learnability

We introduce a new notion. We are currently working to figure out if this generalization
of PAC-learnability corresponds to that of VC-dimension stated in section 3. As above,
for simplicity in measurability arguments, we continue to restrict the universal set $X$ to
$\mathbb{R}^{k}$ or a product space of intervals in $\mathbb{R}.$

Definition 4.10. Let $X_{0}$ , . . . , $X_{n-1}$ be Euclidian spaces or intervals, $X$ be the product
space $\prod_{i<n}X_{t}$ . Also, let $\mathfrak{B}_{i}$ and $\mathfrak{B}$ be the Borel sets $ofX_{i}$ and $X$ respectively, and $C\subset \mathfrak{B}.$

1. For $a=(b_{0}, \ldots, b_{n-1})$ in $X$ , we put

$D_{n}(a)= \bigcup_{1<n}X_{0}\cross\cdots\cross X_{i-1}\cross\{b_{i}\}\cross X_{i+1}\cross\cdots\cross X_{n-1}.$

2. $D_{n}( \overline{a})=\bigcup_{i<m}D_{n}(a_{i})$ for a tuple $\overline{a}=(a_{0}, \ldots, a_{m-1})$ in $X^{m}.$

3. $C^{n}fin=\{C|_{D_{n}(\overline{a})}|C\in C,$ $aa^{m}$ , and $m\in\omega\}.$

4. Let $H:C^{n}finarrow \mathfrak{B}$ be a function. $C$ is said to be $PAC_{n}$-learnable with learning function
$H$ if for all $\epsilon,$

$\delta>0$ , there exists $N\in\omega$ such that for arbitrary measures $(\mu_{i}, \mathfrak{B}_{i})$ on
$X_{i}$ , an arbitrary $C\in C$ , and $m\geq N,$

$\mu^{m}(\{\overline{a}\in X^{m}|\mu(H(C|_{D_{n}(\overline{a})})\triangle C)>\epsilon\})\leq\delta.$

Here, $\mu$ is the product measure $\prod_{i<n}\mu_{i}$ and $\triangle$ is the symmetric difference of two sets.

Example 4.11. Let $X=[0, 1]\cross[0$ , 1$]$ , and $\mathfrak{B}$ be the Borel set of $[0$ , 1$]$ . Also, we put $C_{1}=$

(
$(the$ set of all finite union of subintervals in $[0,1$ and $C=\{C_{1}\cross C_{2}|C_{1}, C_{2}\in C_{1}\}.$

Then, $C$ is $PAC_{2}$-learnable.
For a finite subset $\overline{a}$ of $X$ , we define a learning function $H$ : $C^{2}finarrow \mathfrak{B}$ by

$H(C|_{D_{2}(\overline{a})})=p_{1}(C|_{D_{2}(\overline{a})})\cross p_{2}(C|_{D_{2}(\overline{a})})$ .

Here, $p_{1}$ and $p_{2}$ are the projection maps. Observe that we have $H(C|_{D_{2}(\overline{a})})=C$ if there
are $a_{1}$ and $a_{2}$ in $\overline{a}$ such that $p_{1}(a_{1})\in p_{1}(C)$ and $p_{2}(a_{2})\in p_{2}(C)$ .

In order to show that $C$ is $PAC_{2}$-learnable with learning function $H$ , we take arbitrary
$\epsilon,$

$\delta>0$ and for sufficiently large $m$ with respect to $\epsilon$ and $\delta$ , arbitrary measures $(\mu_{l}, \mathfrak{B}_{i})$ ,
and $C$ in $C$ , we estimate $\mu^{m}(\{\overline{a}\in X^{m}|\mu(H(C|_{D_{2}(\overline{a})})\triangle C)>\epsilon$ where $\mu=\mu_{1}\cross\mu_{2}$ . Be-
cause $H(C|_{D_{2}(\overline{a})})\subset C$ holds, if $\mu(C)\leq\epsilon$ then $\mu^{rn}(\{\overline{a}\in X^{m}|\mu(H(C|_{D_{2}(\overline{a})})\triangle C)>\epsilon\})=$

O. We assume $\mu(C)>\epsilon$ . By the aboye observation, we have

$\mu^{m}(\{\overline{a}\in X^{m}|\mu(H(C|_{D_{2}(\overline{a})})\triangle C)>\epsilon\})$

$\leq\mu^{m}(\{\overline{a}\in X^{m}|p_{1}(\overline{a})\cap p_{1}(C)=\emptyset$ or $p_{2}(\overline{a})\cap p_{2}(C)=\emptyset$ } $)$

$\leq\mu^{m}(\{\overline{a}\in X^{m}|p_{1}(\overline{a})\cap p_{1}(C)=\emptyset\})+\mu^{m}(\{\overline{a}\in X^{m}|p_{2}(\overline{a})\cap p_{2}(C)=\emptyset\})$

$\leq 2(1-\epsilon)^{m}\leq\delta.$

The last inequality above is derived from the way we chose $m.$ $\square$
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We have reached a result of one side of the equivalence between finiteness of the
$VC_{n}$-dimension and the $PAC_{n}$-learnability. This result was obtained by joint work with
Kuriyama and Takeuchi. For the proof, refer to another article of ours in this K\^oky\^uroku.

Theorem 4.12. Every PAC -learnable class has finite $VC_{n}$ -dimension.
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